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Executive Summary 

The effects of nitrogen (N) fertilization and species on the hyperspectral leaf reflectance 
(350 – 1050 nm) of four common emergent freshwater macrophytes (Acorus calamus, Peltandra 
virginica, Phragmites australis, and Typha spp.) were determined in a complete randomized 
experiment. Plants were cultured in a climate-controlled greenhouse and subjected to five levels 
of N fertilization (0, 1, 2, 5, and 20 mg-N per L), selected to span levels observed in natural and 
treatment wetlands. An ASD Handheld SpectroRadiometer (Analytical Spectral Devices, 
Boulder, CO) with a spectral range of 325—1075 nm and a one degree field of view was used to 
measure plant leaf reflectance in full sun. Prior to fertilization species exhibited a significant 
(p<0.05) effect on leaf reflectance in the visible and near-infrared with all spectral bands 
between 450 and 1050 nm affected. The majority of the species effect was due to the differences 
between Acorus and both Peltandra and Phragmites. After 49 d of N fertilization, N, species and 
their interaction were all significant factors for visible and near-infrared (NIR) response. 
Grouping Acorus with Peltandra and Phragmites with Typha greatly reduced the species effect 
and heightened the N effect. The reflectance of the invasive species group (Phragmites + Typha) 
in the chlorophyll a and b absorption bands displayed much higher sensitivity to low N additions 
the non-invasive group (Acorus + Peltandra), suggesting that the invasive group had a greater 
ability to take up N, build chlorophyll and absorb photosynthetically active and NIR radiation. A 
partial least squares regression model that used the change in reflectance over N fertilization 
experiment to predict N treatment level had an R2 of 0.72. The work demonstrated that the 
capability to detect the response of wetland plants to elevated N availability via leaf reflectance 
could be used to assess the N levels of natural emergent marshes. This provides a foundation for 
scaling the technique to aerial or satellite-based hyperspectral radiometers to perform large scale 
monitoring and assessment of wetland water quality. 
1 Introduction 
1.1 Problem Statement 

The Clean Water Act stipulates that States report the health and quality of all water bodies, 
including wetlands, in a National Water Quality Inventory Report, but only 4% of wetlands were 
included in the most recent edition (USEPA 2002a). By 2012 the USEPA’s leniency will end and 
States will be required to report wetland water quality and ecological health (USEPA 2002b). 
The lack of reporting stems from technical difficulties associated with sampling wetlands and 
unresolved issues in defining wetland health. Direct sampling of wetland soils and plant tissues 
provides the most accurate estimate of the N concentration and prevalence for specific locations, 
but gives limited information on geographical extent of the problem. Remote sensing with 
hyperspectral radiometry may offer an ability to assess the likelihood of wetland N availability 
over broad geographical areas, which would vastly improve wetland assessment capabilities. 

Nutrients from agricultural runoff and other sources are widely known to cause 
eutrophication of open-water aquatic systems such as the Chesapeake Bay, stimulating algal 
growth and causing dieback of submerged aquatic vegetation and declines in fish and shellfish 
populations (Jaworski et al. 1992; Chesapeake Bay Program 2002). Anthropogenic input of 
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nutrients to the biosphere is increasingly viewed as a global threat to ecosystems (Vitousek et al. 
1997; Fenn et al. 1998). This cultural eutrophication of habitats can alter plant species 
composition and reduce plant diversity (DiTommaso and Aarssen 1989; Morris 1991).  Although 
Maryland’s load of total nitrogen to Chesapeake Bay decreased by 28% from 1986 to 2001 
nitrogen loading remains a priority concern for achieving the 2000 Chesapeake Bay Agreement 
(MDNCWG 2001).  Statewide, point source nitrogen loads have decreased from 14,300 MT to 
7710 MT (46%) and agricultural loads have dropped from 14,600 MT to 9590 MT (34%).  
Urban loads, on the other hand, have grown 19%, from 5370 MT to 6390 MT.   

Tidal freshwater marshes (TFM) are an extensive type of wetland located along the U.S. 
coast, often in the upper tidal reaches of rivers flowing into estuaries (e.g., the Patuxent River of 
Chesapeake Bay) (Odum 1988; Tiner and Burke 1995; Mitsch and Gosselink 2000). TFM’s 
support productive commercial and recreational 
fisheries, provide recreational opportunities, filter 
pollutants from land runoff, and add to the biological 
diversity of the landscape (Odum et al. 1984). 

From a water quality management perspective, 
restoration of wetlands is recommended as a Best 
Management Practice (BMP) by the State of Maryland 
for improving Bay water quality (MDNCWG 2001). 
By 2012 the USEPA will begin enforcing the 
regulation that all States and Tribes report the water 
quality and ecological health of wetlands.  Thus, not 
only is there a need to understand the affect of restored 
and natural wetlands on reducing nutrient and 
sediment loads to the Bay, we also need to be able to 
rapidly and easily quantify their nitrogen and 
phosphorus status.  Currently, measuring the nutrient 
status of wetlands relies on labor-intensive collection 
and time-consuming water analysis techniques.   

The emerging field of precision agriculture, whereby satellite, airborne, and handheld 
spectroradiometers are employed to measure nitrogen status of crops, demonstrates the potential 
of employing remote sensing technologies to understand the nutrient status of wetland 
ecosystems.  Advancing the capability of wetland remote sensing to quantify the nitrogen status 
of wetlands can (1) provide a tool for the large scale assessment of water quality in difficult-to-
access wetlands, (2) offer a rapid screening method for identifying nitrogen “hot-spots” in a 
watershed, (3) enable near real-time monitoring in areas suspected of producing significant 
quantities of non-point source (NPS) pollution, and (4) be used to monitor wetlands used as for 
nutrient management.  

Table 1.1 indicates how Maryland Water Resources Research Center (MWRRC) funding fit 
into our long-term research and development effort to develop wetland hyperspectral radiometry 
as a remote sensing tool for assessing the water quality of emergent marshes.  Our previous 
research demonstrated the proof-of-concept of leaf-scale reflectance models for assessing marsh 
water column N status in brackish treatment marshes (Tilley et al. 2003). The present project 
focused on advancing reflectance modeling by testing previously developed reflectance indices 
and exploring the efficacy of the multivariate data analysis technique of Partial Least Squares to 
assess the availability of N to emergent macrophytes. Simultaneous to the work of this project, 

Figure 1.1. Schematic diagram 
demonstrating measurement positions for 

the boat-mounted, telescopic 
spectroradiometer boom. 
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we were developing a boat-borne imaging radiometer system (BIRS, Fig. 1.1) with funds 
awarded from Maryland Sea Grant College, which evaluated the feasibility of collecting marsh 
canopy reflectance using BIRS. Now we are seeking further funding to conduct pilot-scale 
testing of BIRS in a variety of wetlands and to improve the data collection and reflectance 
modeling methods. Our goal is to have the technology ready in 2 years for full-scale testing in 
other wetlands by environmental managers and to have a wetland radiometric system operational 
by 2012 when the U.S. EPA will begin to enforce sections of the Clean Water Act that stipulate 
States must include wetland water quality in their biennial reports on water quality (303b 
Reports).  
 
Table 1.1. Tasks required to develop hyperspectral boat radiometry as a commercial tool for assessing 
wetland nutrient status. 
Tasks Status Comments 
Proof-of-Concept Completed 2002 Tilley et al. (2003) 
Leaf Reflectance Models 2003-2004 This MWRRC project 
Boat-radiometer Proof-of-Concept 2004-2005 MD Sea Grant 
Pilot-scale testing of boat-radiometer Near-term  funding TBD 
Full-scale testing w/ end users Mid-term funding TBD 
Commercial Operation 2012  
1.2 Hyperspectral Reflectance and Ecosystem Assessment 

Hyperspectral reflectance refers to the ability to measure plant reflectance of solar radiation 
in hundreds of narrow (1—2 nm) spectral bands.  Hyperspectral reflectance data continue to be 
evaluated for their ability to represent biological and ecological functions and structural 
properties (see review by Treitz and Howarth, 1999).  At the leaf cellular level, reflectance 
indices have been developed to infer physiological and biochemical attributes (e.g., chlorophyll 
and carotenoid content, Jago et al. 1999).  At the canopy level of terrestrial ecosystems, spectral 
indices have been developed to infer leaf area index and canopy nitrogen (Boegh et al. 2002), 
and water use and evapo-transpiration (Szilagyi 2000, Wiegand and Richardson 1990a, 1990b).  
The reflectance of upland plants are known to 
respond to various environmental factors—
soil nitrogen (Read et al. 2002), soil moisture 
(Strachan et al. 2002), salinity (Wang et al. 
2002), and ozone concentration (Penuelas et 
al. 1995), demonstrating the versatility of 
narrow spectral band reflectance indices to 
detect plant response to environmental 
stimuli.   

Although hyperspectral reflectance has 
been widely used to assess water quality 
conditions of open-water aquatic ecosystems--
classifying the trophic status of lakes 
(Koponen et al. 2002, Thiemann and 
Kaufmann 2000) and estuaries (Froidefond et 
al. 2002), characterizing algal and red tide 
blooms (Stumpf 2001, Kahru and Mitchell 
1998), and identifying and classifying 
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submerged aquatic vegetation (Williams et 
al. 2003)--assessment of the ecological 
health of emergent wetlands based on 
narrow band spectral reflectance appears 
limited to plant photosynthetic radiation 
use efficiency (Penuelas et al. 1997) and 
redox potential (Anderson and Perry 1996).  
Thus, quantification of wetland water 
quality from plant reflectance appears to be 
a new area of investigation and application 
(Tilley et al. 2003).   

During investigations of a brackish 
(2.5—4.5 ppt) marsh in south Texas, we 
found the Photochemical Reflectance 
Index [PRI, defined as (R531-
R570)/(R531+R570)], the red edge (RE, 
defined as the wavelength of maximum 
slope at the red—NIR transition) and 
simple reflectance ratios (e.g., R493/R678)—determined from handheld spectroradiometric 
readings of marsh macrophyte leaves (Typha latifolia and Borrichea frutescens)—to be 
indicative of marsh water column ammonia concentrations (Tilley et al. 2003; Ahmed 2001).  
We also found that the normalized difference vegetation index (NDVI) and floating water-band 
index (fWBI) were responsive to small (1 ppt) changes in salinity (Tilley et al., in review).  
Others have found the PRI to be positively related to nitrogen, phosphorus, and potassium 
fertilization rates for annual, deciduous and evergreen upland species (Gamon et al. 1997).  
Penuelas et al. (1997) determined that the PRI of emergent wetland macrophytes was negatively 
related to photosynthetic radiation-use efficiency (PRUE), which was similar to non-wetland 
plants (Gamon et al. 1997).   

The red edge (RE), defined as the wavelength of maximum slope at the red—NIR transition, 
increases with higher chlorophyll content, which is strongly influenced by nitrogen levels.  In 
general, red spectral reflectance is more responsive to nitrogen changes than blue or green 
spectra due to changes in chlorophyll a and b (Carter and Miller 1994).  Strachan et al. (2002) 
included PRI along with RE, as necessary members of a multi-index reflectance model 
developed for classifying nitrogen application rates in corn (Zea mays).   

 
Combining individual spectral reflectance bands as simple ratios (e.g., R493/R678) to reduce 

data noise is a common approach for relating hyperspectral reflectance to biological and 
ecological properties (Carter and Miller, 1994). Normalization of sensitive wavebands to non-
sensitive wavebands minimizes noise and is readily scaled to airborne or satellite platforms.  
Recently, Read et al. (2002) found a simple blue to red reflectance ratio (R415/R710) as a strong 
indicator (R2 = 0.70) of leaf nitrogen in cotton (Gossypium hirsutum). 

Partial least squares (PLS) regression is a type of eigenvector analysis that can reduce full-
spectrum data to a small set of independent latent factors (i.e., PLS-components) that explain 
response in dependent variables, such as the leaf chlorophyll or nitrogen content (Esbensen 
2002). PLS regression is related to principal components regression (PCR), which proceeds by 
first determining the principal components of the independent variable matrix (X) without 
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considering any information contained in the dependent variable matrix (Y) and then uses 
ordinary least squares to relate the principal components to the dependent variables (Y). The 
advantage of PLS regression is that it selects latent components of X that explain the most about 
Y. PLS reduces the potential for selecting spectral bands not associated with absorption features, 
which is a concern with a method such as stepwise multiple linear regression (MLR)—which 
deals poorly with multicollinearity among spectral bands (Grossman et al. 1996). PLS has 
become a preferred method for interpreting the hyperspectral reflectance of ecosystems to 
ascertain biochemical information. Townsend et al. (2003) and Smith et al. (2003) used PLS to 
develop highly predictive reflectance models of temperate forest canopy nitrogen concentration 
from airborne and satellite hyperspectral images. We found PLS could estimate the marsh cover 
occupied by the invasive species P. australis (R2=88%) and the non-invasive dominant species 
Polygonum arifolium (R2=62%) (Tilley et al. 2004).  
1.3 Previous Research 

Fig. 1.2 gives an example from our previous work (Tilley et al. 2003) showing that the ratio 
of leaf (T. latifolia) reflectance in a narrow blue band centered at 493 nm and a red band centered 
at 678 nm explained 54% of the variation in the total ammonia concentration of the wetland’s 
water column. Less leaf reflectance at 678 nm results from higher leaf chlorophyll a 
concentration, which is affected by nitrogen availability. Thus, the technique is a remote sensing 
method for directly measuring plant reflectance, which infers wetland water quality. We also 
found that the explanatory power of a multiple linear regression equation containing the 
Photochemical Reflectance Index (PRI) and red-edge (RE) reflectance indices was highly precise 
(root mean square error, RMSE = 0.04 mg-N l-1) over a narrow range (1.0—1.5 mg-N l-1) of 
ammonia (Fig. 1.3).   

Our earliest field research on relationships between canopy reflectance and N fertilization 
conducted on tidal freshwater marshes of the Nanticoke river on Maryland’s eastern shore 
suggested that N supply changes radiation balance. Our initial analysis of canopy reflectance 
indicates that nitrogen fertilization significantly (P<0.05) increased the reflectance in a majority 
of the near-infrared (NIR) bands, but in none of the visible bands (Fig.1.4). Presumably, the 
more developed canopy (i.e., higher LAI) of the fertilized sites allows less NIR radiation to reach 
the soil surface of the wetland where it is effectively absorbed (i.e., not reflected); consequently 
the canopy of the fertilized plots reflects more NIR.  This has interesting ramifications for 
assessing the global affects of 
anthropogenic nitrogen 
fertilization on the energy budgets 
of wetlands. 
1.4 Objectives 

In our original proof-of-
concept work (Tilley et al. 2003) 
the range of ammonia 
concentrations was small (0.9—
1.8 mg-N l-1) and we only 
investigated two emergent 
macrophyte species. To develop 
advance wetland hyperspectral 
radiometry’s ability to assess 
wetland N availability, we needed 
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to determine the effect of species on reflectance and we needed to understand the relationship 
between narrow spectral band reflectance indices and wetland N over a broader range. 
Presumably, at some high nitrogen concentration N will no longer limit plant growth, which 
would lead to a saturation of chlorophyll and low reflectance sensitivity, which indicates the 
limits of the tool as an indicator of wetland N availability. 

Therefore, our objective for this project was to test the applicability of previously developed 
leaf-scale reflectance models over a broader nitrogen range than previously used and to assess 
the differences among wetland species. A specific objective of our proposed research was to 
experimentally examine how narrow spectral band reflectance indices (e.g., PRI, RE, R678/R493) 
and individual spectral bands vary between four common species of wetland plants in their 
response to a wide range of nitrogen availability. This objective was an integral component of 
our larger effort to develop BIRS for assessing wetland water quality via remote sensing 
techniques. 
2 Materials and Methods 
2.1 Experimental Design 

Plant materials were collected in mid-June of 2004 from a tidal freshwater marsh on the 
Patuxent River near its intersection with U.S. Hwy 301, which is approximately 5 km east of 
Washington, D.C. Plants with soil residue intact were transferred to 4 L plastic pots containing a 
peat-perlite mixture. Above-ground tissue was cut back to within 15 cm of the soil surface so 
plant tissue age would be more uniform. One individual of each potted plant was transferred to 
one of fifteen 170 L black tubs (i.e., four pots/species per tub) located in the University of 
Maryland Research Greenhouse Complex. For a period of 21 d following potting and prior to 
fertilization, plants were irrigated weekly with municipal tap water to flood levels that were 5 cm 
below the surface of the soil. Each irrigation included emptying the tubs of residual water and 
refilling to the specified level. Climate conditions within the greenhouse were maintained within 
ranges indicative of the local summer.  

Four species of common wetland emergent macrophytes were used: cattail (Typha spp.), 
common reed (Phragmites australis (Cav.) Trin. ex Steud.), arrow arum (Peltandra virginica L.) 
and sweet flag (Acorus calamus L.). These species were chosen because they are common in 
mid-Atlantic freshwater marshes and are large clonal perennials that are easy to collect and 
grow. Also, cattail and reed are invasive plants of interest to natural resource managers and 
researchers due to their potential for colonizing disturbed and natural (cattail is native, while 
exotic genotypes of reed are common in the U.S.). The treatments were 0, 1, 2, 5, and 20 mg-
N/L, which were made by mixing municipal tap water with 5-0-1 (N-P-K) fertilizer (4.7% NO-

3, 
0.3% NH3). In addition to N, all tubs received 2 mg-P L-1 and 1.6 mg-K L-1 from 0-5-4 fertilizer 
(5% P2O5) to ensure that phosphorus did not limit growth. Treatment began on July 27, 2004, 21 
d after plants were potted. Fertilized irrigation water was changed approximately weekly on 8/3, 
8/10, 8/18, and 8/27. Each tub was randomly subjected to one of the five nitrogen additions 
(Table 2.1). 
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Table 2.1. Summary of experimental treatments for greenhouse study of effects of species and nitrogen 
concentration on spectral reflectance indices.  

  Nitrogen concentration (mg/L) 
  0 1 2 5 20 

Typha 3 reps 3 reps 3 reps 3 reps 3 reps 
Phragmites 3 reps 3 reps 3 reps 3 reps 3 reps 
Peltandra 3 reps 3 reps 3 reps 3 reps 3 reps Species 

Acorus 3 reps 3 reps 3 reps 3 reps 3 reps 
These levels were selected to span a range from natural marsh concentrations (1-2 mg/L 

Tilley et al. 2004) up to levels typically seen in treatment wetlands that receive municipal or 
animal farm wastewater. The design and setup of this study was similar to studies investigating 
ammonia toxicity in wetland plants (Clarke and Baldwin 2002).  
2.2 Radiometric measurements 

An ASD Handheld SpectroRadiometer (Analytical Spectral Devices, Boulder, CO) was used 
to measure plant leaf reflectance. Each pot was taken outside of the greenhouse, and 
spectroradiometric measurements then taken on clear sky days between 10:00 am and 3:00 pm.  
Percent reflectance was calculated by dividing canopy reflectance by the reflectance of a 
calibrated Spectralon white panel (Labsphere, Inc., North Sutton, NH), measurements of which 
were taken immediately before canopy measurements. We used  a 1º field-of-view (FOV) fore-
optic positioned at 30º from nadir aimed at the leaf surface from the north side (to reduce 
shadow) at a distance of approximately 10 cm. The spectroradiometer collected ten sub-samples 
of each leaf which were later averaged to define the mean reflectance. 
2.3 Data analyses 

The experimental design resulting from the experimental setup described previously is a 4 × 
5 factorial arrangement of treatments (4 species, 5 N levels per species), with 3 replicates of each 
treatment combination in a completely randomized design. Analysis of variance (ANOVA) was 
conducted to examine treatment effects on reflectance indices and spectral band reflectance using 
SPSS for Windows (SPSS Inc., Chicago, IL). Differences among means were distinguished with 
Bonferroni’s test. Mixed effects two-factor ANOVA, which assumed nitrogen as fixed and 
species as random, was used to determine whether nitrogen or species affected leaf reflectance 
response across the full spectrum. Significant differences were defined at the 0.05 probability 
level. Plots of the p-values for spectral differences were plotted as functions of wavelength to 
identify patterns in effects. ANOVA and multiple comparison tests were conducted using SPSS 
for Windows (SPSS Inc., Chicago, IL). We also analyzed effect of N on reflectance by 
considering N treatment level as a continuous variable in simple linear regression models, which 
were conducted using SPSS. Spectral reflectance indices included Photochemical Reflectance 
Index (PRI), a simple reflectance ratio of blue to red (R493/R678), and a standard Normalized 
Difference Vegetation Index (NDVI). 

PLS was used to develop a regression model of hyperspectral reflectance predictive of N 
availability. We used Unscrambler 9.0 (Camo Process, Oslo, Norway) to conduct PLS. To 
validate the PLS model we used full-cross validation (i.e., leave one sample out). The number of 
PLS components to include in the final model was chosen based on the minimum root mean 
squared error of prediction (RMSEP). The efficacy of the final PLS model to predict N exposure 
was expressed by the RMSEP and the coefficient of determination.  
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3 Results and Discussion 
3.1 Effect of Nitrogen Fertilization on Hyperspectral Reflectance 

3.1.1 Mean reflectance before and after N fertilization 
Figure 3.1 shows the mean hyperspectral reflectance of all four species before (July 15, 

2004) and after (September 1, 2004) nitrogen fertilization for each of the 5 fertilization levels. 

0

0.2

0.4

0.6

0.8

1

350 450 550 650 750 850 950 1050

Wavelength (nm)

R
ef

le
ct

an
ce

Before
After

 
(a) 

0

0.2

0.4

0.6

0.8

1

350 450 550 650 750 850 950 1050

Wavelength (nm)

R
ef

le
ct

an
ce

Before
After

 
(b) 



 9

0

0.2

0.4

0.6

0.8

1

350 450 550 650 750 850 950 1050

Wavelength (nm)

R
ef

le
ct

an
ce

Before
After

 
 

(c) 

0

0.2

0.4

0.6

0.8

1

350 450 550 650 750 850 950 1050

Wavelength (nm)

R
ef

le
ct

an
ce

Before
After

 
(d) 

 



 10

0

0.2

0.4

0.6

0.8

1

350 450 550 650 750 850 950 1050

Wavelength (nm)

R
ef

le
ct

an
ce

Before
After

 
(e) 

Figure 3.1. Mean hyperspectral reflectance of four species (3 replicates each) before and 49 days after 
fertilization for (a) 0 mg-N/L, (b) 1 mg-N/L, (c) 2 mg-N/L, (d) 5 mg-N/L, and (e) 20 mg-N/L treatment levels. 

 

3.1.2 Response of blue, green, red and NIR spectral bands to N fertilization 
Figure 3.2 shows the effect of N treatment concentration on mean reflectance at 460 nm, 

which is a representative blue waveband, when all four species were combine. After 49 d of N 
fertilization R460 was suppressed by higher N availability although p-value was only 0.094.  
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R2 = 0.521
p=0.168
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Figure 3.2. Mean reflectance of four species at the 460nm (blue waveband) across five fertilization levels 
(0, 1, 2, 5, and 20 mg-N/L) on (a) July 15, 2004 (pre-fertilization). (b) August 9, 2004 (post-fertilization), and 

(c) September 1, 2004 (post-fertilization).  Coefficient of determination and significance of slope (p-value) 
included. 

 
Figure 3.3 shows the effect of N treatment concentration on mean reflectance at 560 nm, 

which is a representative green waveband, when all four species were combine. After 25 d of N 
fertilization R560 was suppressed by higher N availability (Fig. 3.3b), which continued after 49 d 
of N fertilization (Fig. 3.3c). 
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R2 = 0.852
p=0.026
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Figure 3.3. Mean reflectance of four species at the 560nm (green waveband) across five fertilization 
levels (0, 1, 2, 5, and 20 mg-N/L) on (a) July 15, 2004 (pre-fertilization). (b) August 9, 2004 (post-fertilization), 
and (c) September 1, 2004 (post-fertilization).  Coefficient of determination and significance of slope (p-value) 

included. 
Figure 3.4 shows the effect of N treatment concentration on mean reflectance at 680 nm, 

which is a representative red waveband, when all four species were combine. After 25 d of N 
fertilization R680 was suppressed by higher N availability, but only moderately significant (Fig. 
3.4b). R680 was lower at higher N levels after 49 d, but was not significant (Fig. 3.4c) 
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Figure 3.4. Mean reflectance of four species at the 680nm (red waveband) across five fertilization levels 
(0, 1, 2, 5, and 20 mg-N/L) on (a) July 15, 2004 (pre-fertilization). (b) August 9, 2004 (post-fertilization), and 

(c) September 1, 2004 (post-fertilization).  Coefficient of determination and significance of slope (p-value) 
included. 

Figure 3.5 shows the effect of N treatment concentration on mean reflectance at 800 nm, 
which is a representative NIR waveband, when all four species were combine. There was no 
significant relationship between R800 and N availability when all plants were considered together. 
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(c) 

Figure 3.5. Mean reflectance of four species at the 800 nm (NIR waveband) across five fertilization levels 
(0, 1, 2, 5, and 20 mg-N/L) on (a) July 15, 2004 (pre-fertilization). (b) August 9, 2004 (post-fertilization), and 

(c) September 1, 2004 (post-fertilization).  Coefficient of determination and significance of slope (p-value) 
included. 

3.1.3 Effect of N on Reflectance Indices 
Figure 3.6 shows relationship between N treatment level and the simple reflectance ratio 

R493/R678 before and after fertilization. 
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Figure 3.6. Relationship between reflectance index, R493/R678, and N treatment level (a) before and (b) 
after fertilization when all four species were combine. 

 
Figure 3.7 shows relationship between N treatment level and the simple reflectance ratio 

R415/R710 before and after fertilization. R415/R710 exhibited a significant negative response to N 
availability after 49 d of N fertilization (Fig. 3.7b). 
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Figure 3.7. Relationship between reflectance index, R415/R710, and N treatment level (a) before and (b) 
after fertilization when all four species were combine. 

Figure 3.8 shows relationship between N treatment level and the simple reflectance ratio 
R564/R768 before and after fertilization. R564/R768 did not exhibit a significant relationship with N 
availability after 49 d of N fertilization (Fig. 3.8b). 
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Figure 3.8. Relationship between reflectance index, R564/R768, and N treatment level (a) before and (b) 
after fertilization when all four species were combine. 

Figure 3.9 shows relationship between N treatment level and the simple reflectance ratio 
PRI before and after fertilization. PRI exhibited a significant positive response to N availability 
after 49 d of N fertilization (Fig. 3.9b). 
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Figure 3.9. Relationship between reflectance index, PRI, and N treatment level (a) before and (b) after 
fertilization when all four species were combine. 

Figure 3.10 shows relationship between N treatment level and the simple reflectance ratio 
NDVI before and after fertilization. NDVI exhibited a significant positive response to N 
availability after 49 d of N fertilization (Fig. 3.10b). 
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Figure 3.10. Relationship between reflectance index, NDVI, and N treatment level (a) before and (b) 
after fertilization when all four species were combine. 

 
Table 3.1 identifies whether chosen reflectance indices were significantly affected by N 

treatment level according to species. Only R493/R678 for Typha exhibited a significant relationship 
to N treatment level before fertilization. All five reflectance indices were significantly affected 
by N level for at least one species. Likely the sensitivity of the experiment could have been 
improved by a higher number of replicates for each treatment (species x N level). 
Table 3.1. Relationship (R2 (p-value)) between chosen reflectance indices to N treatment level for each of four 
species (ns—not significant at p=0.05). 
Reflectance 
Index 

Acorus  Phragmites Peltandra Typha 

Before N fertilization 
R493/R678 ns ns ns 0.32 (0.03) 
R415/R710 ns ns ns Ns 
R564/R768 ns ns ns Ns 
PRI ns ns ns Ns 
NDVI ns ns ns Ns 

After N fertilization (45 d) 
R493/R678 ns ns 0.39 (0.01) Ns 
R415/R710 ns ns 0.66 (0.00) Ns 
R564/R768 0.28 (0.04) ns ns Ns 
PRI 0.40 (0.01) ns ns Ns 
NDVI 0.29 (0.04) ns ns Ns 

 
Figure 3.11 highlights the differences among N treatment levels in the visible waveband 

after samples were fertilized for 49 d. The highest N treatment had the lowest mean visible 
reflectance, which supported the contention that higher N availability increases absorption of 
visible radiation (i.e., photosynthetically active radiation, PAR) by taking up N to increase 
chlorophyll concentration.  
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 Figure 3.11. Mean visible reflectance on September 1, 2004 of four species for each nitrogen level.  
 

3.2 Species Differences before N fertilization 
Fig. 3.12 shows the mean spectral reflectance of the four species on July 15, 2004 after 

growing in the greenhouse for 21 d without any fertilization. Species had a significant effect on 
reflectance in all spectral bands except in the UV-blue waveband from 374 to 456 nm (Fig. 
3.13). Multiple comparison tests of the species effect revealed that one species (Acorus) was 
responsible for all of the effect (Fig. 3.14a,b,c). The contrast of Acorus with Peltandra and 
Phragmites exhibited the highest number of significantly different spectral bands, while the 
Acorus/Typha comparison had only a few different bands (Fig. 3.14c). In the 497-658 nm 
waveband, Acorus was 2.7 to 5.5% greater than Peltandra, while the difference in the red-edge 
centered 685-712 nm waveband ranged from 2.8 to 7.1% (Fig. 3.14a). A large portion of the NIR 
was also greater for Acorus compared to Peltandra, averaging around 12% (Fig. 3.14a). The 
significant difference in spectral response between Acorus and Phragmites covered the entire 
portion of the spectrum from 492 nm to 1075 nm (Fig. 3.14b). Acorus reflected around 15% 
more in the NIR, 3.1% more in the red, 5.3% more in the green and 2.7% more in the blue than 
Phragmites. Pairwise comparisons between Peltandra, Phragmites, and Typha exhibited no 
significantly different spectral bands (Fig. 3.14d,e,f).   
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Figure 3.12. Mean reflectance of four emergent freshwater macrophytes prior to N-fertilization 

(7/15/04). n=15 per species. 

0.00

0.05

0.10

0.15

0.20

300 400 500 600 700 800 900 1000 1100
Wavelength, nm

p-
va

lu
e

 
Figure 3.13. Significance of effect of species on spectral reflectance of four wetland species prior to 

fertilization (7/15/04). Species as fixed factor ANOVA 
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c) A. calamus - Typha  spp.
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Figure 3.14. Mean difference in spectral reflectance for each two-way species comparison and its 

significance as estimated with Bonferroni’s multiple comparison test for the four wetland species prior to 
fertilization (7/15/04). 

3.3 Effects of N and species on reflectance post-fertilization 
Fig. 3.15a shows that nitrogen, species, and their interaction had a significant effect on 

reflectance across the spectrum 49 d after initiating fertilization. The only exceptions were the 
effect of N on several NIR bands greater than 1000 nm and the 357 nm UV band, and the 
interaction effect at the extreme ends of the spectrum. Grouping Acorus and Peltandra together 
and Phragmites and Typha together reduced much of the effect of species and the nitrogen x 
species interaction (Fig. 3.15b,c). For the Acorus+Peltandra group, the main effect of species 
was non-existent with no spectral bands exhibiting a significant effect (Fig. 3.15b). The effect of 
the nitrogen x species interaction was reduced greatly with only the blue (400-500 nm) and a 
portion of red (650-680 nm) wavebands significantly affected (Fig. 3.15b). Nearly all spectral 
bands showed a significant response to N in the Acorus+Peltandra group with a less distinct 
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response in the NIR. Similarly, the main effect of species for the Phragmites+Typha group was 
removed when the two species were analyzed separately and the nitrogen x species interaction 
was restricted to the NIR wavebands (Fig. 3.15c). All spectral bands between 400 and 1050 nm 
were affected by N treatments for the Phragmites+Typha group. 
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(c) 
Figure 3.15. Significance of effects of nitrogen (N), species (Sp) and their interaction on reflectance 49 d after 

initiation of N fertilization for (a) all 4 species, (b) Acorus and Peltandra, and (c) Phragmites and Typha. 
(n=15 per species, except Typha n=14; thres =  threshold of significance at p=0.05). 

Fig. 3.16 shows the difference in spectrum reflectance between pair-wise nitrogen 
treatments for each 1 nm spectral band and the significance of the difference (Bonferroni’s test). 
There were no significant differences across the spectrum for the 0N/1N comparison (Fig. 
3.16a), but the mean NIR reflectance of the higher N treatment was 5 to 6% greater. Similarly, 
there was no significant difference between the 0N and 2N treatments (Fig. 3.16b), but there 
were faint indications of differences in the chlorophyll bands (400-460 and 610-680 nm) 
beginning to arise. The most significant difference was observed at 388 nm for the 0N/2N 
comparison. The contrast between 0N and 5N revealed a significant difference in the NIR at 756-
760 waveband, but no difference in VIS wavebands (Fig. 3.16c). The UV bands at 341 and 348 
nm were significantly different for the 0N/5N comparison, while the most likely different VIS 
bands were located around 671 nm, which is in the chl bands. All VIS bands, except for the 
green 533-556 nm waveband, reflected less for the 20N treatment compared to the 0N control, 
but there was no difference in NIR (Fig. 3.16d). The contrast between 1N and 2N treatments 
revealed significant differences only in a few NIR bands (951, 1020, 1038-40, 1046-47, 1061-62, 
1066, 1074 nm) (Fig. 3.16e). The most likely VIS bands to be different were centered about 665 
nm (p=0.17) and 487 nm (p=0.34), which are either in or adjacent to chl sensitive bands. There 
was no difference between the 1N and 5N treatment across the spectrum, except for 2 UV bands 
(332 and 348 nm, Fig. 3.16f), but the most likely different VIS band was centered about 663 nm 
(p=0.46). VIS bands for the 20N treatment reflected less than the 1N treatment (Fig. 3.16g). The 
majority of the UV bands (51 out of 70) also reflected less for the 20N treatment compared to the 
1N, but the only NIR band to exhibit a difference was 1062-66 nm (Fig. 3.16g).     
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c) 0 - 5 mg-N/L
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e) 1 - 2 mg-N/L
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i) 2 - 20 mg-N/L
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Figure 3.16. Detection of differences among pairwise contrasts of five N treatments using Bonferroni’s 
multiple comparison test in a mixed effects two-factor ANOVA (main effects of species and N) for reflectance 
measured 35 d after starting fertilization. (a) 0N – 1N contrast, (b) 0N – 2N contrast, (c) 0N – 5 N, (d) 0N – 
20N, (e) 1N – 2N, (f) 1N – 5N, (g) 1N –20N, (h) 2N – 5N, (i) 2N – 20N,  and (j) 5N – 20N.   

In general, plants supplied more N reflected less VIS, but left NIR unaffected (Fig. 3.16). A 
few NIR bands centered around 780 nm were different for the 0N/5N contrast (Fig. 3.16c) and a 
majority of NIR bands for the 2N/5N contrast were significantly affected by N (Fig. 3.16h). The 
VIS difference between the most extreme N treatments (0N and 20N, Fig. 3.16d) ranged from 2 
to 4%. VIS differences between the lowest N level (0N) and the 1N, 2N and 5N treatment levels 
were not significant, but the spectral bands found most significantly different were centered 
around 670-680 nm (Fig. 3.16b,c). 

The 1N level had no spectral bands different from either the 2N or 5N treatments (Fig. 
3.16e,f), but reflected significantly more VIS than the highest N treatment (20N) (Fig. 3.16g).    



 34

Spectral bands that exhibited significant differences between the highest N treatment (20N) 
and the next highest (5N) were in the green waveband (530-580 nm) (Fig. 3.16j). A few spectral 
bands were moderately significantly different in the RE region (718 nm) (Fig. 3.16j). 

Unexpectedly, the 10% difference in NIR reflectance (730-970 nm) between the 2N and 5N 
treatments was significant (Fig. 3.16h).   

Fig. 3.17 shows that after N fertilization the reflectance response of the species formed two 
distinct groups (Acorus+Peltandra and Phragmites+Typha). That is, Acorus had no spectral 
bands different from Peltandra (Fig. 3.17a) and Phragmites had no bands different from Typha 
(Fig. 3.17f). However, nearly all of Acorus’ spectrum exhibited more reflectance than 
Phragmites (Fig. 3.17b) and Typha (Fig. 3.17c). Peltandra’s reflectance spectrum was also less 
than that of Phragmites (Fig. 3.17d) and Typha (Fig. 3.17e), except for small wavebands 
centered about 530 nm and 700 nm. Notably the significant differences spanned the entire 
spectrum, including UV, VIS and NIR bands. 
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c) ACCA - TYSP
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d) PEVI - PHAU
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e) PEVI - TYSP
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f) PHAU - TYSP
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Figure 3.17. Significance of mean difference in spectral reflectance between species after nitrogen fertilization 
based on mixed effects two-factor ANOVA (main effects of species, nitrogen) and Bonferroni’s test with n=15 
for each species except Typha with n=14. (ACCA-Acorus, PEVI-Peltandra, TYSP-Typha, PHAU-Phragmites) 

 
Phragmites and Typha are generally considered invasive wetland plants that tend to 

dominate vegetative composition in high nutrient or disturbed marshes. Their reflectance 
patterns, which were distinctly similar (Fig. 3.17f), showed that they reflected 2.5 to 4% less VIS 
irradiance and from 10 to 15% less in the NIR than the two non-invasive wetland species 
(Acorus and Peltandra). By reflecting less solar radiation after fertilization, Phragmites and 
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Typha are exhibiting a greater ability to capture and, presumably, transform energy, which likely 
contributes greatly to their superior ability to compete against other species under high N 
availability.  
3.4 Partial Least Squares regression model of N Availability 

Fig. 3.18a shows ability of PLS regression model to predict N treatment level. Correlation 
between prediction and observation was 0.848. Fig. 3.18b compares the RMSE of prediction 
(i.e., validation) and calibration as a function of the number of latent variables (i.e., PLS-
components) included. RMSEC decreases towards 0.0, while RMSEP exhibited a local minimum 
at 12 PLS-components, which was the number of components included for the model shown in 
Fig. 3.18a.  

 
(a) 
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(b) 

Figure 3.18. Predictive vs. observed N treatment level based on PLS of difference in reflectance between 
before and after fertilization for 59 samples (1 sample was lost) using full cross validation to select 12 PLS-
components (a) and RMSE of prediction (line 2) and calibration (line 1) as a function of PLS components. 

 
4 Ancillary Project Benefits 

Our proposed research project supported the program objectives of the MWRRC by (1) 
exploring new ideas in wetland remote sensing and wetland water quality monitoring, (2) 
fostering the research of a new scientists (Tilley is an assistant professor), (3) training graduate 
and undergraduate students in the new technology and (4) exposing the public to wetland 
radiometry. Our research developed information helpful toward protecting and enhancing the 
water quality and habitat of natural marshes, especially marshes of the Chesapeake Bay 
watershed, Mid-Atlantic region and the nation.   

A benefit of developing the reflectance models was to form a solid foundation for scaling 
the radiometric technique to canopy scale applications which can eventually lead to aerial or 
satellite remote sensing specifically focused on cost-effective monitoring and assessment of 
emergent marsh N availability. Use of a hypespectral wetland radiometry for assessing elevated 
N concentrations in emergent marshes may provide a valuable tool for detecting non-point 
source (NPS) pollution.  Because the position of wetlands in the landscape is often between 
farms and rivers, wetlands frequently receive surface runoff and groundwater discharge 
containing excess nitrogen from agricultural operations.  Remote sensing would allow rapid 
screening of large areas of wetlands, potentially identifying “hot-spots” where wetlands are in a 
eutrophic state due to agricultural runoff.  Identifying these major sources of NPS, which has 
traditionally been very difficult, would allow for directed application of environmental 
management techniques to reduce nitrogen in runoff and groundwater. This capability will 
benefit society by improving science-based management of agricultural operations to reduce 
impacts on coastal resources.  Locally, this is important since agriculture has been implicated as 
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the predominant cause of eutrophication in the Chesapeake Bay (Jaworski et al. 1992; 
Chesapeake Bay Program 1995). 

By 2012 States will be required by the U.S. Environmental Protection Agency to report on 
the water quality conditions and ecological health of wetlands.  Thus, development of the 
proposed sensor technology is timely and will have a significant impact on state monitoring 
strategies and capabilities. 

MWRRC grant funds supported one Master’s graduate research assistant (GRA) and 
partially-funded one undergraduate assistant. In addition, students enrolled in our Wetlands 
Ecology (ENBE 450) and Restoration Ecology (NRMT 489F) courses were given 
demonstrations of the technology. The public was introduced to the technology at the 
University’s annual Maryland Day event in April 2005, which resulted in about 100 people 
seeing the technology. Thus, a total of about 25 college students were introduced to the 
technology. We are planning to demonstrate the radiometer system to state environmental 
managers this summer. We have received additional funding from the Washington, D.C. chapter 
of The Nature Conservancy and from the University of Maryland Agricultural Experiment 
Station.  
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