The Effects of Nitrogen Fertilization on Biosphere-Atmosphere Water and Carbon Fluxes

By

Gabriel Katul¹

Chun Ta Lai¹

Kurt Johnsen²

Chris Maier²

John Butnor²

Ram Oren¹

¹Nicholas School of the Environment and Earth Sciences, Duke University

²U.S. Forest Service Southern Research Station, Research Triangle Park

<u>Introduction – 1</u>

Several studies suggest that southern
 U.S. forests can act as a large terrestrial
 carbon sink.

• These forests are generally situated at sites with moderate to poor soil fertility (e.g. Oren et al., 2001).

Introduction – 2:

 Fertilization increases leaf area index and leaf carboxylation capacity → increase in GPP – e.g. Baldocchi et al., 2001).

FIG. 12. The relation between gross primary productivity (GPP) and plant physiological capacity using field data and a biophysical model. The index of plant physiological capacity is a function of the maximum carboxylation velocity of photosynthesis (Vcmax), leaf area index (LAI), and the fraction of absorbed visible sunlight (fpar). The Euroflux field data are reported in Valentini et al. (2000).

• Fertilization can increase respiring

biomass.

Question:

How does Nitrogen fertilization alter

CO₂ and H₂O Fluxes?

Case study

Southeast Tree Research and Education Site (SETRES) – 2.

A large-scale genotype × nutrition interaction experiment designed to quantify the effects of fertilization on C- cycling in *a managed southern pine forest* in North Carolina (operated by the *U.S. Forest Service*).

Experiment

After 6 years of fertilization at SETRES:

- Leaf Area Index Doubled $(1.5 \rightarrow 3)$.
- Maximum Leaf Carboxilation Capacity Increased by 20%.
- Respiring Biomass Increased by ~ 48%.

Approach:

Combination of:

- Short term micrometeorological measurements (e.g. eddy-correlation flux measurements collected in September-October of 2000).
- Long-term measurements: mean
 meteorological conditions, net primary
 productivity, LAI, respiratory components.
- Coupled ecophysiological, radiative and energy, hydrologic, and turbulent transport models.

CANVEG INPUT FORCING VARIABLES

Atmospheric Forcing

Multilevel Model:

Requires ecophysiological, radiative,

energy, drag, respiration-temperature

functions for wood, plant, and forest

floor.

Figure 1: Fertilization Effects on Leaf

Area Density, Light and Maximum

Catalytic Capacity of Leaves.

Figure 2: Comparison between Model

and Measurements.

Figure 3: Fertilization Effects on Land-

Surface Fluxes.

Figure 4: Fertilization Effects on

Daytime CO₂ Fluxes per LAI.

Figure 5: Fertilization Effects on Vertical Distribution of Scalar Sources and Sinks.

Figure 6: Fertilization Effects on

Ecosystem Respiration.

<u>Annual carbon balances (g C m⁻² yr⁻¹)</u>

Data in Baldocchi et al. (2001):

FIG. 12. The relation between gross primary productivity (GPP) and plant physiological capacity using field data and a biophysical model. The index of plant physiological capacity is a function of the maximum carboxylation velocity of photosynthesis (Vcmax), leaf area index (LAI), and the fraction of absorbed visible sunlight (f par). The Euroflux field data are reported in Valentini et al. (2000).

Fertilization increases V_{cmax} and LAI

Annual carbon balances (g C $m^{-2} yr^{-1}$)

Variable	Control	Fertilized
Gross Primary Productivity	-1220	-1795
Respiration Components		
(i) Forest Floor	1107	1140
(ii) Above-ground Woody	156	395
(iii) Foliar	63	133
Total Ecosystem Respiration	1326	1668
Net Ecosystem Exchange (NEE)	+106	-127
Daytime NEE	-525	-993
Nighttime Ecosystem Respiration	695	901
Woody Increment	121	403

Fertilized ~ Sink for CO_2

Unfertilized ~ Source for CO_2

CONCLUSIONS

- Increases in LAI and $V_{c \max}$ were not linearly translated to comparable increase in NEE.
- Compensatory mechanisms are likely to exist at the end of the growing season in which light transmission is reduced and temperature is high.
- On annual time scales, these compensatory effects are not sufficiently large to offset overall gains in carbon storage with fertilization.

Acknowledgements:

- Partial funding was provided from
- 1) *DOE* through *NIGEC SERC & RCIAP, and TCP*.
- 2) NSF-EAR
- 3) US Forest Service.