Autonomous Evolution of Dynamic Gaits with Two
Quadruped Robots

Gregory S. Hornby*, Seichi Takamura, Takashi Yamamoto, and Masahiro Fujita
*corresponding author:
Mail Stop 269-3
NASA Ames Research Center
Moffett Field, CA 94035-1000

Abstract— A challenging task that must be accomplished for
every legged robot is creating the walking and running behaviors
needed for it to move. In this paper we describe our system for
autonomously evolving dynamic gaits on two of Sony’s quadruped
robots. Our evolutionary algorithm runs on board the robot and
uses the robot’s sensors to compute the quality of a gait without
assistance from the experimenter. First we show the evolution
of a pace and trot gait on the OPEN-R prototype robot. With
the fastest gait, the robot moves at over 10m/min., which is more
than forty body-lengths/min. While these first gaits are somewhat
sensitive to the robot and environment in which they are evolved,
we then show the evolution of robust dynamic gaits, one of which
is used on the ERS-110, the first consumer version of AIBO.

Index Terms— genetic algorithm, evolutionary algorithm, dy-
namic gaits, evolutionary robotics, legged robot, legged locomo-
tion, quadruped robot

I. INTRODUCTION

EVELOPING locomotion controllers for legged robots is

a problem that has been studied for over twenty years at a
variety of different research groups (such as: Sony, [6]; Honda,
[10]; and the University of Tokyo, [4] and [23]) and on a
variety of different platforms (1-legged, 2-legged, 4-legged). In
most projects, the gaits are static and programmed by hand (for
surveys see [21] and [20]). Here we describe our work in the
autonomous acquisition of dynamic gaits using an evolutionary
algorithm (EA).

A system for automatically generating dynamic gaits is
especially important for the entertainment robot industry for a
number of reasons. When an entirely new entertainment robot
is constructed it is necessary to produce gaits for it, and these
new gaits need to be created quickly so that other members of
the software development team can use the gaits in developing
higher-level behaviors. Similarly, to create a personality for a
robot it is useful to be able to continuously generate a variety
of different styles of gaits for it. Also, in the process of going
from a prototype to a consumer version of a robot, several
different versions of a given robot are created. Each one of
these prototypes has slightly different physical characteristics
and a method for automating the tuning of pre-existing gaits
to new versions of a robot is extremely useful. Finally, we are

G. S. Hornby is with QSS Group Inc. at NASA Ames Research Center.

S. Takamura and T. Yamamoto are with the Entertainment Robot Company,
Sony Corporation.

M. Fujita is with the Intelligent Dynamics Laboratory, Sony Corporation.

(b)

Sony’s entertainment robots: (a) OPEN-R prototype; (b) ERS-110.

Fig. 1.

interested in an autonomous process for developing gaits as
part of a gait-learning behavior to match the artificial maturing
process that comes with the consumer version of our robots.

For the most part, previous work in the development of gaits
for real robots has either required assistance from a source
external to the robot or has focused on acquiring a static
gait in simulation that was later transferred to the physical
robot. On actual robots, EAs have been used to evolve neural
network controllers for a six-legged robot [16] and an eight-
legged robot [9]. In both cases the experimenter evaluated
the performance of a gait by measuring the distance traveled
and entering this result into the computer running the EA.
One case of a robot evaluating itself is Genghis, a six-legged
robot which learned a tripod gait [18]. There the learning
algorithm used feedback from a wheel that was attached to
the end of the robot to adjust the parameters of a behavior-
based controller. More common is the evolution of controllers
in simulation that are later transferred to the real robot: such
as neural networks for a six-legged artificial cockroach [7],
[8] and an eight-legged OCT1 [14], and a binary string of
on/off flags for powering the nitinol actuators of a Stiquito
Il [19]. Similarly, reinforcement learning has been used to
train neural networks for a biped robot first in simulation, and
later to fine-tune the networks on the actual robot [3]. Finally,
EAs have been used to evolve both the morphology and
controller of crawling robots [17] and modular, walking robots
[13] in simulation, with these robots then constructed and
shown to work in reality. Yet evolution/learning in simulation
is not always feasible because the level of fidelity may not
be attainable (such as for actuators or pliable parts) or may
require large amounts of computational power (such as fluid
dynamics simulators for underwater robots).

In this paper we describe a system for the autonomous
acquisition of dynamic gaits for two versions of Sony’s
entertainment robots. The system for developing gaits uses
an EA to optimize a vector of parameters that specify a gait.
All processing is handled by the robot’s onboard processor
and each set of gait parameters is evaluated using the robot’s
sensors. First we describe the evolution of pace and trot
gaits with the OPEN-R prototype (figure 1.a), and then the
development of a robust trot gait on its successor, the ERS-
110, which is more commonly known as the first AIBO?,
(figure 1.b). Not only does our implementation successfully
evolve dynamic gaits for both of our quadruped robots — in
both cases evolving better gaits than were developed manually
— but one of the evolved gaits is used in the first consumer
version of AIBO.

The rest of this paper is organized as follows. In the next
section we describe the two quadruped robots, the locomotion
module, the evolutionary algorithm and the procedure by
which a robot evaluates its performance. In sections Il and
IV we present and discuss the results of our experiments. The
final section is a summary and conclusion of our work.

1. METHOD

The two robots used in these experiments are the OPEN-R
prototype, which is the pre-AIBO entertainment robot, and the
ERS-110, the first consumer version of Sony’s entertainment
robot AIBO. Gaits on both robots are controlled by the
locomotion module, which uses a set of real-valued parameters
to specify a gait. To autonomously acquire gaits an evolution-
ary algorithm optimizes gait parameters by sending sets of
parameters to the locomotion module and then evaluating the
resulting performance using the robot’s onboard sensors. In
this section we describe first the two robots and the locomotion
module followed by a description of the evolutionary algo-
rithm and the method for evaluating a set of gait parameters.

A. Robot Platform

Both robots used in these experiments have over a dozen
degrees of freedom and various sensors. Fifteen degrees of
freedom come from actuators in the head and the four legs,
each of which has three degrees of freedom. The OPEN-
R prototype (figure 1.a) has a tail with a single degree
of freedom, giving it a total of sixteen, and the ERS-110
(figure 1.b) has a two-degree of freedom tail and two actuated
ears, each with a single degree of freedom, giving it a total
of nineteen degrees of freedom. Both robots have a micro-
camera, stereo microphone, position sensitive device, and
touch sensors located on the top of the head and on the
bottom of each leg. The robots’ body houses the CPU and
battery as well as a gyroscope and accelerometers. See [6]
for a more detailed description of the robots’ hardware and
software architectures.

1AIBO is a registered trademark of Sony Corporation.

B. Locomotion Module

The locomotion module is the software module that controls
the movement of the robot’s legs to perform different gaits.
A gait is defined by a vector of real-valued parameters that
are used by a mathematical function of sines and cosines to
obtain a cyclic movement of the bottom of each leg. Using
the dimensions of the robot’s physical form and three kinds
of coordinate systems — for the ground, the robot’s body and
one for the bottom of each leg — the desired joint angles for the
three joints in each of the legs are calculated. The joints in each
leg are controlled by a special ASIC chip and its current angle
is sensed with a potentiometer. Every 8ms the software sets the
target joint position and PID gain value for each joint based
on the gait parameters and then the ASIC chip calculates the
output to the motor to drive the joint to make its position error
zero. This reduces the problem of developing a gait to that of
finding a set of parameters for the locomotion module. In total,
the locomotion module uses sixty-one real-valued parameters
to define a gait.

1) The Locomotion Module on the OPEN-R Prototype: The
first version of the evolutionary algorithm ran on the OPEN-
R prototype and searched a space of twenty parameters by
setting some of the sixty-one parameters for the locomotion
module to fixed values (eg. setting body roll orientation to 0°)
and using the same value for multiple parameters (eg. setting
the swing time for each leg to be the same). These twenty
parameters are listed in table 1. They specify the position and
orientation of the body, the swing path and rate of swinging
of the legs, the amplitude of oscillation of the body’s location
and orientation, and how the gain varies during the course
of a swing cycle for each leg. With a set of parameters,
the locomotion module moves the OPEN-R Prototype in any
specified two-dimensional translation and rotation — although
for our experiments we test the OPEN-R prototype only on its
ability to move forward.

TABLE |
GAIT PARAMETERS FOR THE OPEN-R PROTOTY PE

[parameter | unit [initial range | best trot | best pace |
body center x mm. 85 - 95 82.7 89.2
body center z mm. -5-5 6.2 -2.0
body pitch degrees -5-5 -11.3 3.2
all legs y mm. 5-25 10.6 10.0
front legs z mm. 24 - 40 24.7 25.0
rear legs z mm. 15-29 24.3 25.3
step length n.a. 80 - 220 152 182
swing height mm. 15-29 19.6 29.5
swing time ms. 200 - 400 421 222
swing mult. n.a. 15-25 24 1.7
switch time ms. 500 - 900 799 617
ampl. body x mm. -2-2 0.6 -0.4
ampl. body y mm. 0-20 10.3 5.1
ampl. body z mm. -2-2 0.7 -1.3
ampl. yaw degrees -2-2 -2.9 1.6
ampl. pitch degrees -3-3 -0.4 3.7
ampl. roll degrees -3-3 2.2 0.4
min. gain n.a. 25 - 175 103 101
shift degrees 60 - 120 64 125
length degrees 90 - 150 117 103

Whereas the first seventeen parameters are used to specify

the trajectories of each leg, the last three parameters are used
to smoothen the movement of the robot by varying the gain of
the leg motors during the movement cycle. The first of these
last three parameters, min. gain, specifies the minimum gain
to use — the maximum value is fixed to the maximum possible.
The second parameter, shift, specifies when in the swing cycle
to start reducing the gain. The third parameter, length, is the
duration over which the gain is reduced from the maximum to
the specified minimum and then back to maximum following
a sin wave:

gain = min+(max—min)x(1—sin(leg phase—shift)) (1)

The leg phase starts at 0° swinging forward and up, at 180°
it starts to swing backward, and at 360° it is back at the
beginning of the cycle. For example, with the pace gait, legs
on the same side of the body have the same leg phase and
legs on the opposite side of the body are 180° out of phase.

2) The Locomotion Module on the ERS110: Based on
our experience from running experiments with the first set of
parameters on the OPEN-R Prototype, a new set of parameters
was used with the ERS-110 (table II). Gain variation was
removed because the new locomotion module for the ERS-110
did not support it. Parameters were added to allow different
trajectories for the front and rear legs as well as to add control
of the body posture. Finally, instead of hard-coding the type of
gait (crawl, pace or trot) the ability to evolve the type of gait
was added by creating two parameters that control the relative
swing times of the legs.

TABLE Il
GAIT PARAMETERSFOR THE ERS-110

[parameter | unit [initial range | best gait |
body center x mm. 105 - 125 110.1
body center z mm. -10 - 10 -4.8
body pitch degrees -10 - 10 6.5
posture center X mm. 0-20 -1.8
all legs y mm. -5-15 7.4
front legs z mm. 10 - 30 215
rear legs z mm. -5-15 18.5
step length n.a. 60 - 100 124.4
swing height front mm. 25 - 45 36.5
swing height rear mm. 25 - 45 441
swing time ms. 460 - 540 503
swing mult. n.a. 3-5 3.0
switch time ms. 500 - 900 974
ampl. body x mm. -10 - 10 -1.8
ampl. body y mm. -25 - -5 -10.0
ampl. body z mm. -20-0 -13.6
ampl. yaw degrees -10 - 10 0.9
ampl. pitch degrees -10 - 10 -0.5
ampl. roll degrees -5-15 4.5
L-R n.a. 0.25-05 0.48
F-H n.a. 05-0.75 0.67

Relative phases for each leg are specified by a single value
in the range of zero to one. This value specifies the point
in the gait cycle when the start of a leg’s movement cycle
occurs. For example, a value of 0.0 indicates that the start
of a leg’s swing will occur at the start of the overall gait
cycle and a value of 0.25 indicates that the start of that leg’s
swing cycle occurs one quarter of the way through the overall

TABLE Il
RELATIVE PHASES FOR DIFFERENT GAITS

| Leg | Crawl | Trot | Pace | Skip |
right foreleg 0.0 0.0 0.0 0.0
left foreleg 0.5 0.5 0.5 0.0
right hind-leg 0.75 0.5 0.0 0.5
left hind-leg 0.25 0.0 0.5 0.5

TABLE IV
PARAMETER VALUES FOR DIFFERENT GAITS

[Parameter | Crawl | Trot [Pace | Skip |

L-R 0.5 0.5 0.5 0.0
F-H 0.75 0.5 0.0 0.5

gait cycle. Unlike with the OPEN-R prototype, in which the
time in the overall locomotion cycle when each leg would
swing was fixed at predetermined values, with the ERS-110
two offset parameters are used to specify the relative phases of
each leg. These parameters specify the offset between left and
right legs, L-R, and fore and hind legs, F-H. The right foreleg
is fixed to always start swinging at 0.0; the left foreleg starts
swinging at L-R; the right hind-leg leg starts swinging at F-
H; and the left hind-leg starts swinging at L-R + F-H (this
value is adjusted to the range zero to one by subtracting 1.0
if the sum is greater than, or equal to, 1.0). Advantages to
representing relative phases with these two parameters is that
it allows for symmetries and is a smaller search space than
using a separate start time for each leg. Table Il displays the
starting time for each leg for different types of gaits and F-R
and R-L values for these gaits are shown in table 1V.

C. Evaluating a Set of Gait Parameters

Evolution takes place inside a walled area (figure 2) with
a strip of colored cloth to mark the center of each end.
Cables attached to the robot supply power and allow the robot
to communicate data back to a host computer. Evaluating a
set of gait parameters consists of locomoting with them and
then measuring the straightness and distance traveled. The
procedure by which a robot evaluates its own performance
consists of three parts and was influenced by our experiences
from manually evaluating sets of gait parameters.

The first part of an evaluation trial consists of the robot
centering on the color strip. Objects are detected from the
image returned by the onboard Micro-Camera-Unit (MCU) by

Fig. 2. The experimental environment: (a) OPEN-R Prototype; (b) ERS-110.

using an LSI chip with eight color detection tables (CDTS).
These CDTs detect colors within a user-specified range for
each pixel location in the image. Using a CDT for each
color strip, the robot centers by turning its body in a fixed
direction in search of the desired color. Once detected the robot
continues turning, reversing directions if necessary, until the
average horizontal location of the color strip falls within £6°
of the center of the image for a period of two seconds.

In the second part of an evaluation trial the robot determines
how far it is from the color strip and then runs toward it.
The distance to the color strip is measured using the robot’s
position sensitive device (PSD) sensor, which is located on
the front part of its head. The start distance is determined
by averaging seven consecutive PSD sensor readings. Since
the reliable range over which the PSD sensor works is 10 to
80 centimeters, when the robot is further than its maximum
reliable range it uses a hand-built crawl gait to move closer.
To convert the value returned by the PSD sensor to a distance,
a lookup table of distances was created by placing the robot
at fixed distances from a color strip and taking the average
of two-hundred readings. A sensor reading is converted to a
distance by linearly interpolating the average sensor reading
between the two nearest values in the distance look-up table.
After the robot has determined how far it is from the color-
strip it uses the set of locomotion parameters to move for seven
seconds and then stops. The trial also ends if the robot detects
that it has come within 20cm of a wall.

The third part of an evaluation trial begins after the robot has
stopped moving and consists of the robot using its sensors to
determine the straightness of its movement and the distance
it traveled. If the robot has fallen (detected by the onboard
accelerometers) the current individual is given a score of zero,
then the robot gets up by itself (using a hand-coded behavior)
and the next individual is tried. Otherwise, if the robot did
not fall, the trial ends successfully and the robot pans its
head until it finds the color strip. Head panning uses the
MCU in a way similar to the centering behavior, only in this
case the robot’s body remains fixed and the head turns. Once
the color strip is detected in the appropriate CDT, the robot
calculates straightness based on the average horizontal location
of the color strip and the current angle of the head and uses
these values to compute the offset angle between its forward
direction and the color strip. With the robot’s head centered
on the color strip, it uses its PSD sensor to find its distance to
the color strip. The stop distance is determined by averaging
seven consecutive PSD sensor readings. Using the starting and
stopping distances from the color strip, as well as the time it
traveled, the robot calculates its average speed.

To simplify optimizing both velocity and straightness the
score of a trial is the product of its velocity and straightness
scores. Velocity, v(), is the average velocity of the robot during
the trial. Straightness is a function of the angle between the
robot’s forward direction and the direction to the target color
strip, 8, and the distance to the target strip, (figure 3). Before
calculating the straightness function, & is converted to a O-
1 measure of offset by the function f(6). The straightness
function, s(), normalizes this value to account for the robot’s
distance from the color strip — since with the robot at a fixed

color strip

Fig. 3. Robot position at end of an evaluation trial.

TABLE V
SAMPLE VALUES FOR $(8, dstop)-

[0 [dstop [5(60,dstop) |
+90° 80 0
+90° 45 0.5
+90° 10 1.0
+45° 80 0.5
+45° 45 0.75
+45° 10 1
+0° 80 1
+0° 45 1
+0° 10 1

orientation will be larger when the robot is closer to the
color strip. These functions are defined as:

score = v(dstart; dstop, time) X s(6, dstop) @)
i N dstart - dStOP

V(dstarts dstop; time) = time ©
dsion(F(6) — 1) + 80— 107(8

0, dy) = LA =1 10
16|

—1-
£0) 90° ®)

For the function s(), 80 and 10 are used as the constants
because they are the PSD sensor’s maximum and minimum
measurable distances. Table V lists values of s(8,dst0p) for
different values of 6 and d,,. If the robot cannot find the
color strip it is assumed that the robot’s gait caused it to turn
so sharply that it cannot pan its head far enough to face the
color strip. In this case the individual receives a score of zero
for the trial, the same score it would receive if 6 is greater
than, or equal to, 90°.

With early versions of our system the experimenter eval-
uated the performance of each gait and entered the fitness
score in the same way as [16] and [9]. In performing these
experiments it was noticed that a single trial with a particular
set of parameters is a poor measure of the gait’s quality
since the same set of parameters can receive a moderately
wide range of fitness scores. Consequently, to achieve a better
measure of performance a single individual is evaluated with
three trials and its fitness is the average of the three scores.

D. Evolutionary Algorithm

The search algorithm that we use for optimizing gait
parameters is an evolutionary algorithm (EA). EAs are a
family of population-based stochastic search algorithms that
include genetic algorithms [11], evolutionary strategies [2],
evolutionary programming [5] and genetic programming [15].
An EA operates by creating an initial population of candidate
solutions, called individuals, which it optimizes by iteratively
using better individuals to create new ones and discarding
the poor individuals. Because they maintain a population of
candidate solutions, EAs can be speeded up by evaluating
individuals in parallel and are more robust to optimization in
the presence of noise than optimization strategies such as hill
climbing which only operate on a single candidate solution
[1].

In these experiments each individual in the population is a
set of gait parameters. Before optimization begins, an initial
population of randomly generated gait parameters must be
created. An individual in the initial population is created
by setting each of its parameters to a random value with
a uniform distribution over that parameter’s minimum and
maximum initial search range. These initial search ranges were
determined from experience in developing gaits by hand and
are listed for the OPEN-R Prototype in table | and for the ERS-
110 in table I1. To produce an initial population of minimally
viable gait parameters, each new set of gait parameters is tested
to determine whether or not it will cause the robot to fall over.
If a set of gait parameters does cause the robot to fall over, it is
replaced by another randomly generated individual. When all
individuals in the initial population are non-falling, evolution
begins.

The particular EA that we use is a steady-state evolutionary
algorithm [22] with a population of thirty individuals. A
steady-state EA works by iteratively selecting individuals from
the population to act as parents and then using them to
create a new individual. The number of individuals selected
is determined by whether mutation or recombination is used
to produce the new individual, with an equal probability of
choosing either. If the mutation operator is used, then two
individuals are selected from the population. The individual
with the higher fitness value is chosen as the parent and its
offspring replaces the other individual. If the recombination
operator is used, then three individuals are selected from the
population. The two individuals with higher fitness are the
parents and their offspring replaces the individual with the
lowest fitness.

Mutation and recombination work as follows. Mutation
takes one parent individual and perturbs a few genes (one to
eight, determined at random) by a small amount to generate
a child individual. The genes to be mutated are selected
randomly and the mutated value is, ¢; = p; + §;m;; where §;
is a uniform random value in the range of -1 to 1. Values
for m; are set to 5% of the size of a parameter’s initial
search range. Recombination takes two individuals as parents
(p1 and p2) and creates one child individual (c). Each gene
of the child is given a value according to the equation,
¢; = pl; + a;(pl; — p2;). Here, ¢; is the ith gene of the child

individual; p1; and p2; are the 4th gene of parents pl and p2;
and ¢; is a random number in the range of -1 to 1.

A problem experienced in initial experiments was that
sometimes an individual would receive a significantly higher
fitness score than it deserved, such as through an inaccurate
measure of distance from the PSD sensor. This resulted in
pulling the search toward poor parameters. To reduce this
problem an individual’s age, the number of times it has been
used as a parent, is stored. Age is incremented each time
the individual is used as a parent for either recombination
or mutation and when an individual reaches the age of four it
is re-evaluated and its age is reset to zero. Since an individual
is only replaced by another one with a higher fitness, this re-
evaluation of an individual is the only way in which the the
best fitness in the population can decrease.

I1l1. EVOLVING PACE AND TROT GAITS WITH THE
OPEN-R PROTOTYPE

We performed two different experiments with our robots,
first with the OPEN-R Prototype and then with the ERS-
110. Since previous work to manually develop a dynamic gait
for the OPEN-R Prototype met with poor results, our initial
objective was to achieve either a pace or a trot gait through the
use of an on board evolutionary algorithm. After successfully
evolving both a pace and a trot gait with the OPEN-R Proto-
type, and with the launch of Sony’s entertainment robot AIBO
approaching, we became interested in evolving a dynamic gait
that performed robustly on a variety of different surface types.
In this section we describe the results of evolving gaits for the
OPEN-R Prototype, and describe the results with the ERS-110
in the next section.

Before taking an evolutionary approach to the development
of gaits our lab created gaits by hand. The two best hand-
developed gaits were a crawl gait of 5m/min. and a fast-crawl
gait (halfway between a crawl and a trot) of 6m/min. A pace
gait was also developed by hand, but it was not very good
and would at times move the robot backward, and we were
not successful in developing a trot gait.

Unlike our attempts to hand-craft a dynamic gait for the
OPEN-R Prototype, the evolutionary algorithm was able to
evolve both a pace and a trot gait. Evaluating a single set
of gait parameters with three trials takes approximately two
minutes and good gaits are achieved after a couple hundred
evaluations. Figure 4 shows the average and best fitness scores
for individuals in the population for one run of both the trot
and pace gaits. From these graphs it appears that the best pace
parameters from the initial random population are almost as
good as the best hand tailored controllers. In fact, running the
best individual from the initial population shows that while the
robot does move at almost 5m/min., a little less than its fitness
score would indicate, it does not move smoothly but stutters,
bounces in-place, and frequently turns. The average fitness
score of the population is a better indicator of performance.

In evolving a trot gait, the first thirty individuals were all
non-falling individuals and formed the initial population. Most
of these individuals did not move well, with some moving
backward and the best moving only 26cm in seven seconds.

DRX-600 - Trot
800

best ——
700 | average -—--x---

fitness

0
0 50 100 150 200 250 300 350 400 450 500 550 600
evaluations
(@)

DRX-600 - Pace

800

T
best ——
average ----<---

700 |
600 |
8 e

400 | T

fitness

300 |

,,,,,,,,,,

200 |

,,,,,,,,,,,,,,,

100 |

.
0 50 100 150 200 250 300
evaluations

Fig. 4. Results with the OPEN-R Prototype: (a) pace gait; and (b) a trot

gait.

Early individuals tended to move too slowly to have a dynamic
gait and moved in a curved path because a third leg was
always dragging on the ground. Individuals which always
leaned to one side would turn to that side while moving and
had a poor straightness score. Over the course of evolution
individuals in the population became better at alternating
between resting on one side and then the other so that by
the end of the evolution they were trotting in a nearly straight
line. While the best individual that was evolved did not move
in a true dynamic gait, it had a fitness score of 630 and moved
650cm in a one minute trial (approximately twenty-six body-
lengths/min.). Figure 5 shows a sequence of images from one
cycle of the best evolved trot gait and the evolved parameters
for this individual are listed in table I. In this sequence the
robot starts with its right legs at their closest point together
and left legs furthest apart in (a), followed by the right legs
moving apart and the left legs moving together in (b)-(e), and
then reversing direction (f). A digital video of the best evolved
trot gait is available online [12].

Unlike randomly generated trot gaits, which tended to be
stable, randomly generated pace gaits tended to make the robot
fall over and it took eighty-four randomly generated sets of gait
parameters to create the initial population of thirty individuals.
Like with the trot gait, the initial population had a couple of
good individuals that moved quickly but did so awkwardly,
and most individuals had a fitness score less than 150. After
eleven generations of evolution (330 evaluations) the best
individuals could move 1020cm/min., which is approximately
forty body-lengths/min. At this point the maximum evolvable
speed seemed to be limited by variation in the starting angle of

Fig. 5.

A sequence of images showing the best evolved trot gait.

the robot. After centering on the colored strip the robot spends
one second switching gait parameters to those of the current
individual. In doing so it would often turn slightly and then the
robot would receive a poor straightness score even though it
ran straight. As a result the difference in fitness scores between
the top individuals was mostly a matter of luck. With little
selective pressure on these individuals the population ceased
to improve. Table | contains the parameter values for the best
evolved pace gait and a sequence of images from one cycle
of this gait are in figure 6. This sequence starts with the robot
balanced on its left legs with its right legs off the ground (a)
and then shifting its weight (b-c) until it is balanced on its right
legs with its left legs off the ground (d), and then shifting its
balance back to its left side (e-f). A video of this evolved pace
gait is available online [12].

In this first set of experiments the evolutionary algorithm
produced pace gaits that were faster than the best trot gaits.
This may be because it is easier to perform a true pace gait
with this hardware than a true trot gait. Unlike a pace gait,
in which legs on the same side of the body move forward
and backward together, the trot gait has legs on diagonally
opposing sides of the body moving forward and backward
together. Without a torso that can twist in the middle, it is
more difficult to lift both forward-moving legs high enough
off the ground in the trot gait than it is with a pace gait. This
is supported by the results of our evolutionary system in which
we evolved a truly dynamic pace gait, but the evolved trot gaits
dragged a third leg along the ground.

1V. EVOLVING A ROBUST DYNAMIC GAIT WITH THE
ERS-110

One shortcoming that we noticed with the results of the first
set of experiments is that a particular set of gait parameters

Fig. 6.

A sequence of images showing the best evolved pace gait.

will often perform quite differently with different robots of the
same type or on a different surface. This suggests that evolved
individuals are somewhat specialized to the environment in
which they are evolved. While adding sensor feedback might
reduce these effects, sensor feedback was not incorporated
into the locomotion module. This leads to our second set
of experiments in which our objective is to evolve a set of
gait parameters that are sufficiently robust to be used on the
consumer version of AIBO.

One reason why gaits evolved on the OPEN-R Prototype
were not very robust may be because of the environment in
which the trials took place. Since the carpet on which trials
took place is relatively smooth, evolved gaits were not adapted
to rough surfaces: behaviors evolved for one environment
will work on that environment and should work on easier
environments, but will not necessarily work on harder envi-
ronments. Similarly, switching robots is a form of changing
the environment because of differences in manufacture and
calibration. To achieve robust gaits that work well on a wide
variety of environments, we hypothesized that evolution should
take place in a difficult environment. In these second set
of experiments, this hypothesis is tested by creating a more
difficult environment for ga