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Abstract. We present the first results from our new relativistic hydrodynamics code. Using the
equations of the conformally flat (CF) formalism, we solve for the fields using the LORENE
libraries, developed by the Meudon group. These libraries, previously used for high-accuracy
studies of equilibria, have been combined with a smoothed particle hydrodynamics (SPH) evolution
treatment, to allow for a combination of high accuracy as well as computational speed. We have
tested the resulting code extensively, finding that it performs well for calculations of a collapsing
relativistic dust cloud as well as single-star configurations, for which the exact matter and field
solution can be computed. We have also tested the code by computing the orbits of binary neutron
stars, with the effects of radiation reaction not included, finding good long-term stability. We have
used the code, with an approximate treatment of radiation reaction, to study the case of merging
neutron star binaries, finding that we can successfully compute the fields even as the stars become
tidally disrupted during the mergers.

Coalescing binary neutron star (NS) systems are a leading candidate to be the first
sources detected by the current generation of gravitational wave detectors. Many cal-
culations have been performed to study these systems, but it has long been recognized
that the effects of general relativity (GR) must play an important role in the dynamics.
As a result, many different gravitational formalisms have been used in hydrodynam-
ical calculations, including a post-Newtonian treatment, developed by Blanchet et al.
[1], which includes all lowest-order 1PN effects [2–5]. More recently, calculations have
been performed in full general relativity [6, 7]. Unfortunately, the PN approximation
breaks down during the merger when higher-order relativistic effects grow significant,
and fully relativistic calculations typically introduce numerical instabilities which limit
the amount of time for which a calculation will remain accurate. A middle ground is
provided by the conformally flat (CF) approximation, developed originally by Wilson
et al. [8], which includes much of the non-linearity inherent in GR, but results in a set of
coupled, non-linear, elliptic field equations, which can be evolved stably. Such a method
assumes that the spatial part of the GR metric is equal to the flat-space form, multiplied
by a conformal factor which varies with space and time, the metric taking the form

ds2 =−(N2−BiB
i)dt2−2Bidtdxi +A2

δi j dxidxj . (1)

While this approach cannot reproduce the exact GR solution for a general matter config-
uration, it is exact for spherically symmetric systems, and yields solutions which agree
with those calculated using full GR to within a few percent for many systems of interest
[9].
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FIGURE 1. Radial domains used to evaluate the field equations of the CF method. Each vertex is a
collocation point.

Calculations of binary NS coalescence using the CF formalism have been performed
by Oechslin et al. [10], and a PN variation of the method was used by Shibata et al. [11].
The standard approach of using large computational grids to solve non-linear equations
is very costly, however, both in time and computer memory. For many problems, it is
much more efficient to use spectral methods to solve a system of equations, decompos-
ing the relevant quantities into radial and angular terms, yielding extremely accurate
solutions with a very small number of coefficients. We have developed a field solver
based onLORENE, publicly available athttp://lorene.obspm.fr , which has
been used previously, among other things, to construct quasi-equilibrium binary config-
urations [12], and added on a smoothed particle hydrodynamics (SPH) set of evolution
equations, resulting in a 3-d code which can compute the full evolution of any number
of relativistic matter configurations accurately and efficiently. The field solver works by
breaking up source terms into two distinct components, each centered on a star, which
are further broken into radial domains, as shown in Fig. 1. In each domain, terms are
evaluated at “collocation points” spaced out in the radial and angular directions to han-
dle any convex surface. Typically, solutions accurate to one part in 109 can be achieved
quickly, using only a 17×13×12 grid. The Lagrangian nature of SPH has several ad-
vantages over Eulerian grid-based methods for these calculations, first and foremost the
natural way it handles a surface; there are no particles where there is no matter.

We have performed several tests to ensure that our code works properly. Since the
CF formalism is known to be exact for spherically symmetric matter configurations, we
calculated models of isolated neutron stars, finding excellent agreement with the well
known Oppenheimer-Volkov solutions to well within a percent for all hydrodynamic
expressions and field values throughout the star.

To test the dynamical aspects of the code, we also computed the collapse of a dust
cloud, i.e. pressureless matter, placed initially at rest. We compared our results to those
of Petrich et al. [13], who developed a semi-analytic procedure which yields the field
values at all points in spacetime, as well as the paths traced out by any given mass shell.
We find that our code can reproduce the collapse extremely well, until just short of the
point where the event horizon reaches the surface of the matter, showing in Fig. 2 the



FIGURE 2. Lagrange radii in conformal coordinates versus time for particles in our calculation (points),
compared to the exact semi-analytic form (solid lines), for a dust cloud of unit mass and initial radiusRS=
5 in Schwarzchild coordinates. The surface has an initial radius ofRc = 3.99 in conformal coordinates.
The agreement is excellent until shortly before the event horizon (dashed line), which starts at the center
and moves outward, reaches the surface of the matter.

particle position values over time compared with the exact solution. Note that the radii
shown are in conformal coordinates, rather than Schwarzchild.

Since the CF formalism is time-symmetric, it does not contain terms which lead to
gravitational radiation back reaction. Thus, we have tested our code by computing the
evolution of quasi-equilibrium binaries. We see in Fig. 3 that the binary separation and
conserved system angular momentum vary by no more than 2.5% over two orbits, and
the ADM mass is nearly constant, for runs started at three different initial separations,
with configurations taken from the compactnessM/R = 0.14 calculation of Taniguchi
and Gourgoulhon [14]. Similarly, a comparison of the field values and density profiles of
the stars after two orbits yields very little deviation from the initial configuration. These
results confirm for the first time that all equilibrium binary configurations calculated by
Taniguchi and Gourgoulhon [14] are dynamically stable all the way to the appearance
of a cusp.

Dissipative effects can be added to the CF formalism through a radiation reaction po-
tential which reproduces the lowest-order energy loss rate [8]. When radiation reaction
is used, we find that the binary plunges rapidly toward merger soon after the point where
a cusp is reached along the quasi-equilibrium sequence. In our approach, we have found
that throughout the evolution, the matter’s surfaces can be modeled well enough for
convergence by triaxial ellipsoids that are allowed to rotate to match the growing tidal
lag angles. Field quantities are calculated by finding the SPH values for source terms at



FIGURE 3. Binary separation, ADM mass, and total angular momentum for three circular orbit calcu-
lations, with initial separationsr0 = 3.9 (solid), 4.0 (dotted), and 4.5 (dashed). Units are the same as in
Ref. [14]. The orbital period in these units is≈ 90.

collocation points, and after the fields are calculated they are interpolated back to SPH
particles, with derivatives calculated to high accuracy by the field solver, rather than
particle-based techniques. For overlapping configurations, we split our source terms be-
tween the two stars, weighting the density contributions for each such that each star has
a well-defined central density maximum up until the point where the central density of
the system allows us to treat the object as a single rapidly spinning body.

We note that, while binary NS systems have served as the primary motivation for this
code, it can be used in the study of a variety of physical systems, including collapsing
matter configurations with rotation, as well as supernova progenitors.
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