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ABSTRACT
Motivation: Proteome-wide prediction of protein–protein
interaction is a difficult and important problem in biology.
Although there have been recent advances in both
experimental and computational methods for predicting
protein–protein interactions, we are only beginning to see
a confluence of these techniques. In this paper, we
describe a very general, high- throughput method for
predicting protein–protein interactions. Our method com-
bines a sequence-based description of proteins with exper-
imental information that can be gathered from any type of
protein–protein interaction screen. The method uses a novel
description of interacting proteins by extending the signature
descriptor, which has demonstrated success in predicting pep-
tide/protein binding interactions for individual proteins. This
descriptor is extended to protein pairs by taking signature
products. The signature product is implemented within a
support vector machine classifier as a kernel function.
Results: We have applied our method to publicly available
yeast, Helicobacter pylori, human and mouse datasets. We
used the yeast and H.pylori datasets to verify the predict-
ive ability of our method, achieving from 70 to 80% accuracy
rates using 10-fold cross-validation. We used the human and
mouse datasets to demonstrate that our method is capable of
cross-species prediction. Finally, we reused the yeast dataset
to explore the ability of our algorithm to predict domains.
Contact: smartin@sandia.gov.

INTRODUCTION
Protein–protein interactions are of interest in biology because
they regulate a variety of cellular processes, includ-
ing metabolic cycles, DNA transcription and replication,
different signaling cascades and many additional pro-
cesses. The importance of understanding these interactions
has prompted the development of various experimental
methods for measuring protein–protein interaction. These
methods include two-hybrid systems (Fields and Song, 1989),
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mass spectrometry (Ho et al., 2002) and protein chips (Zhu
et al., 2001). Of these methods, the two-hybrid method is
mature enough to have been used to obtain full protein inter-
action networks for Saccharomyces cerevisiae (Ito et al., 2000;
Uetz et al., 2000) and Helicobacter pylori (Rain et al., 2001).

At the same time, computational techniques have been
developed to determine protein–protein interactions based
on genomic sequence analysis. These techniques generally
employ algorithms to search sequence information for patterns
that might be expected to occur based on a priori biological
knowledge. Different algorithms search for the conservation
of gene neighborhoods and gene order (Dandekar et al., 1998),
the occurrence of fused genes (Enright et al., 1999; Marcotte
et al., 1999), the coevolution of interacting proteins (Pazos
et al., 1997) and similarity of phylogentic trees (Goh et al.,
2000; Pazos and Valencia, 2001). A good overview of these
and other approaches can be found in Valencia and Pazos
(2002).

An alternative approach is to use experimental data rather
than a priori expectations to guide the discovery of inherent
patterns in the sequence data. Both Sprinzak and Margalit
(2001) and Bock and Gough (2001, 2003) use this approach.
Finally, the approach in Jansen et al. (2003) attempts to com-
bine both experimental and a priori knowledge when making
predictions.

The method in Sprinzak and Margalit (2001) character-
izes proteins using known InterPro structural domains, and
then uses experimental binding data to identify structural
domain pairings correlated with protein–protein binding.
This approach uses the inherent assumption that all binding
interactions occur within these well-defined domain–domain
interactions. Bock and Gough (2001, 2003) take a more gen-
eral approach by creating protein structural and physiochem-
ical descriptors based on the primary sequence information,
and then training a support vector machine (SVM) learning
system to identify protein–protein binding interactions from
these descriptors.

Although independent, our approach combines positives
from both Bock and Gough (2001) and Sprinzak and Margalit
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(2001) while achieving similar or better performance. In
particular, we introduce a novel and even more general
descriptor called signature product, which is a product of
subsequences and an expansion of the signature descriptor
from chemical informatics. The fact that we use a product
descriptor gives us the advantages of the method in Sprin-
zak and Margalit (2001) while the fact that we use primary
sequence gives us the advantages of Bock and Gough (2001).
Our simple and easy to calculate descriptor performs well, is
symmetric, depends only on combinations of local sequence
information and can handle large datasets. We have tested our
algorithm using yeast, human, mouse, H.pylori and Escheri-
chia coli datasets available over the Internet. We obtained the
yeast data from Tong et al. (2002); Sprinzak and Margalit
(2001), Jansen et al. (2003) and the Database of Interacting
Proteins (DIP) (Xenarios et al., 2002); the human, mouse and
E.coli data came from the DIP; and the H.pylori data came
from Rain et al. (2001). Using these same datasets we bench-
mark our algorithm and provide comparisons with the works
of Sprinzak and Margalit (2001); Bock and Gough (2001,
2003) and Jansen et al. (2003).

SYSTEMS AND METHODS
Support vector machines
SVMs are classifiers [there are also SVMs that perform
regression (Smola and Schölkopf, 1998)] that are described
thoroughly by their inventor (Vapnik, 1998). SVMs are very
adaptable and have been applied successfully to a wide vari-
ety of problems. Recently, there has been interest in the
application of SVMs to biological problems such as classi-
fication of gene expression data [e.g. Furey et al. (2000)],
homology detection (Leslie et al., 2002) and prediction of
protein–protein interaction (Bock and Gough, 2001), as well
as many additional problems. For an introduction to SVMs,
see Burges (1998) and Cristianini and Shawe-Taylor (2000).

To describe an SVM precisely, suppose our data are given
as pairs {(xi , yi)} ⊂ R

n × {±1}. In other words, suppose our
data consist of two classes (1 and −1—in our case, bind-
ing and nonbinding protein pairs). Using this notation an
SVM assumes the form f (x) = ∑

i αiyik(xi , x) + b, where
f : R

n → R is a decision function (x belongs to class 1 if
f (x) is greater than some threshold t , or to class −1 other-
wise), k: R

n ×R
n → R is a kernel function, otherwise known

as a dot product in some vector space, and the constants b and
αi are obtained by solving a quadratic programming problem
for details (see Burges, 1998). The threshold t is typically 0,
although it may be varied to obtain classifiers that are more
or less accurate on positive predictions.

SVMs have several advantages over other classifiers
although we do not discuss them here. Instead, we refer to
Vapnik (1998) and Bennett and Campbell (2000), among
others. To implement the SVMs in this, we used the SVMlight

algorithm (Joachims, 1999) with a custom kernel based on
signature (discussed in the next section).

Signature
One of the main computational challenges in using SVMs (or
any method) for the prediction of protein–protein interactions
is a suitable encoding of the protein information in some vec-
tor space. In our case, we have the problem of representing
variable length amino acid sequences as vectors containing
the information necessary to distinguish between binding and
non-binding protein–protein pairs.

Our solution to this problem is to use the signature molecu-
lar descriptor (Visco et al., 2002; Faulon et al., 2003a,b;
Churchwell et al., 2004).

We use a specific instance (height 1) of the more gen-
eral model and formulate signature as a function s : {variable
length amino acid sequences} → F defined by s(A) =∑

i σizi , where A is an amino acid sequence, zi is a basis
vector in the signature space F ∼= R

N and σi is the number
of occurrences of zi in A. A signature consists of an amino
acid and its neighbors, and the signature space consists of all
possible signatures.

As an example, consider the six-letter amino acid sequence
LVMTTM. All height 1 signatures are based on trimers and
there are four trimers in this sequences: LVM, VMT, MTT
and TTM. Each signature consists of a root (the middle let-
ter) and its two neighbors, ordered alphabetically. Thus, the
signatures corresponding to the four trimers are V (LM),
M(T V ), T (MT ) and T (MT ), so that s(LV MT T M) =
V (LM) + M(T V ) + 2T (MT ). Notice that MT T and T T M

generate the same signature (due to symmetry) and therefore
contribute two occurrences to the sum s(A) = ∑

σizi .
We should note that this is actually a very simple usage

of signature, and that signature can be extended to handle
longer subsequences (height 2, 3, . . .), as well as non-linear
sequences. In fact, signature was originally developed to
describe molecules in cheminformatics. Recently, however,
signature has also been used successfully in applications
to HIV protease-1 peptide prediction (Faulon et al., 2003a)
and inverse design of LFA-1/ICAM-1 peptides (Churchwell
et al., 2004). Signature has the following advantages over
other descriptors (Visco et al., 2002; Faulon et al., 2003b):
(1) signature has been shown to be competitive with other
descriptors (e.g. Molconn-Z) in terms of deriving quantit-
ative structure–activity relationships and predicting various
properties; (2) signature is canonical in the sense that it
can often be used to derive other descriptors (in the case of
amino acid sequences we note that descriptors such as hydro-
phobicity [used in Bock and Gough (2001)] are encompassed
using signature with a smaller alphabet; (3) signature encodes
information about structure as well as sequence by keeping
track of neighborhoods. Thus, signature is information rich,
and, in particular, enables the solution of inverse problems.
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Signature has been a useful descriptor in the past, and has
the important practical advantage for us in that it provides a
vector representation of an amino acid sequence. We exploit
this fact to develop a signature-based SVM for use in the
prediction of protein–protein interaction.

Signature kernel
As mentioned previously, signature can be used to obtain vec-
tor representations of variable length amino acid sequences.
This is, of course, the minimum requirement for the applic-
ation of an SVM to our problem. It is more computationally
efficient, however, if we use the fact that SVMs do not
actually require the storage/use of these very long sparse vec-
tors. They only require dot products between the vectors.
Since this dot product is the composition of the standard
Euclidean dot product with the signature function, we call
it the signature kernel. The signature kernel is given as
k : {variable length amino acid sequences}2 → R, where
k(A, B) = s(A) · (B).

Here, we note that our kernel is very similar to the string
kernels in Leslie et al. (2002). For us, the only real difference
is that we use a symmetric formulation, while Leslie et al.
(2002) do not, primarily due to problem domain. In fact, the
string kernels in Leslie et al. (2002) could potentially improve
the performance of our algorithm, as these kernels allow com-
parisons of sequences with mismatches. On the other hand,
mismatches in subsequences of length 3 would be of nebulous
value, and while we could have used longer subsequences,
we did not find this to be necessary. In fact, we did some
experiments (on the H.pylori data) where we tried longer sub-
sequences: we found that these subsequences did not provide
any improvement in performance and therefore discontinued
their use. In the end, we focused more on the product signa-
ture formulation (discussed in the next section), and chose to
use our simpler string kernel based on signature.

The signature kernel elegantly combines signature with
SVMs and thus inherits all of the advantages of the two meth-
ods. Most importantly, the SVMs allow the use of a very
large number of signatures (up to 100 k in the applications we
consider later). This would be unfeasible with other methods
[e.g. multilinear regression, as used previously in Visco et al.
(2002); Faulon et al. (2003a,b); Churchwell et al. (2004)].

Product signature
The signature kernel SVM, as presented above, will only work
with data points that consist of a single amino acid sequence.
This is a problem since our data points are, in fact, pairs
(protein–protein pairs) of amino acid sequences. In order to
overcome this difficulty, we must define signature for pairs of
amino acid sequences, and we must also provide a kernel that
gives the inner product between two protein–protein pairs.

To define signature for protein–protein pairs, we use the
notion of a tensor product between vectors (can be found in
many standard texts on linear algebra). For our purposes, we

define the tensor product between a = (a1, . . . , an)
T ∈ R

n

and b = (b1, . . . , bn)
T ∈ R

m to be a ⊗ b = (a1b1,
a1b2, . . . , a1bm, a2b1, . . . , anbm)T ∈ R

nm, and we observe
that the entries in a ⊗ b are the same as the entries con-
tained in the outer product abT. Using this definition, the
signature for pairs, or the signature product, s ⊗ s :
{amino acid sequences}2 → F ⊗ F ∼= R

N 2
, is taken to be

s ⊗ s(A, B) − s(A) ⊗ s(B).
Using this definition of signature product, we can now

apply an SVM to our problem by specifying a kernel
k̃ : (F ⊗ F) × (F ⊗ F) → R that gives a dot product in
the signature product space. We, of course, use the standard
Euclidean inner product so that the signature product kernel is
defined by k̃((A, B), (C, D)) = (s(A)⊗s(B)) ·(s(C)⊗(D)).

We are now in a position to apply an SVM to the problem
of predicting protein–protein interaction. Computationally,
however, there is one final obstacle to overcome. Specifically,
the use of the signature product effectively squares the com-
plexity of the calculation. This is easily seen when we observe
that F ∼= R

N so that F ⊗ F ∼= R
N 2

. In reality, the complex-
ity does not increase according to N but rather according to
the lengths of the amino acid sequences involved. Neverthe-
less, the computational complexity is squared, and this causes
a problem that must be addressed if we are to process large
datasets.

Fortunately, there is a simple way to fix this problem. If
we write (for clarity) a = s(A), b = s(B), c = s(C) and
d = s(D), then we can see that

k̃((A, B), (C, D)) = (s(A) ⊗ s(B)) · (s(C) ⊗ s(D))

= trace ((abT)(cdT)T)

= trace (abTdcT)

= (bTd)trace(acT)

= (bTd)(aTc)

= k(A, C)k(B, D), (1)

where trace(X) is the sum of the diagonal elements of a square
matrix X, and k is the signature kernel.

Equation (1) shows that in order to compute the signature
product kernel of two protein–protein pairs, we need only
to compute the signature kernel between combinations of
the individual proteins. Thus, we have removed the squared
computational complexity.

Symmetric signature product
We can obtain an additional improvement in the signature
product by enforcing symmetry in the protein–protein order.
In other words, we can make a protein pair (A, B) equivalent to
protein pair (B, A). This symmetry is easily achieved by defin-
ing the symmetric signature product�(A, B) = s(A)⊗s(B)+
s(V ) ⊗ s(A). The associated symmetric signature product
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kernel is then γ ((A, B), (C.D)) = 2(k(A, C)k(B, D) +
k(A, D)k(B, C)).

Normalized signature product
Next, we can use a normalized dot product to compensate
for potential differences in the length of the amino acid
sequences involved in our calculations. In particular, a nor-
malized version of the signature kernel can be implemented
as k(A, B)/

√
(k(A, A)k(B, B)). This kernel extends directly

to the signature product kernel and is only slightly more
complicated in the case of the symmetric signature product.

Other adjustments
As mentioned previously, SVMs are very flexible and
we found that we could occasionally achieve minor (2%)
improvements in performance by adjusting kernels or using
preprocessing techniques. In particular, we found that pre-
processing by removal of signatures occurring only once in
the dataset occasionally resulted in better performance. This
improvement was used in the case of the yeast SH3 data.

We also found that using a Gaussian kernel in combination
with the product signature kernel could result in better per-
formance. In particular, we used the kernel exp[−γ (k̃(A, A)−
2k̃(A, B) + k̃(B, B))], where k̃ is the product signature as
described previously, and γ was chosen to be 0.5. This kernel
was used in the case of the full yeast proteome.

IMPLEMENTATION
We tested our algorithm on publicly available S.cervisiae
(Tong et al., 2002; Sprinzak and Margalit, 2001; Jansen et al.,
2003; Xenarios et al., 2002), H.pylori (Rain et al., 2001),
human (Xenarios et al., 2002), mouse (Xenarios et al., 2002)
and E.coli (Xenarios et al., 2002) datasets.

Yeast SH3 domains
We first tested our algorithm on the dataset in Tong et al.
(2002). These data consist of 20 yeast SH3 domains and vari-
ous associated ligands determined through phage display to
bind (or not bind) to the 20 domains, resulting in a dataset
of 709 domain–ligand pairs. These domain–ligand pairs were
processed via the computation of different position-specific
scoring matrices (PSSMs) to produce an interaction predic-
tion. To compute the PSSMs, we followed the procedure
described in Tong et al. (2002), resulting in one PSSM per
domain.

We used the SH3 domain dataset to assess the usefulness
of our technique from two perspectives. First, we wanted to
compare predictions obtained using the product signature with
predictions obtained without the product signature. We made
these comparisons using ligand signatures only (domains were
considered fixed) versus domain–ligand product signatures.
Second, we wanted to compare our method with the PSSM
method. The PSSM method considers only one domain at a
time and so is not a product method.

Table 1. Comparison of methods

Acc. Prec. Sens.

Yeast SH3
Ligand-only 73.7 75.5 63.1
Product 80.7 81.4 75.2
PSSM 75.4 68.8 81.3

Full yeast
Product 69.0 71.5 63.2
InterPro 70.8 86.5 49.2
Sprinzak 68.8 79.8 50.0

H.pylori
Product 83.4 85.7 79.9
Bock and Gough 75.8 80.2 69.8

E.coli and H.pylori
Product 56.1 17.4 76.7

Human
Product 70.3 72.2 66.2

Mouse and human
Product 74.3 68.6 77.4

Here, we compare the product signature method and its alternatives using yeast, H.pylori,
human and mouse datasets. Ligand-only refers to using signature but without using the
product method; PSSM is the method used in Tong et al. (2002); InterPro uses our
method but with InterPro (Apweiler et al., 2001) entries instead of our sequence- based
signatures; Sprinzak refers to the method in (Sprinzak and Margalit, 2001), which also
used the InterPro entries; Jansen uses the method in Jansen et al. (2003); and Bock and
Gough refers to the reported results in Bock and Gough (2003) on H.pylori.

The results of our analysis are shown in Table 1. In this
table, we compare the product signature to the ligand-only
signature, as well as to the PSSM method. We used 10-fold
cross-validation and calculated accuracy, precision and sens-
itivity. To be precise, we first divided the dataset (at random)
into 10 equally sized subsets. We used each subset in turn as
a test set, while we trained our method on the union of the
remaining 9 subsets. We evaluated the performance of our
classifier by computing accuracy (TP + TN)/(TP + FP +
TN + FN), precision TP/(TP + FP) and sensitivity TP/(TP +
FN), where TP, TN, FP and FN are true and false positive
and negative predictions. The values reported in Table 1 are
the average values of the accuracy, precision and sensitivities
averaged over the 10 test sets.

We note that the results of these comparisons may reveal
more than simply which method performs better. In fact,
we provided the comparison of the product method and the
ligand-only method to investigate a particular hypothesis.
Specifically, we know that because domains are ignored, the
ligand-only method learns the tendency of a given ligand to
bind. Therefore, the fact that the product method performs
better than the ligand-only method suggests that the product
method is learning something beyond just the tendency of a
given ligand to bind. This was, in fact, one of the original
motivations for developing the product method.

In addition to observations about specific classifiers, the
accuracy, precision and sensitivity are useful for measuring the
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behavior of a classifier in general. In particular, the accuracy
gives the overall performance of a classifier, the precision
gives the percentage of positive predictions that are actually
positive and the sensitivity gives the percentage of actual pos-
itives that are predicted (note that TP/(FP + FN) = TP/P,
where P is the total number of positives).

By looking at the precision and sensitivity statistics, we can
determine if a classifier will identify positives correctly. If
a classifier has a high precision and a low sensitivity, then
it is likely to be correct when it makes a positive predic-
tion, although it will make many false negative predictions.
Conversely, a classifier with a low precision and a high sens-
itivity is likely to identify most true positives, even though
many of its predictions will be false. In some sense, the
first classifier is too conservative while the second is too
optimistic.

Full yeast proteome
We next tested our algorithm by generalizing to the entire
yeast proteome. In addition to testing our method on a larger,
more heterogeneous dataset, the yeast proteome allowed us to
compare our work with the work already done in Sprinzak and
Margalit (2001). In particular, we first reproduced their work
using the current InterPro database (as of December 2003),
and the Swiss-Prot database (Boeckmann et al., 2003) for
sequence information. Since the InterPro database has grown,
we found more InterPro entries than previously reported in
Sprinzak and Margalit (2001). From the 2908 protein pairs
originally used, we obtained 2082 pairs describable using
the InterPro entries (up from 1274), altogether using 1220
InterPro entries (up from 434). We checked our work by con-
firming the presence of many of the significant InterPro entry
pairs reported in Sprinzak and Margalit (2001), as well as by
obtaining a high sensitivity when using the protein pair subsets
they describe.

Next, we tested both our method and the method in Sprinzak
and Margalit (2001). As in the yeast SH3 dataset, we used
10-fold cross-validation to assess the methods. In contrast
to the yeast SH3 dataset, noninteracting protein pairs were
missing. As in Bock and Gough (2003), we had to assume
that the pairs not specified explicitly as interacting were non-
interacting. From these non-interacting pairs, we selected at
random a set of negative examples (in fact, we selected a
variety of random sets but always arrived at similar results).
We started with 2082 interacting protein pairs and added 2082
noninteracting pairs, arriving at a dataset with 4164 protein
pairs.

With this dataset, we tried our standard signature product
method (using the Gaussian kernel as described in the Sys-
tems and methods section); our method using the InterPro
entries instead of our sequence-based signatures; and the
method in Sprinzak and Margalit (2001). These methods
are shown in Table 1 as Product, InterPro and Sprinzak,
respectively.

Yeast gold standard
Having achieved reasonably good results on our first two
benchmarks, we decided to attempt a comparison with the
work done in Jansen et al. (2003). Although the approach in
Jansen et al. (2003) is not directly related to our method, it is
another computational method for predicting protein–protein
interactions.

In addition, the algorithm in Jansen et al. (2003) is bench-
marked against a well-designed yeast gold-standard dataset.
This dataset consists of 8250 positive interactions obtained
from the MIPS database (Mewes et al., 2002), and 2 708 746
negative interactions. The negative interactions were gener-
ated from lists of proteins in separate subcellular compart-
ments (Kumar et al., 2002). In our computations, we were
forced to use a slightly smaller version of the gold-standard
dataset. In particular, we obtained sequence information from
Swiss-Prot for only 4596 of the ∼7500 proteins used in Jansen
et al. (2003). This left us with 7714 positive interactions and
1 805 675 negative interactions. Our comparisons are based
on this modified gold-standard dataset.

In Jansen et al. (2003), the gold-standard dataset was
used with 7-fold cross-validation to benchmark a Bayesian
network approach to protein–protein interaction prediction.
This approach is capable of combining multiple sources of
information (such as different experiments and/or de novo
calculations) into the predictions. In particular, Jansen et al.
(2003) combine experimental and de novo computations to
produce proteome-wide predictions of probable yeast inter-
actions. These predictions are denoted as PIT (Probabilistic
Interactome Total) and are derived by combining the exper-
imentally based predictions (PIE) and the computationally
based predictions (PIP).

In Jansen et al. (2003), the PIE, PIP and PIT are com-
pared using sensitivity and the ratio TP/FP (similar to pre-
cision). In particular, a confidence value Lcut is varied and
the resulting sensitivities and TP/FP ratios are compared.
Lcut essentially quantifies the certainity of algorithm about
a given protein–protein interaction prediction being correct.
By requiring a large value for Lcut, it is observed [Fig. 2C
of Jansen et al. (2003)] that there is a decrease in sensitivity
but an increase in the TP/FP ratio. This agrees with our pre-
vious remarks concerning sensitivity and precision. Namely,
increasing Lcut makes the classifier more conservative and
correspondingly more accurate on positive predictions.

Mainly to compare with Jansen et al. (2003), but also to
verify that our method achieves greater accuracy when restric-
ted to higher confidence positive predictions, we applied
our method to the gold-standard dataset, again using 10-fold
cross-validation. In the case of SVMs, the Lcut parameter has
an analog in the threshold t described when we introduced the
SVM (Systems and methods section). By increasing t , where
the classifier f (x) makes positive predictions when f (x) > t ,
we can keep only high confidence predictions.
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Fig. 1. Sensitivity versus precision. Here, we examine the trade-off
between sensitivity and precision using our method and that Jansen
et al. (2003). Both these methods can achieve good trade-offs, as
indicated by the points in the upper left of the plot.

A comparison of our method with that of Jansen et al. (2003)
can be seen in Figure 1. In the case of our method, the curve in
Figure 1 was produced using 10-fold cross-validation on the
gold-standard dataset while varying t in increments of 0.1.
Since SVMs perform best when using balanced training sets,
we did not use every negative training example during our
cross-validation. To be precise, we did the following for each
training/test set combination. In the training set, we selected
at random a subset of the negative training examples equal in
size to the set of positive training examples. We then trained
our classifier using this subset of the training set and finally
predicted every example (both positive and negative) in cor-
responding test set. The precision and sensitivity were again
calculated by averaging the results over the 10 test sets.

In the case of Jansen et al. (2003), we avoided reimplement-
ing their method by using the PIE, PIP and PIT predictions
downloaded from their web page. Using these predictions,
we recomputed the precision and sensitivity measures by
varying Lcut parameter by increments of 20. We did not use
Figure 2C in Jansen et al. (2003) directly because we had pre-
viously restricted the gold-standard dataset based on the use
of proteins with sequence information, and because we have
consistently used precision instead of TP/FP in our work.

Helicobacter pylori
We next tested our algorithm with another proteome-wide
experiment using two-hybrid measurements of H.pylori pro-
duced in Rain et al. (2001). This dataset allowed us to examine
an organism besides yeast and gave a comparison of our
method with the method of Bock and Gough (2001, 2003).
We again used 10-fold cross-validation to assess our method,
and we also assumed that the pairs not specified explicitly as
interacting where non-interacting. From these non-interacting

pairs, we selected at random a set of negative examples so that
altogether we used 1458 positives and 1458 negatives for a
total of 2916 protein pairs. The results of the cross-validation
study are shown in Table 1.

Human to mouse and H.pylori to E.coli
Finally, we tested the ability of our method to predict protein–
protein interactions in one species using interactions from
a different species. In particular, we used human protein–
protein interactions archived in the DIP (Xenarios et al., 2002)
to predict mouse interactions, also archived in the DIP data-
base. There were 941 human and 239 mouse interactions in
the database. Our results are shown in Table 1.

One caveat concerning this example is the fact that human
and mouse protein–protein interactions are very closely
related. In fact, we found that 50% of the proteins in the
mouse dataset were also present in the human dataset, and
that 40% of the interactions in the mouse dataset were present
in the human dataset. Another caveat is that these datasets
were not obtained by high-throughput proteome-wide meth-
ods and were small in comparison with the data in Rain et al.
(2001).

Without such a close relation between species, our method
may not work as well. In fact, when we tried to predict E.coli
from H.pylori (E.coli is also available from the DIP database),
we had very limited success, as can be seen by the poor results
reported in Table 1.

DISCUSSION
Our method is most similar to the methods of Bock and Gough
(2001) and Sprinzak and Margalit (2001). Both our method
and that Bock and Gough (2001) use SVMs, sequence inform-
ation and experimental data to predict protein–protein inform-
ation. However, while (Bock and Gough, 2001) transform
sequence information into physico- chemical information
(charge, hydrophobicity and surface tension), the signature
descriptor does not require us to perform such a transform-
ation. Furthermore, Bock and Gough (2001) encode and
compare protein pairs by concatenating normalized versions
of the amino acid sequences of each protein, and hence use a
global representation of a protein pair. Although local inform-
ation can be encoded implicitly in Bock and Gough (2001) (by
using a non-linear kernel, such as a polynomial kernel), our
method uses explicit pair- oriented, local sequence informa-
tion (product signature). In other words, we are looking for
amino acid subsequence pairs, which occur together when two
proteins interact.

Our use of subsequence pairs is similar to the correl-
ated InterPro entry pairs described in Sprinzak and Margalit
(2001). However, instead of using InterPro entries (Apweiler
et al., 2001), we use an automatic method for generating signa-
tures, which depends only on sequence information. Finally,
our method has the advantage of using a principled method
(SVMs) to obtain our final classifier.
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Table 2. Top 10 predicted binding pairs

Swiss-Prot ID Swiss-Prot ID Prediction

P27895 P27895 2.36
P27895 P36022 1.95
P22579 Q00916 1.61
P00546 Q02821 1.56
P40064 Q00916 1.53
P50875 P19659 1.48
P19659 P09547 1.46
Q06142 Q02821 1.44
Q06245 P19524 1.41
Q00916 P08964 1.41

Top 10 yeast protein pairs predicted to bind using the signature product method.

To further establish the relationship between our technique
and the InterPro domain method in Sprinzak and Margalit
(2001), we explored the potential of our method for predicting
domains. For this exercise, we returned to the full yeast data-
set, where we selected the top 10 pairs predicted by our method
to interact (Table 2). Using the 14 proteins present in these
pairs, we constructed domain-sized amino acid subsequences
by sliding a window across each of the protein sequences.
Our window was of size 50, and we moved the window in
increments of 10 amino acid residues. Using this method, we
obtained 1681 subsequences, each 50 amino acids long.

From the model obtained using the full yeast dataset, we
predicted which pairs of these subsequences would interact.
By examining the positions of these interacting subsequences
within the full protein sequences we could make domain
predictions as shown in Figure 2.

In Figure 2, we examine the domain predictions for P09547
and P50875. In particular, Figure 2a shows that the region
between 300 and 400 is more likely to bind with the other
regions (windows) among the 14 proteins examined. We
hypothesize that this is a domain. Figure 2b shows that this
domain binds with itself and, therefore, that P09547 binds
with itself. This is only a prediction, but when we examine
a known interaction, P09547 with P50875, we see a sim-
ilar result. In fact, we see in Figure 2c that P09547 binds
with P50875 and that our previously hypothesized domain
binds to regions 100–150, 200–250, 400–450 and 500–550.
We again hypothesize that these are domains, this time in
P50875.

To see that these predictions match known information, we
looked up the domain information for P09547 and P50875
in the Swiss-Prot database. There were two domains men-
tioned for P09547, an Asn/Thr-rich region from 5 to 65, and
a Gln-rich region from 337 to 385. Our domain correlates
well with the Gln-rich region. For P50875, Swiss-Prot gives
five domains: a Poly-Gln domain from 157 to 162, a Poly-Ser
domain from 235 to 240, another Poly-Ser domain from 422
to 425, a Poly-Ala domain from 454 to 463, and a Poly-Asn

domain from 552 to 559. Although not perfect, these domains
also correlate with our predictions.

Finally, we observed that our domain prediction for P09547
matched with InterPro entry IPR001660 SAM domain also
discovered in Sprinzak and Margalit (2001) in an InterPro
entry pair with a count of 5 and a log-odds value of 2.55 (up
to 6.47 in our calculations).

While predicting domains are not the focus of our method,
we were encouraged by our preliminary results in this
direction, and by how they matched with the InterPro
predictions made in Sprinzak and Margalit (2001). We
speculate that the ability of our method to identify domains is
related to its ability to predict interactions.

Although we have benchmarked our algorithm fairly
extensively and feel confident that if it performs well, we
must issue some additional caveats. First of all, the algorithm
requires some type of input, either from experiment or pre-
diction. If these data are unreliable, as is often the case with
protein–protein interaction data (von Mering et al., 2002;
Sprinzak et al., 2003), then the results of our algorithm will
also be unreliable.

Second, the fact that there are so few interacting protein
pairs relative to the number of possible pairs can cause prob-
lems. In particular, there are bound to be many false positive
predictions, even with a good classifier. Although we have
shown that our method performs as well as the method in
Jansen et al. (2003) in this regard, it nevertheless remains
a practical problem (for any classifier) given the naturally
unbalanced population of protein–protein interactions.

In total, however, we have proposed a very general method
for predicting protein–protein interactions. Our method uses
a unique product description of protein pairs called signa-
ture product. This description allows the clean integration
of amino acid sequence information into a powerful SVM
machine learning architecture. Our method performs as well
or better than competing methods and combines advantages
of the methods in Bock and Gough (2001) and Sprinzak and
Margalit (2001). In addition, our method compares favorably
to the method in Jansen et al. (2003), which uses informa-
tion from many sources in making protein–protein interaction
predictions.

Since our method is most similar to the methods of Bock and
Gough (2001) and Sprinzak and Margalit (2001), we conclude
with a brief discussion of the similarities and differences. First,
our method uses only experimental and sequence inform-
ation and can therefore be used to study organisms where
little is known, like Bock and Gough (2001). Simultaneously,
we use a local description of protein pairs, which may
be more consistent with the actual biology of protein–protein
interaction, like Sprinzak and Margalit (2001). On the other
hand, our method eliminates disadvantages of both Bock and
Gough (2001) and Sprinzak and Margalit (2001). In particular,
our method does not require physico- chemical information,
unlike in Bock and Gough (2001), and we do not need to have

7
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Fig. 2. Domain predictions. Plots showing the domain predictions for P09547. The x-axis of each plot gives the position of a 50-residue
window moved 10 residues at a time across the full sequence of P09547. Plot (a) shows the mean binding activity of the windows along with
x-axis with the other 1681 windows considered in the domain prediction example; plot (b) shows an intensity plot of the binding activities
of all pairs of windows in P09547; and (c) shows an intensity plot of the binding activities of all pairs of windows in P09547 and P50875 (a
known binder). In (b and c), red denotes activity and blue denotes inactivity.

prior knowledge of domains, unlike in Sprinzak and Margalit
(2001).
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