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Abstract
The boundary integral equations incorporating the Green’s function for anisotropic

solids containing planar interfaces are presented.  The fundamental displacement and
traction solutions are determined from the displacement Green’s function of Tewary,
Wagoner, and Hirth [Journal of Materials Research, Vol. 4, pp. 113-123].  The
fundamental solutions are shown to numerically degenerate to the Kelvin solution in the
homogeneous, isotropic limit.  The boundary integral equations are formulated with the
use of constant boundary elements.  The constant elements allow for analytic evaluation of
the boundary integrals.  The application of the method is demonstrated by analyzing a
copper-nickel system subjected to mechanical load.

1. Introduction
The analysis of deformation near interfaces in solids has received renewed interest

due to reliability issues in electronic packaging.  Here we present a boundary element
formulation for anisotropic interface problems incorporating the fundamental solution of
Tewary, Wagoner, and Hirth [1].  This fundamental solution for the general anisotropic
interface problem allows us to model the behavior of stresses and displacements near the
interface exactly.  No discretization of the interface is required since this behavior is
explicitly incorporated in the fundamental solution.  A similar approach was taken in [10,
11] for the isotropic interface problem.

The work presented here follows the work of Cruse [4] and Snyder and Cruse [8,
9] who implemented a complex-variable fundamental solution for the crack problem in a
homogeneous, anisotropic plate.  They found such a formulation to be computationally
efficient as well as providing exact modeling of the singular fields near the crack tips.  The
use of enriched elements [14-16] has received a good deal of attention in the finite element
literature for use in modeling singular fields; however, the use of special Green's functions
for singular fields has been limited in boundary element formulations.  The formulation
presented here is useful for boundary element analysis of interface problems where the
interface is flaw-free.  Future work will focus on the special Green's functions associated
with interface cracks in anisotropic solids [13].

In this paper the fundamental displacement and traction solutions are presented as
determined from the Green's function given in [1].  We note that four solutions are
actually needed depending on the relative location of the source and field points in the two
anisotropic solids.  The fundamental displacement solutions U are of the general form



U = −∑ γγ α
α

α α
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where the γγ α
A B,  matrix is a function of the elastic constants in either material A or B and

the α roots of the Stroh determinant [2], α = 1, 2, 3.  The complex coordinates z, z' of the
field and source points are defined in the classical Lekhnitskii form [3].  The traction
fundamental solution is then derived from the displacement fundamental solution.  We
compare the degenerate isotropic form of these fundamental displacement and traction
solutions with the Kelvin isotropic solution.

The details of implementing the new fundamental solutions into the boundary
integral equation

c u T u d U t dij j ij j ij j+ =∫ ∫Γ Γ
Ω Ω∂ ∂

                                             (1.2)

are given where the integrals are evaluated in the complex plane.  We focus on the
constant element case to allow for analytic evaluation of the integrals.
 Throughout the paper matrices and vectors are indicated either by a bold quantity
or by subscript notation.  Unless otherwise stated summation is implied over repeated
(dummy) indices.  We shall use the rectangular Cartesian coordinates x1, x2, x3 and the
elastic state is assumed to be independent of x3.  A superscript asterisk (*) on a complex
quantity indicates a complex conjugate, and a primed coordinate will indicate the
coordinate system associated with a point source.

2. Anisotropic Fundamental Solution
The problem under consideration is shown in Fig. 1.  In [1], Tewary, Wagoner,

and Hirth determine the Green's function for a composite solid with a planar interface by
taking Fourier transforms of the elastic equations.  The Fourier transform method avoids
the problems associated with solving a complex eigenvalue problem as arises in the
analyses of Eshelby [12] and Stroh [2].  The presence of an interface in the composite
solid necessitates solving the elastic equilibrium equations
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in both the upper half plane (material A) and the lower half plane (material B).  In eq.
(2.1), cikjl are the elastic constants, ui are the displacements, and fi are the forces at (x1,x2).
By definition, the Green's function Gij  solves the equation
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where δ(x) is the Dirac delta function, δ ik  is the Kronecker delta, the primed coordinates
represent the location of the point source, and the superscripts are for either material A or
B.

Eq. (2.2) is solved assuming perfect conditions at the interface between materials
A and B,
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The Green's function determined through the Fourier transforms of eq. (2.2) subject to the
boundary conditions of eqs. (2.3) and (2.4) is found in [1].  Since the point force and the
field point may be located in either material A or B there are in fact four parts to the
Green's function.  The displacement field is given by the real part of the Green's functions
given in [1],
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The definitions of the terms appearing in eqs. (2.5)-(2.8) are given below.  The
superscripts on the left hand side of eqs. (2.5)-(2.8) identify the location of the source and
field points, respectively, as being in material A or B.  For example, a 12 superscript
indicates that the source point (location of the point load) is in the upper half plane
(material A) and the field point (calculation point) is in the lower half plane (material B).
The fundamental solutions for the boundary element analysis involve the transpose of the
Green's functions given in [1] due to the convention taken in the boundary element
literature where Uij represents a displacement in the j-direction due to a unit load in the i-
direction.  The convention taken in [1] for the displacement Green's function is the
reverse, that is

Re G Uij ji=  .                                                                    (2.9)

This becomes critical for bimaterial problems since the fundamental displacement solution
is not symmetric, U Uij ji≠ .

The terms appearing in eqs. (2.5)-(2.8) are defined through the roots of the sextic
equation

( )det ΛΛ q = 0 ,                                                        (2.10)

where the Christoffel matrix Λ ij  is defined by

Λ ij ikjl k lc q q=   .                                                      (2.11)

The wave vector q has components q1 and q2 and the roots pα are obtained from eq.
(2.10) such that q p q2 1= α .  For elastically stable solids the roots pα are complex [1, 2, 12]
and the roots are labeled such that

Im pα > 0.                                                          (2.12)
The complex coordinates appearing in eqs.(2.5)-(2.8) are defined as
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The remaining matrices in eqs. (2.5)-(2.8) are defined as follows:
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In eqs. (2.15)-(2.26), the index α generally takes values of 1 to 3.  There are several useful
relations for checking the computation of the various matrices given in [13].  These
relations are most helpful in checking the Green's function computation in the boundary
element code.

The traction fundamental solution may now be computed from the displacement
fundamental solution by substituting eqs. (2.5)-(2.8) into
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where nj is the j-th component of the local normal vector.  Here, we consider the case of
cubic material symmetry where the stiffness tensor is defined in terms of three elastic
constants c11, c12 , c44  as  [6]

( )c c c Hijkl ik jl il jk ij kl ij kl ik= + + −44 12δ δ δ δ δ δ δ δ δ  ,                           (2.28)

(no sum on k or i) where the anisotropy ratio H is defined as
H c c c= + −2 44 12 11 .                                                   (2.29)

In eq. (2.27) we have used the relation
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Note in eqs. (2.5)-(2.8) that each of the equations is a function of z or z* only.  Therefore,
we will use the notation of eq. (2.27) where it is understood that if u = u(z*), the
derivative is taken with respect to z*.

The traction fundamental solution can be written as
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The post-multiplication of the displacement derivative matrix arises from the
aforementioned convention taken in [1] for Uij.  The matrix of derivatives in eq. (2.31) can
be determined directly from eqs. (2.5)-(2.8).  The derivatives are given in Appendix A.
We note again that for the interface problem we have four traction fundamental solutions
to consider depending on the relative location of the source and field points.

A natural question to consider is the equivalence of the displacement and traction
fundamental solutions given above with the Kelvin solution (see, for example, [5]) for the
degenerate isotropic, homogeneous case.  The homogeneous case can be modeled simply
by specifying identical elastic constants for materials A and B.  The isotropic case must be
considered through a limiting process for the anisotropic solution given here; however, we
can consider a "near" isotropic, homogeneous case and compare the Tewary displacement
and traction solutions with the Kelvin solution.  We consider the case of tungsten where
the anisotropy ratio H = 0.  From [6] the elastic constants are c11 = 521.0 Gpa, c12 = 201.0
Gpa, and c44 = 160.0 Gpa.  These constants give us a Poisson ration ν = 0.28 and a shear
modulus µ = 160.0 Gpa.  For the anisotropic fundamental solution we use c11 = 521.0
Gpa, c12 = 201.1 Gpa, and c44 = 160 Gpa.  These values provide an anisotropy ratio of H =
0.001.

The displacement fundamental solution for both the Kelvin and Tewary solutions is
shown in Fig. 2.  The solution is for a homogeneous solid so U21 = U12 in the figure.  Note
that there is essentially no difference in the U21, U12, and U22 components; however, the
U11 components differ by a constant.  This constant depends on the elastic constants being
used but is spatially invariant.  In the boundary integral equations such a constant can be
treated separately in the contour integrals and can be shown to be inconsequential to the
solution of the equations.  Indeed, a constant in the displacement fundamental solution
must not have any effect since this is simply related to rigid body motion of the solid.

The traction fundamental solution for the Kelvin and Tewary solution is shown in
Fig. 3.  The agreement is excellent with no discernible difference between the two
solutions.  For purposes of comparison, the traction fundamental solution for two cubic
crystals (copper-nickel) is shown in Fig. 4.  Note the difference in the solutions as the field
point crosses the bimaterial interface and that U21 and U12 are not equal as they are for the
homogeneous case.



3. Boundary Integral Equations
We now consider the use of the anisotropic fundamental solution for the interface

problem shown in Fig. 1.  For the region Ω in the figure, let the boundary of material A be
Γ1, the boundary of material B be Γ2, and Γ1 + Γ2 = ∂Ω.  The standard boundary integral
equation written for the region is

 c u P T P Q u Q d U P Q t Q dij j ij j ij j( ) ( , ) ( ) ( , ) ( )+ =∫ ∫Γ Γ
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,                     (3.1)

where P and Q are points on the boundary at the source and field points, respectively.  As
noted above, we must consider the relative locations of the field and source points in
writing the kernels of the integrals.   Following [10, 11], we can write eq. (3.1) for the
source point P in material A as
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where the superscripts on the fundamental solutions terms and the subscripts on P and Q
identify the location of the source and field points.  We can write a similar equation to eq.
(3.2) for the case when P is in material B, or we can write in general
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where β = 1, 2 and no summation on β is implied.  The continuity of displacement and
traction fields across the interface is insured through the use of the fundamental solution
from [1].  Discretizing each boundary into N elements eq. (3.3) becomes
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At this point we assume that the boundary traction and displacement are constant over
each individual boundary element to allow us to analytically evaluate the integrals.
Factoring out the constants from the integrals in eq. (3.4) we have
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where the uj and tj are element midpoint values.  Note that eq. (3.5) is applied at 2N points
around ∂Ω, N points each on Γ1 and Γ2.  We therefore need to analytically evaluate the
following eight integrals:
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where β = 1, 2.  To analytically evaluate these integrals, we use the mapping of Cruse [4]
to transform these contour integrals to definite integrals in the complex plane.  The
differential contour element dΓ is mapped as

d
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and $n1  and $n2  are unit vector components of the local normal vector for dΓ.  With this
mapping the displacement kernel integrals simply involve evaluating integrals of the form
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and the traction kernel integrals involve evaluating
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where b is a complex constant.  These integrals are simple to evaluate; however, special
care must be taken when integrating across the branch cut of the principal value logarithm
function on the negative real axis.  The location of the real axis does not necessarily
coincide with the location of the physical interface because of the definition of the
complex variables used here (see eqs. (2.13)-(2.14)).

4. Internal Displacement and Stress Calculation
 To calculate the displacement at an internal point we use the standard form of

Somigliana's identity,
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and the corresponding form for stresses,
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where p is the internal computation point and Q is on the boundary.  The kernels
appearing in eq. (4.2) are determined from the fundamental displacement and traction
solutions and the anisotropic constitutive law,
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Recall that for a cubic solid the elastic constants are given by eq. (2.28).  The derivatives
appearing in eq. (4.4) have been computed previously in deriving the fundamental traction
solution, eq. (2.31), and are given in Appendix A.  The derivatives appearing in eq. (4.5)
can be written as
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Therefore, we only need the second derivatives of the fundamental displacement solution.
These are summarized in Appendix A.  Finally, we note again that the Eα  matrix
appearing in eq. (4.6) depends on material symmetry.  We focus here on cubic material
symmetry but others are easily implemented as well.

5. Example Problem
To demonstrate the application of the method we analyze the field distribution in a

copper-nickel multilayer. Multilayer materials are fabricated by depositing alternating
layers of thin-film materials such as Cu-Ni, Co-Cr, and Fe-GaAs.  Here, we demonstrate
the usefulness of the analysis method detailed above in analyzing multilayers.  For the
example problem we use a portion of a Cu-Ni multilayer subjected to mechanical loading,
Fig. 6.  The specimen shown in the figure is under shear loading with traction free surfaces
along the remaining boundaries.  We take the elastic constants as [6]:

c11  c12 c44
Cu 168.4 121.4 75.4
Ni 246.5 147.3 124.7

where all values are in GPa.
The elastic displacements along x = 0 are shown in Fig. 6.  The displacements

exhibit qualitatively what we expect from the shear loading.  Note the continuity in the
displacements as the interface is crossed and the lack of perfect asymmetry in u1 and u2
due to the differing elastic constants in the two materials.

6. Summary
We have presented an efficient, accurate method for analyzing deformation near

interfaces in anisotropic solids.  The use of a special Green's function  for the anisotropic
interface problem allows us to discretize only the boundary of the problem.  The interface
itself does not have to be discretized since its behavior is explicitly incorporated into the
Green's function.  Embedding the Green's function in a boundary element approach then
provides us with a general tool for analyzing a variety of bimaterial problems.

A large portion of the computation time for a complete analysis is used by the
computation of the Green's function.  The computation involves calculating roots of the



Stroh determinant for use in the matrix functions of the Green's function;  however, once
calculated the matrices may be stored for subsequent analysis of the same material system.
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Appendix A - Derivatives of the Fundamental Displacement Solution

Case (i):  x2 > 0, x2' > 0

( ) ( )d

dz

p

z z

p

z z

A T

A A

I T A T

A A
U Q11 1

α

α

α α

β α

α βαβαπ
= −

−
−

−












∑∑Re ' ' *

γγ γγ
                                 (A.1)

( )
( )

( )
( )

d

dz

p

z z

p

z z

A T

A A

I T A T

A A

2 11

2 2 2
1U Q

α

α

α α

β α

α βαβαπ
=

−
+

−












∑∑Re

' ' *

γγ γγ
                                 (A.2)

Case (ii):  x2 < 0, x2' > 0
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Case (iii):  x2 > 0, x2' < 0
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Case (iii):  x2 < 0, x2' < 0
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