Department of Energy Transportation Fuel Cell Program

National Laboratory R&D Meeting JoAnn Milliken

Pacific Northwest National Laboratory June 7-8, 2000

Office of Advanced Automotive Technologies Management Team for Fuel Cell R&D

Steve Chalk	Team Leader: Energy Conversion Technologies (Fuel Cells, CIDI Emission Control, Fuels, Materials, CARAT, GATE)
Patrick Davis	Program Manager: Fuel Cell Systems R&D, Fuel Processing R&D, Automotive Propulsion Materials
Donna Ho	Program Manager: Fuel Cell Systems R&D, Cooperative Automotive Research for Advanced Technologies (CARAT)
JoAnn Milliken	Program Manager: National Lab R&D, Fuel Cell Components R&D, Graduate Automotive Technology Education (GATE)
Pete Devlin	Program Manager: Fuels for Fuel Cells (and Diesel Vehicle Emission Control-Fuel Effects)
Larry Blair	Program Manager, detailed from Los Alamos National Laboratory
Nancy Garland	Program Manager, detailed from Naval Research Laboratory

Outline

- Partnership for a New Generation of Vehicles
- Transportation Fuel Cell Program
 - Program Goal/Fuel Strategy
 - Program Status
 - Major Technical Challenges
 - R&D Activities
- Meeting Objectives
- Advisory Panel/Evaluation Criteria
- Future Directions

Partnership for a New Generation of Vehicles

DOE Goals for Transportation Fuel Cells

DOE Fuel Cell Program Objective

By 2004, develop and validate fuel-flexible fuel cell power system technologies that are:

- cost-competitive with internal combustion engines, and
- equivalent in performance, range, safety, and reliability

Simultaneously pursue parallel strategies

On-Board: <u>Fuel flexible</u> fuel processor (current fuel infrastructure)

Primary Focus: Advanced petroleum-based fuel

Off Board: Hydrogen generation (new fuel infrastructure leading to renewable, sustainable energy)

- \rightarrow On-board H₂ storage
- Off-board H₂ generation and refueling systems

CY 2000 Hardware Deliverables

Two 50 kW Stack Systems Honeywell Engines and Systems Energy Partners

EP 50 kW_{net} Automotive System

Two 50 kW Integrated Systems Plug Power (pressurized) International Fuel Cells (ambient)

Progress achieved to be measured against PNGV Year 2000 Targets

IFC Conceptual 50 kW Powerplant

Fuel-Flexible Fuel Processors under Development

HBT

ANL

McDermott

Status vs Technical Targets 50-kW Gasoline-Fueled Fuel Cell System

Status

Key Technical Challenges

Thermal/Air/Water Management

- heat rejection
- compressor size, weight, turndown

Efficiency

- higher cell voltage
- cathode activity
- fuel processor start-up
- compressor parasitic power

On-Board Fuel Processing

- size/weight
- start-up/transients
- catalyst durability
- fuel issues
- CO clean-up

Cost

precious metal loading

PEMFCs

- WGS catalyst activity
- high-volume fabrication

R&D Activities

R&D Activities

R&D Activities are Focused on PNGV Technical Targets	
	2004 Technical Targets
System Analysis	48% efficiency 300 W/I, 300 W/kg
Fuel Processing • Autothermal Reforming • Fuel Composition Effects • CO Clean-Up Technology • Alternative Shift Catalysts • Sulfur Removal • Microchannel Fuel Processing	80% efficiency 750 W/I, 750 W/kg <0.5 min start-up 10 ppm CO, 0 sulfur >5000 hr life \$10/kW
Stack Subsystem • Optimized Electrodes • New Alloy Electrocatalysts • Direct-Methanol Fuel Cells • Composite Bipolar Plates • Efficient Fuel Cell System	\$10/kW \$10/kW

0

R&D Activities Are Focused on PNGV Technical Targets

Posters

- Hollow Fiber Fuel Cells (LANL)
- MEA Characterization (ORNL)
- MEA Backing Layers (ORNL)
- Bipolar Plate Surface Modification (ORNL)
- Nanofluids for Thermal Management (ANL)
- Coatings for Air Compressors (ORNL)

2004 Stack Subsystem Technical Targets

100 ppm CO tol. 0.2 g/kW Pt 60% efficiency >5000 hr life \$40/kW 500 W/I, 500 W/kg

Non-Lab Posters

High Temperature Membranes (Cape Cod Research) DMFC Membranes (Penn State University)

Laboratories Work Closely With Industry

Fuel Processing LANL - Epyx, HBT LANL - McDermott LANL - Energy Partners ANL - Plug Power, UCI

> Stack Components LANL - Plug Power ORNL - Plug Power LBNL - E-TEK LANL - Motorola

System Modeling ANL - Plug Power, International Fuel Cells, Energy Partners, Honeywell

R&D Activities

Meeting Objectives

Meeting Objectives

- Review progress/plans
- Foster industry/laboratory interactions, technology transfer
- Enhance National laboratory
 interactions
- Guide R&D priorities

1999 Merit Review of National Lab R&D

Project Title	Comments	Action
On-Board Hydrogen Generation	Objectives not clear; focus should be redefined	reduced; focus redefined via workshop
Electrocatalysts using Rapid Throughput Approach	Brute force approach; looking for a home run without basic understanding	Terminated; cathode projects focused on more scientific approaches

Additional Program Information: www.ott.doe.gov/oaat

1999 ANNUAL PROGRESS REPORT ENERGY CONVERSION TEAM

> U.S. Department of Energy Energy Efficiency and Renewable Energy

> > Office of Transportation Technologies Office of Advanced Autometive Technologies

FUEL CELLS FOR TRANSPORTATION

ADVANCED PETROLEUM-BASED AND ALTERNATIVE FUELS

999 ANNUAL PROGRESS REPOR ENERGY CONVERSION TEAM

U.S. Department of Energy

Additional Information

Status vs Technical Targets 50-kW Reformate Fuel Cell Stack SubSystem

Status vs Technical Targets 50-kW Gasoline Fuel Processor

Status

Current Cost Projected to High Volume

Based on Current Performance of Gasoline-Powered Fuel Cell System

