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Abstract. We describe the use of machine learning methods in the analysis of spatial soil 
fertility, soil physical characteristics, and yield data, with a particular objective of determining 
local (field- to farm-scale) crop response patterns.  For effective prescriptive use, the output of 
these tools is augmented with economic data and operational constraints, and recast as a rule-
based decision support tool to maximize economic return in variable rate fertilization systems.  
We describe some of the practical issues addressed in development of one such system, 
including data preparation, adaptation of regression tree output for use in a rule-based expert 
system, and incorporation of real-world limits on system recommendations.  Results from 
various field trials of this system are summarized. 
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Introduction 
Historically, most soil use and crop management decisions were based on the best available 
information, which was usually whole field or farm average yield.  But over the past 10 years, 
producers have become overwhelmed with information (e.g., yield maps, digital soils maps, 
USGS digital elevation models, high precision elevation models, and remote sensed imagery).  
There is tremendous spatial variation in crop productivity, soil physical, and soil chemical 
properties.  This variability is easy to recognize but very difficult to manage due to complex 
interactions. 

This information, coupled with advances in GIS and GPS technology, yield monitors, and 
variable rate application technologies, can provide the basis for more effective spatial 
management of crop fertilization.  In particular, methods from artificial intelligence and machine 
learning can provide a means for improved economic application of fertilizers. 

Prediction Methods 
We consider the case where the producer has site-specific data from previous growing seasons.  
For example, field nutrient information is obtained from standard soil sampling and analysis 
techniques, and crop yield data can be obtained using commercially available crop yield 
monitors and recorders.  This historical site-specific data can be used to determine local (field- 
to farm-scale) crop response patterns. 

A wide variety of statistical techniques can be used for analysis of this type of input/response 
data.  In our experience, simple linear regression methods perform very poorly at capturing the 
complex nonlinear interactions inherent in crop response to spatial soil fertility and physical 
characteristics.  

We describe the use of regression tree methods in the analysis of spatial soil fertility, soil 
physical characteristics, and yield data, with a particular objective of determining local (field- to 
farm-scale) crop response patterns.   

Regression trees 

Regression trees are a method for inductive learning in multivariate data sets. The INEEL 
Decision Support System for Agriculture (DSS4Ag) uses the CART regression tree algorithm 
(Breiman, et al. 1984).  This is a tree-structured classification method based upon a recursive-
partitioning algorithm.  At each step of the analysis, every independent variable is examined in 
order to identify a splitting condition that maximizes the separation, or purity, of the two resulting 
subsets of the data.  This step is repeated recursively for each subset until no more statistically 
useful splits can be identified.  The result of the regression tree algorithm is a binary decision 
tree that can be used to predict a resulting crop yield for any combination of specified inputs.  
Each terminal node of the tree represents the outcome that is associated with a specific set of 
input conditions; these conditions are obtained by traversing the tree from the root node down 
through the branch nodes.  Figure 1 shows a portion of one such tree. 
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Figure 1.  Sample output (partial) from CART algorithm 

In practice we have used as many as 18 soil parameters (chemical and physical properties), 
slope and aspect, and selected bands from satellite imagery data.  These input parameters and 
resulting yield data for a selected field are gridded using standard GIS tools; we have chosen 
grid sizes in the range of 10 to 30 meters square. These sizes are chosen to correspond to the 
path width of current variable-rate application equipment. This results in a few thousand input 
records for a typical field. The resulting trees typically have 100 to 200 terminal nodes. 

The CART algorithm examines every unique value of each independent variable for every 
record in the applicable subset at a branch node.  In order to reduce the computational 
overhead associated with this, we round off the independent variable values to reduce the 
number of distinct values.  The rounding limits are chosen based upon measurement accuracy  
and estimated clinical significance for each parameter.  The effect of this rounding step is to 
dramatically reduce the computation times required for a solution, without adversely affecting 
the quality of the solution. 

Prescription Methods 
The methods described above are predictive tools; for effective prescriptive use, the output of 
these tools is augmented with economic data and operational constraints, and recast as a rule-
based decision support tool to maximize economic return in variable rate fertilization systems.  
The underlying objective of such a system is to identify locally significant crop response patterns 
and use those as a basis for variable rate application, rather than using typical uniform soil 
fertility goals as defined by regional recommendations.  In this fashion, variable rate application 
is prescribed based on variable goals; the most appropriate goal is chosen economically on a 
very small scale.   

One advantage of regression tree methods is that the transformation from prediction to 
prescription can be made in an explicit manner.  In the INEEL DSS4Ag, the terminal nodes of 
the regression tree are used to define a set of mutually exclusive treatment alternatives. Some 
of the conditions for the terminal node refer to independent variables such as slope and aspect, 
or micronutrients that are beyond the grower's control.  Other conditions refer to decision 
variables of interest, i.e., soil nutrients that can be changed by fertilizer application.  The 
terminal node conditions are converted to a format suitable for a rule-based expert system 
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engine.  For example, the lower left terminal node shown in Figure 1 can be represented as a 
rule: 
 IF K > 225  and 
  buffered pH <= 6.65 and 
  slope <= 5% and 
  P <= 290   
 THEN predicted yield = 65 

For each location in the field, the current soil parameters are compared against the independent 
variables in each rule to determine which rules could potentially apply, after adjusting the 
dependent variables through addition of appropriate fertilizer amounts.  The DSS4Ag chooses 
the fertilizer treatment that results in the greatest net economic gain, i.e., market value of the 
predicted crop yield less the cost of the added fertilizers.  The rule processing is accomplished 
using CLIPS, a rule-based inference engine developed by NASA (Giarratano 1998). 

Augmenting Statistical Models With Real-world Constraints 

Real-world data sets contain implicit limits that are not easily detected by regression tree 
methods such as CART.  For example, the range of potassium levels in a particular field might 
reflect a uniform application of fertilizer such that all locations in the field had adequate 
potassium.  This is in contrast to test plot data that would contain some test zones with nutrient 
levels that are deliberately maintained at extremely low or high levels.  Tree-based classification 
methods such as CART have no means of detecting these implicit limits.  For example, a 
branch node condition might state "If K < 225 ppm, then yield =76, else yield = 66".  Since there 
were no data reflecting what happens if the potassium level is extremely low there is no way for 
the classification algorithm to predict what would happen in that event.   

In the DSS4Ag, this problem of implicit limits is addressed by augmenting the conditions for the 
terminal node with the observed limits in the prior data that falls within the terminal node.  For 
example, given a terminal node that does not have a lower bound on potassium levels, the 
decision support system derives a minimum potassium level from observations in the historical 
data set.  

Another issue that must be accommodated is the knowledge about the input data that is 
external to the data set itself.  For example, sufficiently detailed data sets are relatively 
uncommon within current crop management practice; the only available historical data set may 
have been collected in an unusually low-yielding year due to adverse weather conditions.  In 
such a case, one approach is to rely upon the producer’s experience and knowledge to estimate 
appropriate correction factors to normalize the data set to more typical yield response.  A 
corollary issue here is that the growth patterns identified may be peculiar to the adverse weather 
conditions experienced; this highlights the value of multi-year data sets. 

The producer’s crop management practices must also be taken into account.  If the historical 
and current data sets reflect differing crop rotation patterns it may be necessary to adjust the 
resulting prescription accordingly.  For example, wheat producers in Idaho will add additional 
nitrogen when replanting a field in wheat two seasons in a row.  Although this does not affect 
the base prescription created by the DSS4Ag, an integrated decision support system must be 
able to include this information in its final output so as to reduce the number of post-processing 
steps that are needed. 

Current fertilizer application technology also places constraints on the prescribed application.  
Upper and lower bounds on application rates due to machine limits must be accounted for, as 
well as upper limits on application rates to prevent unrealistically large amounts of fertilizer 
being requested due to a statistical anomaly in the data set.  One approach to this is to simply 
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“clip” the prescribed recipe to the appropriate limits; note that this clipping might result in yields 
considerably different than expected.  The approach taken in the DSS4Ag is to eliminate 
choices that would result in limits violations, thus considering only those possibilities that can 
realistically be achieved.   

In addition to application rate limits, in the future producers will increasingly have limits on total 
amounts of fertilizers applied to a given field.  These global limits can be addressed within the 
DSS4Ag as a capital budgeting formulation.  The discrete alternatives defined by the terminal 
nodes of the decision tree are then considered not only for each specific location in the field, but 
also are considered for their total effect against any overall limits. 
To summarize, the INEEL Decision Support System for Agriculture (DSS4Ag) defines two key 
pieces of technology: 

A prototype expert system for site-specific management decision-making; and 

A partially automated decision support system architecture (Figure 2), that defines that 
interface between the decision-making tool, artificial intelligence information technologies 
and with the existing agriculture infrastructure and process for making management 
decisions

Figure 2.  DSS4Ag Architecture 

Discussion of DSS4Ag Field Experiments 
Experimental field-scale testing of the INEEL DSS4Ag has been conducted at several locations 
over the past four years.   The field tests have included wheat in Idaho (Hoskinson and Hess 
1998), potatoes in Idaho (Hoskinson et al. 2000), corn in Kentucky (Shearer et al. 2000), and 
cotton in Mississippi (Thomasson et al. 2001).  A variety of experimental designs have been 
used in these studies.  The field-scale tests compared the performance of the DSS4Ag 
fertilization recipe against similar blocks or strips fertilized at a constant-rate, or using variable-
rate fertilization to state agency recommendations.  Results from yield monitoring at harvest 
were used to compare crop response across the differing fertilization treatments. 

The results of each of the field tests are reported in the references, and will not be duplicated 
here.  In most of the tests, the DSS4Ag recommendations were for less fertilizer than that of the 
constant-rate treatment or variable-rate constant-goal treatments. The general trend in the yield 
results is that differences in net yield have not been statistically significant. However, the 
DSS4Ag variable-rate recipes typically showed a slight advantage in net economic return; this 
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increased return has generally been comparable the additional costs associated with the 
necessary soil testing and variable-rate application costs.  

Conclusion 
Data mining and artificial intelligence technologies have been used as the basis for a working 
prototype for site-specific management decision-making. The decision-making prototype, as 
part of a partially automated data/information handling architecture, identifies crop production 
success patterns within accurate precision agriculture data sets and uses these patterns to 
develop optimized site-specific management actions.  The methodology relies upon spatial 
databases characterizing the crop production environment.  This approach avoids constraints 
inherent with limited understanding of soil/plant/atmosphere mechanisms by basing decisions 
on documented site-specific patterns of crop and ecosystem variability. 

Results from initial field-scale testing of the prototype have been encouraging but not 
statistically conclusive.  Additional evolution and refinement of this methodology may provide a 
means for improving the economic effectiveness of site-specific fertilization practices. 
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