Preprocessing Atmospheric Precipitation Forecasts for Hydrologic Ensemble Forecasts: Research to Operations

John Schaake

(Acknowlements: D.J. Seo, Limin Wu, Julie Demargne, Rob Hartman)

DOH Workshop July 16, 2008

Discussion Topics

- ESP Forcing Requirements
- NCEP Ensemble Forecasts: Why is EPP needed?
- Ensemble Preprocessor (EPP) Goals
- Ensemble Preprocessor (EPP) Science Strategy
- EPP/GFS How to use it
- Some EPP Results What to Expect
- Present Limitations
- Future Directions

Hydrology Ensemble Forcing Requirements

- Need skillful and reliable precipitation and temperature ensemble forcing time-series for each subbasin/segment (1-day to ~ 1-year)
- Ensemble forcing must "preserve" space-time variability of precipitation and temperature forcing.
- Uncertainty in future forcing is time and space scale dependent and this must be represented in ensemble input to ESP
- Ensemble members must be "consistent" in space and time (over entire forecast space-time domain).
 - Required to assure streamflow members can properly be routed downstream
- Ensemble members input to ESP must be "equally likely"
- Need to make "best possible" use of all weather and climate forecast information

NCEP Ensemble Forecasts: Why is EPP needed?

- Atmospheric forecasts are biased
- NCEP ensemble forecasts do not account for all of the uncertainty
 - Spread is typically under-estimated
 - Events that might occur not well represented
 - Space-time structure of members not fully representative: i.e. space-time structure of future events is essentially unknown
- Ensemble spread is not properly related to differences between ensemble mean and observed values
- Atmospheric ensemble members are not equally likely they are more like sensitivity analyses to estimated uncertainty in initial conditions
- Major research is needed to adjust raw atmospheric ensemble members for hydrologic application

Ensemble Preprocessor (EPP) Goals

- Create ensemble future forcing for ESP from singlevalue atmosoheric forecasts
- Use all available forecast information from NCEP
- Predict future MAP/MAT values that are "consistent" with historical MAP/MAT values (so that forecast models "understand" the forcing)
- Maintain "skill" of raw forecasts
- Represent future uncertainty reliably
- Include "conditional uncertainty" if possible
- Allow for multi-model forecast input
- Keep it simple as possible
- Make it "good" not "perfect"

Ensemble Preprocessor (EPP) Science Strategy

- Historical forecasts and observations are used to "calibrate" EPP
- Climatology of forecasts and observations must be "consistent" with each other
- Climatology of observations must be same as used for hydrologic model calibration
- Use GFS Ensemble Mean from "Fixed Version" of GFS for now (days 1-14).
- Use RFS single-value forecasts (archive required)
- Use MOS temperature forecasts (days 1-7)
- Use CFS forecasts beyond 2wks (singlevalue/ensemble-mean)

Ensemble Preprocessor (EPP) Science Strategy (Cont'd)

- Include forecast probability distributions for many overlapping future events at different space/time scales
- Use historical space-time patterns to create ensemble members with prescribed forecast probability distributions ("Schaake Shuffle")
 - 1-6hr time steps
 - 1-day to 1-year
 - for forecast basin segments
 - for entire forecast area
- Ensemble members "preserve" all forecast probability distributions
- Hindcasts from current ENS-GFS to be produced "soon" and re-calibration of EPP to be automated.

Ensemble Preprocessor (EPP) Science Strategy (Cont'd)

- Two Step Process
 - Convert single-value forecasts of "events" to probability distributions
 - Use "Schaake Shuffle" to create ensemble members that "preserve" all forecast probability distributions

EPP/GFS – How to use it

- CHPS will "wrap around" GFS Subsystem (that already includes RFC forecasts and will soon include CFS forecasts)
 - Provide user control
 - Provide user-access to diagnostic information
- System Components have control files
 - Which forecasts to use
 - What forecast lead times
 - Defines forecast "events"
- Apps default directory structure (initially)
- Calibration, Forecast/Hindcast and Diagnostic Components

National Weather Service Hydrologic Ensemble Pre-Processor (EPP) GFS Subsystem

J. Schaake, R. Hartman, J. Demargne, L. Wu, M. Mullusky, E. Welles, H. Herr, D. J. Seo, and P. Restrepo

Discussion Topics

- Hydrology Ensemble Forcing Requirements
- NCEP Ensemble Forecasts: Why is EPP needed?
- Ensemble Preprocessor (EPP) Goals
- Ensemble Preprocessor (EPP) Strategy
- EPP/GFS How to use it
- Some EPP Results What to Expect

- Present Limitations
- Future Directions

Some Present Limitations

- Atmospheric ensemble forecasts do not reliably account for uncertainty – This is our biggest problem!
- Ensemble reforecasts from <u>fixed forecast model</u> are required
- RFC short range forecasts have been archived only for last few years
- GFS re-forecasts are for "old" version of GFS
- SREF forecasts are not used
- Multi-model options are needed
- Automatic options to control use of RFC/GFS and CFS forecasts are needed
- CFS GFS forecast information gap (weeks 3 6)
- Cannot make ESP hindcasts for monthly probability shifts (no archive)
- Seasonal probability shift archive begins only in 1995 (not long enough)
- Flow-dependent/Regime-dependent uncertainty is needed
 - Objective Flow/Regime classification procedures are needed
 - State of climate system conditioning

Future Directions

- Gridded Ensemble Pre-Processor
 - Joint effort with NCEP, HEPEX, THORPEX
 - National "coarse" space-time grid operated at NCEP
 - Local (RFC/WFO) "fine" grid and basin applications
- Integrate RFC, HPC, SREF, GFS, CPC and other forecasts into multi-model EPP functionality
- Quantify requirements for weather and climate hindcasts (e.g. Simulation Experiments)
- Improve ability to make hydrologic hindcasts using weather and climate forecasts without "long" archives – a contribution to THORPEX/TIGGE

Thank You

Hydrology is Sensitive to Precipitation Variability: Spatial Scale Dependency Example

- Total runoff from 64x64 4km grid domain
- Several years of Stage III, 1-hr, QPE
- 7 Area Segmentations:
 1,2,4,6,16,32,64 pixels
- Same model/parameters used for each segmentation
- Graph shows different runoff totals vs size of area segment
- Some models more scale dependent than others
- Scale dependency is a result of non-linearity

THEREFORE: Space/Time Variability of Ensemble Forcing Will Have a Primary Effect on Hydrologic Ensemble Response

Return

Temporal Scale Dependency of Precipitation Forecasts

Correlation Coefficient GFS Precipitation Forecast vs Observation North Fork American River

Forecast
Uncertainty
Depends
on both
Lead-Time
and
AggregationTime

Return

GFS Precipitation Forecast Verification North Fork American River

CREC1 – Forecasts and Simulations

