DRAFT

60025

Ferroan Anorthosite 1836 grams

Figure 1: 60025. NASA #S72-41586. Cube and scale are 1 cm. Note the thick black glass coating and numerous micrometeorite pits.

Introduction

Lunar sample 60025 is a large sample of coarse-grained cataclastic anorthosite (figure 1). Or, rather, it is a mixture of pieces from a related sequence of anorthosites, because the mafic minerals vary in composition (Ryder 1982, James et al. 1991). Warren and Wasson (1977) termed 60025 "pristine" because of its coarse grain size and low meteoritic siderophiles (Ni, Ir). The age of 60025 has been determined by Sm-Nd to be 4.44 b.y. and it has very low ⁸⁷Sr/⁸⁶Sr (0.699).

Ferroan anorthosites are one of the major lunar rock types (Dowty et al. 1974, James 1980) and are thought to be pieces of the original lunar crust formed by plagioclase floatation from a moon-wide magma ocean (e.g. Smith et al. 1970, Wood et al. 1970, Warren 1990).

Ryder and Norman (1980) provided a compilation of what was known about 60025 up to that time. James et al. (1991) studied the mafic portions of 60025.

Mineralogical Mode of 60025										
	Dixon and Papike 1975	Warren and Wasson 1978	James et al. 1991	James et al. mafic region						
Plagioclase	98 vol. %	70	74	5						
Olivine		20	20	45						
Orthopyroxene		10	5	45						
Augite			1	5						
Chromite			0.05	0.2						
Ilmenite			0.02							

Figure 2: Chalky white interior of 60025. Note the patina on the exterior surface. Cubes are about 1 cm. NASA # S72-49109.

60025 was collected near the Lunar Module and its orientation was documented by photography.

Petrography

60025 has been described as a moderately shocked, cataclastic anorthosite (Hodges and Kushiro 1973, Walker et al. 1973, Dixon and Papike 1975, Ryder 1982, James et al. 1991) made up of mostly calcic plagioclase (see mode). The first slabs cut from 60025 were nearly pure plagioclase (figure 2), but other portions of 60025 were found to be more mafic (see Warren and Wasson 1977, Ryder 1982, James et al. 1991). Most pyroxene grains are distinct augite or orthopyroxene, but some grains are exsolved into end member components (figure 3). There are trace amounts of silica, ilmenite and chromite.

A variety of textures are reported. In some areas, large fractured plagioclase grains (2-4 mm) sit in a sea of crushed plagioclase and pyroxene (Walker et al. 1973).

Pyroxene compositions are variable in different portions of the rock $(En_{50} \text{ to } En_{70})$ indicating a

differentiation sequence (Ryder 1982). However, the origin of some pyroxene by sub-solidus exsolution should be considered (see Smith and Steele 1974). The wide composition gap between augite and hypersthene (Wo_{45} to Wo_2) indicates thermal equilibrium well below magmatic temperatures (Walker et al 1973, Dixon and Papike 1975), presumably as a slowly-cooled plutonic rock.

Mineralogy

Plagioclase: A number of people have analyzed the plagioclase in 60025 and found it to be uniform and very calcic $(An_{96.98})$ (see table for some of the analyses).

Olivine: Warren and Wasson (1977), Ryder (1982) and James et al. (1991) find that olivine in various portions of 60025 has a range of compositions (Fo_{42-66}).

Pyroxene: Pyroxene is present as subhedral to anhedral grains included in plagioclase, as anhedral grains at grain boundaries and in mafic clumps with olivine. 60025 contains both high-Ca and low-Ca pyroxene with a wide miscibility gap (figure 3). Hodges and Kushiro

Figure 3: Pyroxene data from various investigators studing various different regions of 60025.

(1973) noted that three pyroxenes (augite, hypersthene and pigeonite) were probably present at time of crystallization. Pigeonite is now exsolved to endmember compositions. Fine exsolution is also found in sub-calcic augite (Hodges and Kushiro 1973). Dixon and Papike (1975) find that the composition of coexisting augite and orthopyroxene indicates an equilibrium temperature of less than 800 deg. C (see also Lindsley et al. 1974). Floss et al. (1998) determined the REE for pyroxenes in 60025 (figure 5).

The variation of FeO/MgO in pyroxene, from one portion of 60025 to another, is the evidence used by Ryder (1982) to argue that 60025 may actually be a mix of anorthosites from a differentiated sequence.

Opaques: Hodges and Kushiro (1973) and James et al. (1991) determined the composition of chromite and ilmenite.

Glass: The black glass found attached to the surface of 60025 has been studied by See et al. (1986) and Morris et al. (1986).

Chemistry

Plagioclase dominates the composition of 60025 (figures 5 and 8). Haskin et al. (1973, 1981) and Krahenbuhl et al. (1973) showed that 60025 was free of meteoritic siderophile elements (Ni, Ir). James et al. (1991) determined the composition of mafic portions of 60025 (table 1).

Radiogenic age dating

Tera and Wasserburg (1972), Papanastassiou and Wasserburg (1972), Nunes et al. (1974), Schaeffer and

Husain (1974), Hanan and Tilton (1987) and Carlson and Lugmair (1988) have attempted to date 60025. The ⁸⁷Sr/⁸⁶Sr ratio is extremely (0.699) low indicating that 60025 is very old and formed from a low Rb source. The mafic minerals allowed a precise Sm/Nd isochron (figure 6), which is only about 110 m.y. younger than the age of the moon. However, the interpretation that 60025 is in fact a mix of related anorthosites, this is perhaps equivalent to a "whole rock" isochron.

Figure 4: Plagioclase-low-Ca pyroxene diagram for various portions of ferroan anorthosite 60025.

Plagioclase in 60025

election h												
	Papike 97	Hanson 79	McGee 93	Dixon and Papike 1975						James et al. 1991		
SiO2	43.9			43.4	44.7	44.8	44.4	44.8	44.15	44.08		
Al2O3	35.3			35.2	35.2	35.2	35.4	34.4	36.03	36.01		
FeO	0.18	0.145	0.145	0.19	0.15	0.19	0.17	0.23				
MgO	0.051	0.064	0.077	0.04	0.02	0.06	0.07	0.02	0.058	0.048		
CaO	19			19.5	19.6	19.3	19.5	19.6	19.13	19.08		
Na2O	0.426			0.42	0.39	0.48	0.46	0.36	0.34	0.359		
K2O	0.009	0.031		0	0	0	0	0	0.01	0.06		
Ab	3.9	3.9										
An	96		96.9	96.3	96.5	95.7	95.9	96.8	96.82	96.65		
Or	0.057											

ion probe (ppm)										
	Meyer 79	Steele 80	Papike 97	Floss 98						
Li	1.4	1.9			mafic area					
Mg	474	410								
Ti	85	80								
Sr	197	240	168							
Υ			0.22							
Ва	15	15	10.42							
La			0.29	0.24	0.33					
Ce			0.483	0.67	0.82					
Nd			0.26	0.39	0.43					
Sm			0.086	0.094	0.06					
Eu			1.16	1.03	1.05					
Gd			0.066	0.093	0.071					
Dy			0.047	0.055	0.039					
Er			0.018	0.025	0.018					
Yb			0.016	0.031	0.022					

Figure 5: Noramlized rare-earth-element diagram for 60025 and its minerals. Data for whole rock from Haskin et al. 1981, data for minerals from Floss et al. 1998. Note that plagioclase dominates.

Lunar Sample Compendium C Meyer 2004

Figure 6: Sm-Nd mineral isochron for 60025 by Carlson and Lugmair 1988.

Cosmogenic isotopes and exposure ages

Kurt Marti determined the exposure age of 60025 as 1.9 m.y. (see Drozd et al. 1977 and Arvidson et al. 1975). Fruchter et al. (1977) and Kohl et al. (1977) determined ⁵³Mn in 60025 as 105 ± 13 and 76 ± 6 dpm/kg respectively.

Other Studies

Sato (1986) determined the intrinsic oxygen fugacity of 60025. Flory et al. (1973) studied the hydrocarbons that were emitted during heating of 60025 (apparently produced by hydrolysis of solar wind implanted carbon). Schaeffer and Husain (1974), Lightner and Marti (1974) and Leich and Niemeyer (1975) analyzed the rare gases in 60025. Katsube and Collett (1973), Gold et al. (1976) and Cisowski et al. (1976) determined electrical and magnetic properties. Hapke et al. (1978) collected ultraviolet reflectance spectra. Simmons et al. (1975) studied the microcracks and Jeanloz and Ahrens (1978) studied the compressibility (equation of state). Sondergeld et al. (1979) determined seismic wave velocities to compare with seismic data collected at Apollo 16.

Figure 7: Argon release pattern for 60025 by Schaeffer and Husain 1975.

Processing

Two slabs have been cut from 60025 (figures 2 and 9) and several pieces are used in public displays (see flow diagram). Mafic-rich pieces were taken from the side opposite the slabs (W1).

List of Photo #s	
S72-41586-41591	color mug shots
\$72-42582-42597	B&W exterior
S72-49096-49109	first slab
S72-49095	slab assembled
S72-49094	end piece, subdivided
S74-28116	second slab

Summary of Age Data for 60025										
	Pb/Pb	Sm/Nd	Ar/Ar							
Schaeffer and Husain 1974			4.21 ± 0.06							
			4.17 ± 0.06							
Hanan and Tilton 1987										
Plagioclase	4.51 ± 0.01									
Mafic	4.42									
Carlson and Lugmair 1988		4.44	4 ± 0.02							

Lunar Sample Compendium C Meyer 2004

Table 1a. Chemical composition of 60025.

													Ehmann	75
reference weight	Wiesmann	75	Rose 73	3	Haskin	73	Laul 73		Krahenbuhl	73	Nakamura	73	Garg 76	Janghorbani 73
SiO2 % TiO2	0.02	(a)	43.03 0.02	(b) (b)	45.3 <0.02	(c) (c)	<0.06	(c)			44.75 0.2			42.79
Al2O3 FeO MnO			35.21 0.67 0.03	(b) (b) (b)	34.2 0.495 0.008	(c) (c) (c)	35.5 0.35 0.009	(c) (c) (c)			35.28 0.31 0.013			36.84 <i>1.3</i> 0.012
MgO CaO	0.14	(a)	0.27 18.92	(b) (b)	0.206 19.8	(c) (c)	18.2	(c)			0.17 19.38			0.16 17.2
Na2O K2O P2O5 S % sum	0.008	0.49 8 (a) 0.03 0		(b) (b)	0.45 0.113	(c) (c)	0.414 <0.01	(c) (c)			0.44 0.028 0.003			0.44
Sc ppm					0.7	(c)	0.55	(c)					0.4	
V Cr			<5 0	(b) (b)	24	(c)	<7 102	(C) (C)			205		0.7	
Ni Cu			3.6 30	(D) (b)	0.73 1.1	(c) (c)	0.7	(C)	<3	(d)			0.7	
Zn Ga			0.4 15	(b) (b)	<2	(c)			0.17	(d)				
Ge ppb					4	(0)			2.3	(d)				
Se	0.03	(2)	0.8	(b)	<0.1	(c)			0.022	(d)				
Sr Y	231	(a) (a)	205	(b) (b)	~0.1	(0)			0.017	(u)				
Zr Nb	9	(a)	<10 <10	(b) (b)									0.5	
Mo Ru				. ,										
Rh Pd ppb														
Ag ppb Cd ppb									0.22 7.25	(d) (d)				
In ppb Sn ppb										(-)				
Sb ppb Te ppb									0.035 65	(d) (d)				
Cs ppm	40.0		0 7		<0.003	(C)	10		0.002	(d)	45.07			
ва La	13.2 0.294	(a) (a)	27	(D)	0.28	(c)	10 0.3	(C) (C)			15.87 0.301	(a) (a)		
Ce Pr	0.607	(a)			0.65	(c)	0.8	(c)			0.645	(a)		
Nd	0.368	(a)			0.42	(c)	0.5	(c)			0.361	(a)		
Eu	1.13	(a) (a)			0.092 1.04	(C) (C)	0.12 1.04	(C) (C)			1.044	(a) (a)	1.1	
Gd	0.103	(a)			0.2	(0)	<0.02	(0)			0.0895	(a)		
Dy	0.083	(a)			0.2	(c) (c)	<0.02 0.11	(c) (c)			0.0783	(a)		
Ho Er	0.042	(a)			0.05	(c)					0.042	(a)		
Tm Yb	0.042	(a)			0.048	(c)	0.051	(c)			0.0429	(a)		
Lu	0.0046	(a)			0.006	(c)	0.005	(c)			0.00465	(a)	0.0405	
Hf Ta					0.02	(C)	0.013 <0.01	(C) (C)					0.0165	
W ppb								. ,						
Re ppb Os ppb														
Ir ppb														
Au ppb														
Th ppm									0 00000	(d)				
technique	(a) IDMS, (Ъ) с	ombined	XRI	, microc	hem.	, emiss.	spec	., c) INAA, (d) R	NAA			

reference weight	<i>glass</i> Morris 8	6		Н	laskin 81		Haskin 82 av. 12	2	<i>mafi</i> Jam 702WB	697WR		
SiO2 % TiO2 Al2O3	44.54 0.36 27.65	(b) (b) (b)	0.00				0.045	0.00	()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
FeO MnO	5.14	(D)	0.32	0.362	0.36	1.31	0.315	0.63	(a)	0.665	13.1	11.8
MgO CaO Na2O K2O P2O5 S % sum	6.35 15.46 0.34 0.08	(b) (b) (b) (b)	18.5 0.45	18.2 0.42	18.1 0.43	17.8 0.4	18.4 0.44	18.6 0.42	(a) (a)	18.5 0.423	8.3 0.169	10.4 0.219
Sc ppm	6.15	(a)	0.47	0.47	0.55	2.47	0.54	1.02	(a)	1.05	9.66	9.18
Cr Co Ni Cu Zn Ga Ge ppb As Se	754 49 711	(a) (a) (a)	0.55 14.7	0.69 13.4	0.59 14.7	1.99 8	0.54 12.9	73 1.05	(a) (a)	42.7 1.07	812 23.8	781 21.2
Rb Sr Y Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sh ppb Sb ppb Te ppb Cs ppm			226	208	207	193	198			199	71	39
Ba La Ce Pr	233 10.49 31.3	(a)	10.4 0.289 0.67	12 0.252 0.69	11.5 0.234 0.54	10 0.23	65 0.275 0.7	0.27 0.65		16 0.235 0.62	0.14 0.71	0.173
Sm Eu	4.79 1.13		0.097 1.11	0.088 1.05	0.085 1.07	0.089 1	0.093 1.01	0.098 1.025		0.086 0.97	0.089 0.46	0.086 0.586
Gd Tb Dy Ho Er	0.97		0.0183	0.0152	0.0178	0.0252	0.015			0.018	0.029	0.015
Yb Lu Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb	0.45 3.53 0.43		0.04 0.0046 0.0078	0.045 0.0052 0.0064	0.049 0.005 0.0086	0.085 0.0111 0.021	0.04 0.018	0.051 0.0081		0.032 0.009	0.211 0.037 0.076 0.018	0.178 0.031 0.08 0.036
Th ppm U ppm <i>technique</i>	2.71 0.22 (a) INAA	, (b)	micropro	be								

Table 1b. Chemical composition of 60025.

Lunar Sample Compendium C Meyer 2004

Figure 8: Chemical composition of black glass coating on 60025, compared with composition of interior anorthosite.

Figure 9: Second slab cut from 60025in 1974. Scale is in cm and cube is 1 inch. Slab was about 1 inch thick. NASA photo # S74-28116

