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Abstract

Stress intensity factor (SIF) analysis in the context of fracture with frictional contact (crack fric-
tion) is presented. This analysis is carried out using our proposed framework for solving crack
friction problems by the symmetric-Galerkin boundary element method (SGBEM), and the modi-
fied quarter-point (MQP) element developed in Ref. [11]. Since these problems are nonlinear, the
proposed framework involves iterative calculations. As in case of non contact fracture, it is shown
from this paper that, even incorporating the MQP element with a simple approach to compute
SIFs such as the Displacement Correlation Technique (DCT), highly accurate SIFs can be ob-
tained. With the MQP element, the mesh on the crack does not need to be excessively refined in
order to achieve high accuracy for SIF results. This meshing advantage is especially more impor-
tant in the context of frictional contact fracture, where the computing time of the iterative process
strongly depends on the the number of elements used. Several numerical examples are presented
and the SIF results are compared with available analytical solutions or references.

Keywords: stress intensity factor, crack friction, modified quarter-point element, boundary ele-
ment method, symmetric-Galerkin approximation.
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1 Introduction

The two principal approaches for computational fracture analysis are the finite element method
(FEM) (e.g., [1]) and boundary element method (BEM) [2–5]. Note that displacement discontinuity
method (DDM) proposed in [3] is a BEM fracture technique based on the analytical solution to the
problem of a constant discontinuity in displacement over a single crack in an unbounded domain.
The key feature of the integral equation approach is that only the boundary of the domain is
discretized and only boundary quantities are determined. As a result, the singular stress field
ahead of the crack is not approximated in the analysis, and moreover, remeshing a propagating
crack is easier.

In both finite and boundary element modeling of discrete cracks, the standard approach consists
of incorporating the stress singularity and critical

√
r behavior at the crack tip, where r is the

distance from a source point to the tip, by means of the ‘quarter-point’ (QP) element originally
developed in References [6, 7]. Use of this QP element at the crack tip has significantly improved
the accuracy of SIF calculations (e.g., [8, 9]). Nevertheless, in either finite or boundary element
analyses, the prediction of KII and KIII has not been nearly as accurate as for KI . Recently, Gray
and Paulino [10] have proved that a constraint exists in the series expansion of the crack opening
displacement about the tip. As discussed in [10], in general the QP element fails to satisfy this
constraint, and this has led to the development of an improved element called modified QP [11].
It was also shown in [11] that the accuracy of the crack tip SIFs can be significantly improved by
using the modified QP element. This would be important for crack propagation modeling.

Contact friction boundary conditions arise in problems relating to rolling and sliding between
machine components or other bodies [12–14] and are ubiquitous in the fields of earthquake science,
rock mechanics and geotechnical engineering, where multiple interacting faults and discontinuities
are present. The numerical treatment of these problems often presents a number of difficulties in
that boundary conditions are specified in the form of inequality constraints rather than in terms of
fixed tractions or displacements. Further difficulties arise when multiple intersecting junctions are
considered in a cracked material (kinked crack problems). For two-dimensional (2-D) problems, a
rosette of interacting wedge structures have to be analyzed with, in general, power law displacement
functions on each wedge face. Three-dimensional junctions are correspondingly more demanding.
Thus far, FEM [15], BEM using an integral equation for the resultant forces along a crack [16–18],
muti-domain BEM [19],dual BEM [20], and DDM [21–24] are numerical methods that have been
employed for crack friction problems. Through the development of a framework for solving crack
friction problems by the SGBEM, the goal of this work is to demonstrate that, by incorporating
the modified QP element into the above SGBEM framework, even using a simple technique to
compute SIFs such as the DCT, more accurate SIFs can be obtained with less iterative calculations
for frictional contact fracture modeling including kinked crack problems.

This paper is organized as follows. In the next section, a review of the modified QP element is
given. Section 3 briefly describes the SGBEM for fracture mechanics. In section 4, an algorithm
using the SGBEM for solving crack friction problems is presented. In section 5, several numerical
examples are solved and are compared with reference solutions. Finally, the last section contains
some concluding remarks.
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2. Modified Quarter-Point Element

2.1. Crack opening/sliding displacement expansion

For a crack geometry, the crack opening displacement (COD) ∆uk, k = 1, 2 in the neighborhood
of the tip is [25, 26]

∆uk(r, θ) = bk(θ)r
1

2 + ck(θ)r + dk(θ)r
3

2 + . . . , (1)

where r, θ are the distance to, and the direction emanating from, the tip, respectively.
It has been proved that, irrespective of the problem geometry or boundary conditions, the

series expansion in Eq. (1) must have ck = 0 for ∆u on the crack surface [10] (for related work see
Reference [27]), i.e.

∆uk(r, θ) = bk(θ)r
1

2 + dk(θ)r
3

2 + . . . . (2)

It is known that the above equations have initially been established for crack opening. However,
as shown through this paper, these relationships are also valid for crack closure cases. Thus, Eqs.
1 and 2 need to be intepreted as crack sliding displacement in case of crack closure problems.

2.2. Formulation of the modified quarter-point shape functions

The two-dimensional QP element is based upon the three-equidistant-noded quadratic element.
For t ∈ [0, 1], the shape functions for this element are given by

ψ1(t) = (1 − t)(1 − 2t) ,

ψ2(t) = 4t(1 − t) ,

ψ3(t) = t(2t− 1) . (3)

2 3

Crack tip

t=0 t=1

t=1/2
L

L/4

1

Figure 1: Crack tip element.

As ∆u = 0 at the crack tip, which is assumed to be at t = 0 (Fig. 1), the geometry and COD
representations of the crack tip element are

Γ(t) =
3

∑

j=1

(xjψj(t), yjψj(t)) , (4)

∆uk(t) =
3

∑

j=2

(

∆u
(j)
1 ψj(t), ∆u

(j)
2 ψj(t)

)

, (5)

where (xj , yj) are the coordinates of the three nodes defining the crack tip element, and ∆u
(j)
k the

nodal values of the COD.
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By moving the mid-node coordinates (x2, y2) three-fourths of the way towards the tip (see Fig.
1), the parameter t becomes

√

r/L, with L being the distance from (x1, y1) to (x3, y3) [6, 7]. As

a consequence, the leading order term in ∆u
(j)
k at t = 0, which is t, is the correct square root of

distance. Note however, that the next term, which is t2, is r/L. According to Eq. (2), this term
should vanish, and the modification presented in Reference [11] accomplishes the cancellation of
this t2 term. The resulting shape functions for the modified QP element is

ψ̂2(t) = −8

3
(t3 − t) ,

ψ̂3(t) =
1

3
(4t3 − t) , (6)

which should be used in Eq. (5) instead of ψj(t). It can be observed that the modified shape

functions (6) still satisfy the Kronecker delta property ψ̂i(tj) = δij . This new approximation is
only applied to the COD, as we keep the representation of Γ(t) as in Eq. (4) so that the property
t ≈ √

r remains.

2.3. Stress Intensity Factors

SIFs provided by both the modified and standard QP elements will be calculated by means of the
DCT. The point here is to assess the quality of the MQP in the context of frictional contact fracture
by means a very simple method such as the DCT. The general expression of SIFs by means of the
DCT technique are given by

KI =
G

κ+ 1
lim
r→0

√

2π

r
∆u2 ,

KII =
G

κ+ 1
lim
r→0

√

2π

r
∆u1 , (7)

where ∆u is the COD in the coordinate system associated with the crack tip under consideration,
G is shear modulus, ν is Poisson’s ratio, and

κ = 3 − 4ν (plane strain) , κ =
3 − ν

1 + ν
(plane stress) . (8)

For the standard QP element, it is known that by substituting Eqs. (3) and (5) in Eq. (7), one
gets

KI =
G

κ+ 1

√

2π

L

(

4∆u
(2)
2 − ∆u

(3)
2

)

,

KII =
G

κ+ 1

√

2π

L

(

4∆u
(2)
1 − ∆u

(3)
1

)

. (9)

The SIFs in case of the modified QP element is obtained by a similar manner [11]. The result
is

KI =
G

3(κ+ 1)

√

2π

L

(

8∆u
(2)
2 − ∆u

(3)
2

)

,

KII =
G

3(κ + 1)

√

2π

L

(

8∆u
(2)
1 − ∆u

(3)
1

)

. (10)

Thus, SIFs are given directly in terms of the nodal values of the COD at the crack tip element.
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3. Symmetric-Galerkin boundary integral formulation

This section provides a very brief review of boundary integral equations for elasticity, and their
approximation via the symmetric-Galerkin procedure. The reader is asked to consult the cited
references for further details.

The boundary integral equation (BIE) without body forces for linear elasticity is given by
Rizzo [28]. For a source point P interior to the domain, this equation takes the form

uk(P ) −
∫

Γb

[Ukj(P,Q) τj(Q) − Tkj(P,Q) uj(Q)] dQ = 0 , (11)

where Q is a field point, τj and uj are traction and displacement vectors, Ukj and Tkj are the
Kelvin kernel tensors or fundamental solutions, Γb denotes the boundary of the domain, and dQ is
an infinitesimal boundary length (for 2-D) or boundary surface (for 3-D cases).

It can be shown that the limit of the right hand side of Eq. (11) as P approaches the boundary
exists. From now on, for P ∈ Γb, the BIE is understood in this limiting sense.

As P is off the boundary, the kernel functions are not singular and it is permissible to differen-
tiate Eq. (11) with respect to P , yielding the hypersingular BIE (HBIE) for displacement gradient.
Substitution of this gradient into Hooke’s law gives the following HBIE for boundary stresses:

σk`(P ) −
∫

Γb

[Dkj`(P,Q) τj(Q) − Skj`(P,Q) uj(Q)] dQ = 0 , (12)

Expressions for the kernel tensors Ukj, Tkj, Dkj` and Skj` can be found in, e.g., [29].
The Galerkin boundary integral formulation is obtained by taking the shape functions ψm

employed in approximating the boundary tractions and displacements as weighting functions for
the integral equations 11 and 12. Thus,

∫

Γb

ψm(P ) uk(P ) dP −
∫

Γb

ψm(P )

∫

Γb

[Ukj(P,Q) τj(Q) − Tkj(P,Q) uj(Q)] dQ dP = 0 , (13)

∫

Γb

ψm(P ) σk`(P ) dP −
∫

Γb

ψm(P )

∫

Γb

[Dkjl(P,Q) τj(Q) − Skjl(P,Q) uj(Q)] dQ dP = 0 . (14)

A symmetric coefficient matrix, and hence a symmetric-Galerkin approximation, is obtained by
employing Eq. (13) on the boundary Γb(u) where displacements ubv are prescribed, and similarly
using Eq. (14) is employed on the boundary Γb(τ ) with prescribed tractions τbv. Note that Γb =
Γb(u) + Γb(τ ).

A solution procedure that employs a collocation approach enforces the BIE (11) and HBIE
(12) at discrete source points whereas these equations are satisfied in an averaged sense with the
Galerkin approximation. The additional boundary integration is the key to obtaining a symmetric
coefficient matrix, as this ensures that the source point P and field point Q are treated in the same
manner in evaluating the kernel tensors Ukj, Tkj, Dkjl and Skjl. After discretization, the resulting
equation system can be written as

[

H11 H12

H21 H22

] {

ubv

u∗

}

=

[

G11 G12

G21 G22

] {

τ∗
τbv

}

. (15)

Here, the first and second rows represent, respectively, the BIE written on (Γb(u)) and the HBIE
on (Γb(τ )). Further, u∗ and τ∗ denote unknown displacement and traction vectors. Rearranging
Eq. (15) into the form [A]{x} = {b}, and multiplying the HBIE by −1, one obtains

[

−G11 H12

G21 −H22

] {

τ∗
u∗

}

=

{

−H11ubv +G12τbv
H21ubv −G22τbv

}

. (16)
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The symmetry of the coefficient matrix, G11 = GT
11, H22 = HT

22 and H12 = GT
21 now follows

from the symmetry properties of the kernel tensors.

3.1. Cracks in finite domains

τ

Γc
-

Γc
+

n+
B

Γ

n-P

b

x
2

x
1

Figure 2: A body B containing a fracture.

A finite domain or body, B, of general shape is shown in Figure 2. The body is shown to
include a crack surface denoted as Γc on which only tractions are prescribed. Initially, the crack
is composed of two coincident surfaces according to Γc = Γ+

c + Γ−

c where Γ+
c and Γ−

c denote the
upper and lower crack surfaces, respectively. As a result, the outward normals to the crack surfaces,
n

+
c and n

−

c , are oriented oppositely so that n
−

c = −n
+
c . Thus, the BIE and HBIE written for an

interior point P then take the following forms:

uk(P ) =

∫

Γb

[Ukj(P,Q) τj(Q) − Tkj(P,Q) uj(Q)] dQ

+

∫

Γ+
c

[Ukj(P,Q) Στj(Q) − Tkj(P,Q) ∆uj(Q)] dQ , (17)

σk`(P ) =

∫

Γb

[D`km(P,Q) τm(Q) − S`km(P,Q) um(Q)] dQ

+

∫

Γ+
c

[D`km(P,Q) Στm(Q) − S`km(P,Q) ∆um(Q)] dQ , (18)

where, only the upper crack surface Γ+
c needs to be modeled as on the two crack surfaces, the

displacements u
+
c and u

−

c are replaced by the single crack opening displacement (COD) ∆uc =
u

+
c − u

−

c , and the tractions τ
+
c and τ

−

c by the sum of tractions Στ c = τ
+
c + τ

−

c . However, since
the crack surfaces are usually symmetrically loaded, i.e τ

−

c = −τ
+
c , one gets

uk(P ) =

∫

Γb

[Ukj(P,Q) τj(Q) − Tkj(P,Q) uj(Q)] dQ−
∫

Γ+
c

Tkj(P,Q) ∆uj(Q) dQ , (19)

σk`(P ) =

∫

Γb

[D`km(P,Q) τm(Q) − S`km(P,Q) um(Q)] dQ−
∫

Γ+
c

S`km(P,Q) ∆um(Q) dQ . (20)

It can be shown that a symmetric coefficient matrix can be achieved by using ∆u as variables
on Γ+

c . Following the Galerkin approximation, the limit of (19) and (20) is taken as P → Γb(u) and
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Γb(τ ), respectively. At this point, it is convenient to convert the stress equation (20) into a traction
equation through the identity τk(P ) = σ`k(P ) n`(P ), with n`(P ) being the outward normal at P .
After discretizing, the following system established from Eqs. (19) and (20) is obtained:

[Gbb] {τb} = [Hbb] {ub} + [Hbc] {∆uc} , (21)

where b and c denote the outer boundary and upper crack surface, respectively.
Since tractions are prescribed on the crack, only Eq. (20) is written for source points on Γ+

c .
Again, following the Galerkin approximation, the limit of (20) as P → Γc, the conversion of (20)
into a traction equation, and discretization, the result is

[Gcb] {τb} − [Gcc] {τ+
c } = [Hcb] {ub} + [Hcc] {∆uc} . (22)

Note that τ
+
c now appears on the left hand side of Eq. (22) due to the limit process as P → Γc.

Combining Eqs. (21) and (22), the equation system of the problem can be written as follows:

[

Hbb Hbc

Hcb Hcc

] {

ub

∆uc

}

=

[

Gbb 0
Gcb Gcc

] {

τb
−τ+

c

}

, (23)

where it can be proved that the coefficient matrix on the left hand side of (23) is also symmetric.

3.2. Cracks in unbounded domains

When an unbounded domain is considered and is subjected to uniform remote stress σ̄ij , Eq. (22)
reduces to the following system:

−[Gcc] {τ+
c } = [Hcc] {∆uc} , (24)

where {τ+
c } on the upper crack surface Γ+

c is now the superposition of the prescribed tractions
directly applied on Γ+

c and the tractions σ̄ij n
+
j due to the remote stresses σ̄ij. Note that n+

j are
the components of the outward normal n

+
c to Γ+

c .

4. Crack friction algorithm using the SGBEM

In this section, we present a framework to model cracks with frictional contact using the SGBEM.
This is a nonlinear boundary value problem which can be resolved by adopting an iterative scheme.
This scheme enables the determination of two important quantities, namely the normal tractions
and crack sliding displacements (slip) on the sliding crack surfaces. Thus, mode-II SIF can be
found by using the slip result in Eq. (10). In the following sections, it is shown that the symmetric-
Galerkin procedure can also be formulated to resolve problems of friction sliding in cases where the
friction constraint condition may be different on each branch of a common junction point.

4.1. Problem formulation

Consider a body B (or an unbounded domain) containing internal cracks subjected to prescribed
global tractions τ c. Let ∆un and ∆ut be, respectively, the crack opening/closing and sliding
displacements in the local coordinate system (t, n). After the final solution of the iterative scheme
is converged, additional local tractions t = (tt, tn) on the sliding crack surfaces are determined such
that no material interpenetration occurs. Note that tn and tt are, respectively, the normal and
tangential components of t. The boundary conditions for the final solution are
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1. Either ∆un = 0 and ∆ut = 0 (the crack is not sliding), in which case t = 0, or

2. ∆un > 0 (the crack is open), also in which case t = 0, or

3. ∆un is forced to be 0 (no material interpenetration, the crack is sliding) by applying additional
tractions t on those crack surfaces; the normal and tangential components of t are related
by |tt| = − tan(φ)tn with φ being the friction angle. The sign of tt is such that the sliding
movement of the crack surfaces is opposed.

Note that tn is nonlinearly dependent on the ∆un values on all other cracks and on the field
stress.

4.2. Iterative procedure

For crack friction problems, the numerical solution with the initial traction boundary conditions
on the crack surfaces provides negative ∆un (material interpenetration) in the region of contact.
This negative ∆un solution is obviously unphysical, and thus an iterative procedure is employed to
determine tn and tt such that ∆un ≥ 0.

1. From the SGBEM solution for the global COD ∆uc, compute the local displacement compo-
nents ∆un and ∆ut.

2. If ∆un < 0 at a given node on the crack, set

(a) Normal traction at the ith step as t
(i)
n = t

(i−1)
n − k∆un, where t

(i−1)
n is the normal

traction at the previous step, and k = G/b with G and b being the shear modulus and
crack length, respectively,

(b) tt = sign(∆ut) tan(φ)tn.

3. At the crack tips of a sliding crack, normal tractions t
(i)
n are determined by interpolating those

at the other nodes of the crack tip elements.

4. Convert the local traction components tn and tt to the global traction vector τ
+
ca on the upper

crack surface.

5. Superpose the above additional tractions τ
+
ca to the initially prescribed tractions τ

+
c on the

crack surface. Re-solve the SGBEM system (23).

6. Repeat from the first step until convergence.

The error indicator of convergence is calculated after each iterative step as the maximum dif-
ference between the current and previous computed local normal traction component

ε = max |t(i)n − t(i−1)
n | (25)

The iteration process is converged when the error indicator ε is below a specified tolerance ε0.

5. Numerical examples

Four problems are reported in this section to illustrate the proposed algorithm using the SGBEM.
Unless otherwise noted, the plane strain state is considered, the material constants employed are
Young’s modulusE = 70000 MPa and Poisson’s ratio ν = 0.2, and a convergence criterion ε0 = 10−6

MPa is chosen.
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5.1. Single crack under compression

2b

σ
σ

α

Figure 3: A crack under compression in an unbounded domain

A single crack of length 2b in an unbounded domain and subject to a compressive remote stress
σ (see Fig. 3) is considered first, as an analytical solution is available for comparison. The following
series of inclination angles α = 0o, . . . , 45o and friction angles φ = 0o, . . . , 45o are studied.

It is obvious that the mode-I SIF KI = 0 as the crack surfaces remain closed under compression.
The analytical solution for the mode-II SIF is given by [30]

KII = σ
√
πb sinα(cosα− tanφ sinα) . (26)

For numerical analysis by the SGBEM, the crack is discretized into ten quadratic elements of
equal length. The numerical solution obtained with the MQP for KII/σ

√
πb (normalized KII) is

plotted in Fig. 4 together with the analytical solution. The solutions are almost identical. The
performance of the MQP versus standard QP elements is compared in term of the ratio KII/K

exact
II

listed in Table 1 for different inclination and friction angles α and φ. While the numerical result
accuracy is consistent regardless the values of α and φ, the numerical solutions obtained with
the MQP element are very accurate and much better than those obtained with the standard QP
element. Note that the above remark remains valid for α = φ = 45o. However, a comparison in
term of KII/K

exact
II can not be shown as Kexact

II = 0 in this case.

Angle Crack tip Friction angle φ
α element 0o 15o 30o 45o

15o QP 1.02334 1.02334 1.02335 1.02335
MQP 0.99994 0.99994 0.99994 0.99994

30o QP 1.02334 1.02334 1.02334 1.02335
MQP 0.99994 0.99994 0.99994 0.99994

45o QP 1.02334 1.02334 1.02335 N/A
MQP 0.99994 0.99994 0.99994 N/A

Table 1: KII/K
exact
II as functions of inclination angle α and friction angle φ (10 crack elements)

9



0 15 30 45
α (degree)

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 K
II

φ = 00 (MQP)
φ = 150 (MQP)
φ = 300 (MQP)
φ = 450 (MQP)
Analytical solutions

Figure 4: Numerical results vs. analytical solutions for normalized KII

The primary advantage of the MQP over standard QP element in solving crack friction problems
is illustrated by the comparison shown in Table 2. This table reveals that with the MQP element,
the mesh on the crack does not need to be excessively refined as in case of standard QP element
in order to obtain accurate SIF results. This advantage has also been observed in Ref. [11] in
the context of non contact crack modeling. However, the achievement is much more significant in
case of contact fracture which involves iterative calculations, as computing time is very expensive
if excessively refined mesh is required. For the single crack under consideration, even a mesh of
100 elements with standard QP crack tip elements produces less accurate KII result than that
obtained from a mesh of only five crack elements with MQP crack tip elements. In addition, while
the former case requires 2478 iterative steps, the latter only needs 178 steps. It is also interesting
to note that with the same number of crack elements employed, the use of MQP element not only
provides much more accurate solution, but also requires fewer iterative steps. This lower number
of steps might be explained by the more accurate solutions for crack opening and crack sliding
displacements near the crack tips provided by the MQP element during the iteration. Finally, as
the number of crack elements is greater than ten, although the MQP solution accuracy decreases
slightly, it appears that there is an asymptotic value for KII which is still more accurate than the
respective standard QP solution. This slightly decreasing accuracy may be explained by the fact
that the crack tip element should be ‘long enough’ in order for the t3 terms in the MQP shape
functions (see Eq. (6)) to exhibit their presence [11].

The performance of using the SGBEM and MQP element in modeling crack friction problems
can also be demonstrated by comparing our SIF results with those obtained from FROCK [24].
Consider a single closed crack in an infinite medium (see Fig. 3) with 2b = 0.0127 m, α = 45o and
tanφ = 0.364. For numerical analysis, the crack is discretized into ten uniform quadratic elements.
Figure 5 shows the mode-II SIF results obtained from the exact solution K exact

II and from SGBEM
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Number of Crack tip KII/K
exact
II Number of

crack elements element iterative steps

5 QP 1.05015 186
MQP 1.00144 178

10 QP 1.02335 329
MQP 0.99994 319

20 QP 1.01097 607
MQP 0.99961 585

30 QP 1.00698 866
MQP 0.99956 836

40 QP 1.00500 1113
MQP 0.99954 1079

50 QP 1.00383 1351
MQP 0.99953 1313

75 QP 1.00227 1929
MQP 0.99953 1871

100 QP 1.00149 2478
MQP 0.99953 2403

Table 2: KII/K
exact
II and number of iterative steps as functions of number of crack elements (α = 20o

and φ = 30o)

using the MQP element KII for different magnitudes of σ, while results for the ratio KII/K
exact
II are

listed in Table 5. Again, these illustrations reveal that both solutions are almost identical. While
our numerical solutions for KII remain consistently accurate regardless any value of applied stress
σ (see Tables 3), those obtained from FROCK and shown in Ref. [24] appear to be less accurate
when the remote compressive stress σ exceeds 20 MPa.

Remote compressive stress σ (MPa)
5 10 15 20 25 30 35 40

0.99994 0.99994 0.99994 0.99994 0.99994 0.99994 0.99994 0.99994

Table 3: KII/K
exact
II as a function of σ

5.2. Two-wing crack under compression

In this section, a two-wing crack in an unbounded domain and under uniaxial far-field compression
as shown in Fig. 6 is investigated. This is the problem of kinked crack extension from an initially
closed crack [31]. Due to the symmetry of this problem, SIFs at both crack tips are identical. The
MQP element is employed to calculate these SIFs for different values of ratio c/b and kink angle
θ, fixing orientation angle α = π/5 and friction coefficient tanφ = 0.3. For numerical analysis by
the SGBEM, non-uniform quadratic elements are used to discretize the initially closed crack and
its two wings. This mesh refinement technique needs to be employed to treat the singularity in the
dislocation densities at the crack kinks (junction points) [16].

The normalized SIF results (KI/σ
√
πb and KII/σ

√
πb) are plotted in Figs. 7 and 8. It can

11



0 10 20 30 40 50
σ (MPa)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

K
II

 (M
P

a.
m

1/
2 )

Analytical solution
SGBEM + MQP

Figure 5: Numerical results vs. analytical solutions for KII

c

σ

σα
θ

2b

Figure 6: Two-wing crack in an unbounded domain

be observed that these results agree very well with those presented in Ref. [31] where a numerical
method due to Gerasoulis [32] is used to solve a singular integral equation derived for the problem
under consideration. It should be noted that, for a given value of c/b, θ, α and φ, the wings (crack
kinking) remain closed when the angle θ is smaller than a certain value, and thus KI = 0 in these
cases (see Fig. 7). While our KI solution properly interprets this closure situation, the numerical
method employed in [31] provides KI < 0 which represents material interpenetration.
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Figure 8: Normalized KII solution (α = π/5, tanφ = 0.3)
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For the sake of reference, Tables 4 and 5 list the numeric values of normalized SIFs used to
build the graphs shown in Figs. 7 and 8, respectively.

θ/π c/b
0.001 0.01 0.1 0.5 1

0 -0.00009 -0.00009 -0.00009 -0.00010 -0.00009

0.025 0.02992 0.01298 -0.00009 -0.00009 -0.00009

0.05 0.07027 0.05102 0.00464 0.00001 0.00007

0.075 0.11101 0.08972 0.04444 -0.00008 -0.00009

0.1 0.15112 0.12830 0.08216 0.02684 -0.00097

0.125 0.18998 0.16600 0.11768 0.06528 0.03838

0.15 0.22710 0.20199 0.15089 0.09765 0.07241

0.175 0.26204 0.23608 0.18106 0.12356 0.09677

0.2 0.29446 0.26763 0.20843 0.14321 0.11110

0.225 0.32406 0.29638 0.23221 0.15596 0.11590

0.25 0.35054 0.32200 0.25211 0.16165 0.11035

0.275 0.37372 0.34431 0.26799 0.16063 0.09468

0.3 0.39344 0.36314 0.27964 0.15278 0.06967

Table 4: Numerical results for normalized KI (α = π/5, tanφ = 0.3)

θ/π c/b
0.001 0.01 0.1 0.5 1

0 -0.37202 -0.37369 -0.38999 -0.45554 -0.52620

0.025 -0.37404 -0.37926 -0.39505 -0.45443 -0.52103

0.05 -0.36960 -0.37432 -0.39404 -0.44354 -0.50206

0.075 -0.36139 -0.36573 -0.37875 -0.42558 -0.47183

0.1 -0.34963 -0.35350 -0.36019 -0.39353 -0.43455

0.125 -0.33455 -0.33780 -0.33844 -0.35234 -0.37576

0.15 -0.31637 -0.31906 -0.31352 -0.30764 -0.31242

0.175 -0.29537 -0.29733 -0.28610 -0.26030 -0.24588

0.2 -0.27185 -0.27312 -0.25582 -0.21054 -0.17751

0.225 -0.24613 -0.24673 -0.22365 -0.15973 -0.10775

0.25 -0.21860 -0.21861 -0.19010 -0.10895 -0.03899

0.275 -0.18964 -0.18912 -0.15554 -0.05842 0.02723

0.3 -0.15964 -0.15865 -0.12066 -0.00952 0.09041

Table 5: Numerical results for normalized KII (α = π/5, tanφ = 0.3)

5.3. T-crack problem

Finally, consider a T-crack in an unbounded domain and subject to a remote compressive stress
σ = 100 MPa acting vertically (see Fig. 9). The lengths of the vertical (opening) and horizontal
(sliding) crack segments of this kinked crack are c = 100 m and 2b = 50 m, respectively. The vertical
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Figure 9: A T-crack in an unbounded domain

segment is horizontally pressurized to p = 100 MPa internally and intersects the the middle of the
horizontal segment at right angles.

The SGBEM and MQP element are used to compute SIFs at the tips A, B, and C for fric-
tional angle φ = 30o. The numerical results are compared with those obtained from the DDM
using internal collocation [23]. For DDM simulation, 50/200 and 100/400 uniform elements (mesh
1/mesh 2) are employed to discretize the horizontal and vertical cracks, respectively. For SGBEM
simulation, the corresponding number of elements are only 26 and 41. Again, since this is a kinked
crack problem, mesh refinement technique needs to be used for the SGBEM analysis, with shorter
elements being placed near the junction point. SIF results from both methods are listed in Table
6. Note that due to symmetry, at crack tips A and B, K

IIA = -K
IIB. Very good agreement from

the numerical solutions can be observed. However, DDM needs to use an excessively refined mesh
to obtain a result accuracy that only requires a coarse SGBEM mesh.

6. Conclusion

...
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K
IC/p

√
πc K

IIA/σ
√
πb

DDM
(mesh 1) 0.7212

DDM
(mesh 2) 0.7169

SGBEM 0.7166

Table 6: SIFs at crack tips C and A
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