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ABSTRACT: 

A method for solving the inverse quantitative structure-property relationship  

(QSPR) problem is presented which facilitates the design of novel polymers with targeted 

properties. Here, we demonstrate the efficacy of the approach using the targeted design of 

polymers exhibiting a desired glass transition temperature, heat capacity, and density. We 

present novel QSPRs based on the signature molecular descriptor capable of predicting 

glass transition temperature, heat capacity, density, molar volume, and cohesive energies 

of linear homopolymers with cross-validation squared correlation coefficients ranging 

between 0.81 and 0.95. Using these QSPRs, we show how the inverse problem can be 

solved to design poly(N-methyl hexamethylene sebacamide) despite the fact that the 

polymer was used not used in the training of this model. 

 



KEYWORDS: inverse quantitative structure-property relationship (QSPR), glass 
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INTRODUCTION: 

 The ability to accurately design new molecules with targeted properties is a long-

standing problem with potential applications in the design of catalysts, polymers, 

polymeric composites, solvents, detergents, drugs, pesticides, etc. At the heart of the 

problem, is the quantitative structure-property relationship (QSPR). In the forward-QSPR 

problem [1], equations and algorithms which are capable of predicting molecular 

properties when given a structure are developed by empirical or theoretical means. In the 

inverse-QSPR problem, the molecular properties are the input; the output is the 

molecules which are calculated to satisfy the target properties. Together, the forward- and 

inverse-QSPR problems allow for computer-aided molecular design, which has the 

potential to greatly decrease the time and cost of trial-and-error procedures. 

 While the forward-QSPR problem has been a focus of intense research, literature 

presenting solutions to the inverse-problem is scarce. The most common solution to the 

problem is database search; a database of known compounds is evaluated using the 

forward-QSPR and those most closely matching the desired properties are returned. The 

obvious limitation to this approach is that the search is restricted to known compounds 

present in the database. Perhaps more appealing is the ability to design novel compounds 

with desired properties. Approaches to such a design include random search [2], 

combinatorial and heuristic-based enumeration [3-5], graphical reconstruction [6, 7], 

mathematical programming [8-12], and stochastic optimization [1, 13-15].  



Each approach suffers from some disadvantage. Solutions to mixed integer 

nonlinear programming problems (such as [8-12]) are susceptible to local minima traps 

and are computationally expensive. Therefore, molecule templates or limitations on 

chemical groups for new molecules are commonly employed. Optimizations by 

simulating annealing, genetic algorithms, or tabu search (as in [1, 13-15]) are random. 

While these algorithms are capable of reporting all near-optimal solutions in the search 

path, generating lists of new candidate molecules is subject to specifics of the search 

space and serendipity. This can be an important issue as candidate molecules often 

require further screening by molecular properties not present in the formulation (i.e. 

synthetic accessibility). The most straight-forward and desirable solution would be an 

exhaustive enumeration of all candidate molecules within the chemical space (as in [3-

5]). Obviously, however, this approach is often infeasible due to combinatorial explosion. 

We have previously presented an approach for the deterministic enumeration of 

molecules matching desired properties using the signature molecular descriptor [16]. In 

that work, we were able to design and validate novel potent inhibitors using an inverse-

QSPR approach in which every molecule within the chemical space predicted to be a 

potent inhibitor was enumerated. However, in that case, the chemical space was given by 

cyclic peptides with a fixed size. Encoding was performed on the amino-acid residue 

level such that all chemical groups had a valence of 2. For most chemical design 

problems, the combinatorial complexity will be much worse due to variable atom 

valences and variable molecule sizes. 

Here, we demonstrate the efficacy of the approach for a more general (atomistic) 

design problem – the design of novel linear homopolymers. We show that the signature 



descriptor can be used in the forward-QSPR problem for prediction of several properties 

of interest to polymer design. We show that the inverse-QSPR problem can then be 

solved by limiting the chemical space to those polymers for which properties can be 

predicted without extrapolation. Finally, we validate the method with the rediscovery of 

the structure for Nylon-6,10. 

METHODOLOGY: 

 Given an infinite chemical space, how do we find a polymer that will have the 

molecular properties desired for a particular application? Here, we present one approach 

to this problem, divided as follows: 

1. The Chemical Space: Computations involving polymers requires some vector 

space in which molecular structure can be encoded. 

2. The Forward-QSPR: In order to design novel polymers with desired properties, 

the ability to accurately predict those properties given a molecular structure is 

necessary. 

3. The Inverse-QSPR: Once one is able to accurately predict a property given a 

structure, how does one solve the inverse problem of obtaining a molecular 

structure for a desired property? 

4. The Confidence Metric: Given a large number of solutions to an inverse-QSPR 

problem, how does one choose which are best? 

We present our solution to these issues, which are all interdependent, using the signature 

molecular descriptor. 

 

1. The Chemical Space 



  Given the problem presented, the ideal molecular descriptor will allow an 

encoding such that both the QSPR can be efficiently calculated and the polymer 

structures corresponding to a given set of descriptors can be efficiently obtained. That is, 

the descriptors should give us both the property of interest and the molecules 

corresponding to that property. The signature descriptor is one such descriptor, and is one 

of the few molecular descriptors for which a deterministic inverse-design has been shown 

to be efficacious [16]. The signature descriptor is designed to facilitate reconstruction of 

molecular graphs with a low degeneracy (small number of molecular structures 

corresponding to any given point in the chemical space) while at the same time providing 

a set of descriptors from which accurate QSPRs can be obtained for a wide variety of 

properties [17]. 

Signature is based on the molecular graph of a molecule, G = (VG, EG), where the 

elements in VG denote the atoms in the molecule, and the edges of EG correspond to the 

bonds between those atoms [17].  In the graph, both the nodes and the edges are labeled – 

the nodes by the element names of the atoms and the edges by the bond types (a single 

bond is unlabeled, a double bond is labeled by ‘=’, a triple bond is labeled by ‘t’, and an 

aromatic bond is labeled by ‘p’). In this context, a molecule is characterized by a set of 

canonical subgraphs, each rooted on a different vertex with a predefined level of 

branching, which we refer to as the height h.  The branching of a vertex is an extended 

degree sequence that describes the local neighborhood, up to a distance h away from the 

root.   

We define an atomic signature, 
h
σG(x), as the canonical subgraph of G consisting 

of all atoms a distance h from the root x.  A molecular signature, 
h
ΣG, is then the set of all 



unique atomic signatures and the occurrence with which they appear in the molecular 

graph.  Even though the atomic signatures are unique, they are by construction 

interrelated, allowing information about the overall structure of the molecule to be 

recovered after analysis.   

The atomic signatures make up the set of molecular descriptors for a molecule.  

These are expressed in terms of a string of characters that correspond to the canonized 

subgraph in a breath-first order. Branch levels are indicated by a set of parenthesis 

following the parent vertex. For the case of linear homopolymers presented here, the 

molecular signature is calculated on a single polymer repeat unit. The atoms bonding 

repeat units are given a special label in the graph where the element name is followed by 

a subscript "z". An example of the height 1 molecular signature for poly(phenyl 

methylacrylate) is given in Figure 1. 

 

2. The Forward-QSPR 

The forward-QSPR is the method of obtaining constraint equations in the polymer 

design process which restricts the entire space of all polymers to only those polymers 

with a desired property. Here we use multiple linear regression for obtaining QSPRs and 

therefore the equation is of the form Σαixi - α0 = P, where αi represents the regression 

coefficients, xi represents the occurrence number of the molecular descriptor i, α0 is the 

regression constant, and P is the property value of interest. When using the signature 

molecular descriptor to develop QSPRs, the signature height and number of descriptors 

must be chosen to optimize the predictive accuracy of the QSPR. 



During the development of any QSPR, it is essential to avoid the often overlooked 

issue of overfitting [18]. When the number of descriptors is large relative to the number 

of molecules in the training set, it becomes easy to develop regressions based on chance 

correlations. When using signature descriptors, for example, large signature heights can 

often uniquely describe molecules. Although this can result in high correlation 

coefficients, the predictive accuracy of such models is likely to be very low. We therefore 

use the leave-one-out cross validation squared correlation coefficient (q
2
). Using this 

approach, each polymer in the training set is predicted using a model that was not trained 

on the polymer in question, providing better statistics describing the ability of the model 

to accurately predict properties for novel polymers. 

We have developed our QSPR models as follows. For each polymer in the 

training set, signatures were calculated at heights 0-7. Any signatures that occurred in 

less than 3 polymers were removed from descriptor selection as they were essentially 

constant across the dataset. Signatures which were perfectly correlated were also 

removed from descriptor selection. QSPR equations were obtained using forward 

stepping feature selection as implemented in the Matlab 7 [19]. Routine stepwisefit.m 

was modified for efficiency and to prevent the addition of descriptors which would result 

in a QR factorization matrix that was close to singular. For optimization of the signature 

height and number of descriptors, q
2
 was used as the objective function. All possible 

combinations of signature heights ranging from 0-7, and QSPR equation sizes (in terms 

of number of descriptors selected through forward selection), were evaluated and the 

signature height resulting in the highest q
2
 was reported. Optimization and cross-

validation were also performed using Matlab scripts. The final QSPR model was trained 



using all polymers at the optimal signature height and descriptor count. QSPR models 

were trained on data compiled by Bicerano [20]. The number of polymers used for 

training is listed by property in Table 1. The full list of each polymer and corresponding 

property is included as supplementary material. 

 

3. The Inverse-QSPR 

Not every point in the space spanned by the signature descriptors corresponds to a 

possible polymer. For example, consider a point in the signature descriptor space 

consisting of a single atomic signature: 

1.0 [C]([H][H][H][H]) 

This point does not correspond to a molecular signature because atomic signatures rooted 

at each atom are not present. If a molecular signature contains the atomic signature given 

above, it must also contain at least 4 occurrences of the atomic signature [H]([C]). 

In order to solve the inverse problem, we must therefore restrict the space spanned by the 

signature descriptor. We use constraint equations to achieve this restriction, giving us the 

signature chemical space (as described in Section 2). In the signature chemical space, we 

use the QSPR equation (forward-QSPR) to identify points which exhibit desired 

properties. Finally, these points are used to generate the molecular graphs corresponding 

to the identified molecular signatures.  The end result is a list of polymers predicted by 

our method to have certain properties. 

3.1 The Constraint Equations. The constraint equations enforce conditions 

necessary for reconstructing molecular graphs from points in the signature space. For the 

case of linear homopolymers, there are three types of constraint equations: the 



graphicality equation, the consistency equations, and the polymer repeat unit (PRU) 

equation.  

The graphicality equation ensures that at least one connected graph can be 

constructed from the molecular descriptors.  This equation, taken directly from graph 

theory, uses only the degree of the vertices in the graph.  In order to build a connected 

graph, we require that (1) the sum of all the vertex degrees must be even and (2) the 

number of vertices of odd degree must be even. The resulting equation can be expressed 

in terms of a degree sequence N = {n1, n2, …, nk} where ni is the number of vertices of 

degree i.  In this case, the degree sequence N is graphical if and only if there exists an 

integer z ≥ 0 such that: 

                               znni i

k

i
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2
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=

.  (1) 

The graphicality equation can be computed directly from the height zero molecular 

signature.  

The next set of equations is collectively referred to as the consistency equations.  

Recall that a molecular signature is a collection of interrelated atomic signatures, where 

each atomic signature describes a particular atom and its neighboring atoms to a 

predetermined height.  In constructing the signature of a molecule, it is guaranteed that a 

bond in one atomic signature will match up with a bond in another atomic signature, 

albeit in reverse order.  However, blind reconstruction of the molecule requires equations 

to enforce these conditions of interdependency among the atomic signatures.  This is 

done by matching bonds between two atoms of one signature to the bonds involving the 

same atoms in all other signatures.   



We will use the notation 
h
σi to describe the atomic signature of height h of an 

arbitrary atom i.  Using 
h
σi  as a reference, any bond between the root and one of its 

children must be sought in all other atomic signatures in which the positions of the root 

and child are the transpose of 
h
σi. We use the notation #(

h-1
σi → 

h-1
σj), to depict the 

number of bond types 
h
σi has in common with 

h
σj. Clearly, then #(

h-1
σi → 

h-1
σj) =  #(

h-1
σj 

→ h-1σi). As depicted in Figure 2, it is important to note that the signature of a bond is 

one height less than the height of the molecular signature. The reason is that when  #(
h-1
σi 

→ h-1σj) is computed, one has to transpose the root i with a child j. While the 

neighborhood of i was initially probed up to height h, the transposed signature with new 

root j probes the neighborhood of j only up to height h-1. In the case where i = j, then  

#(
h-1
σi → 

h-1
σi) must be even. The consistency equations can be summarized as follows:  

A molecular signature  (
h
Σ) is consistent if and only if the two following conditions are 

verified: 

a. For all atomic signatures 
h-1
σi and 

h-1
σj  in 

 h-1
Σ, #

 
(h-1σi → h-1σj) =  #

 
(h-1σj 

→ h-1σi). 

b. For all 
h-1
σi  in

  h-1
Σ, #

 
(h-1σi → h-1σi) is even valued.  

 

 The final constraint equation is specific to the case of linear homopolymers and is 

necessary because the atoms bonding repeat units must be specified in order to lower the 

degeneracy of the signature descriptor. Specifically the sum of repeat unit bonding atoms, 

(labeled with a subscript ‘z’) within any polymer must sum to exactly 2 [note not clear 

perhaps should add an example in figure 2 for instance] 



 

 3.2 Finding the Signatures for Novel Polymers. The constraint equations form a 

system of equations with unknown occurrence numbers xi corresponding to atomic 

signatures i. The solutions to this system of equations are the molecular signatures for 

any polymers with the desired properties. These solutions must represent quantities 

meaningful to signature and hence, the occurrence numbers should take on non-negative 

integer values.  Thus, our system of equations is Diophantine in nature. An algorithm 

adapted from Contejean and Devie [21] was implemented to solve our linear system of 

Diophantine equations.  This algorithm uses a geometric interpretation of Fortenbacher’s 

algorithm [22], which efficiently solves homogeneous and non-homogeneous linear 

Diophantine equations.  Solution of the constraint equations gives us particular solutions 

to the non-homogeneous equations as well as the Hilbert basis for the homogeneous 

equations.  Using these solutions we can generates the signature chemical space. In 

combination with the QSPR equations, the molecular signatures for all possible polymers 

matching a given property can be obtained. 

 Our system of constraint equations is comprised of three types of linear equations: 

homogeneous, modulus, and non-homogeneous. The consistency equations are 

comprised of homogenous and modulus equations. However, the modulus equations can 

be re-written as homogeneous equations by adding a dummy variable to enforce 

modularity.  The graphicality constraint, the QSPR equations, and the PRU equation are 

non-homogeneous. Of these, the QSPR is not usually Diophantine (does not have integer 

coefficients), and the graphicality equation is often too complex for the Diophantine 

solver. Therefore, we include in the constraint equations only the homogeneous 



(including converted modulus) equations and the PRU equation; the QSPR and 

graphicality constraints are enforced based on post-processing. To enforce the PRU 

equation, we obtain particular solutions to the constraint equations (homogeneous and 

PRU) [this seem to be redundant with the previous sentence].  These particular solutions 

are added to a Hilbert basis obtained by solving the constraint equations where the PRU 

equation is forced to zero [I do not understand, but providing an example of PRU 

equation should clear that up] .  The signature chemical space is then spanned by all 

linear combinations of partial solutions (to the homogeneous equations and PRU 

equation) plus all linear combinations of the Hilbert  basis vectors (general solutions).  

Finally, these solutions are screened using the graphicality equation and the QSPR 

equations to eliminate unfeasible or uninteresting possibilities.  

 

 3.3 Polymer Construction. Once all molecular signatures predicted to have the 

desired properties have been enumerated, the actual polymers must be found by 

reconstructing the molecular graphs from the signatures. The algorithm that enumerates 

all molecular graphs corresponding to a target signature is based on an isomer 

enumeration algorithm published some time ago [23], this algorithm was recently adapted 

to enumerate isomers matching user specified signatures [ref signature #2 paper]. Starting 

with a molecular graph containing all atoms but no bonds, the algorithm belongs to the 

class of orderly algorithms [24], where bonds are added in all possible ways in order to 

produce all nonisomorphic saturated graphs matching the target signature. The original 

idea of this algorithm is to saturate all equivalent atoms at once. Specifically, the atoms 

are first partitioned into equivalent classes, the classes being the orbits of the 



automorphism group of the graph, then an orbit is chosen, and all the possible graphs that 

can be generated by saturating all atoms of the orbit are generated. The initial atom 

partitioning is performed following the target signatures. The process is recursive until all 

orbits have been saturated.  

 The number of molecules which can be reconstructed from a given target 

signature is the degeneracy of that signature. Ideally, the degeneracy of a descriptor 

should be low as low as possible while still allowing for high correlation with molecular 

properties [25]. For signature, the degeneracy can be decreased by increasing the 

signature height [26], however, at large signature heights most correlations result from 

over-fitting. Therefore, in practice we find that we have to sacrifice some degeneracy in 

order to obtain predicative accuracy in the QSPR equations. A detailed description of the 

reconstruction algorithm and a study on descriptor degeneracy can be found in reference 

[26]. 

4. The Confidence Metric 

 In theory, the methods presented above allow one to perform an exhaustive 

enumeration of all possible polymers predicted to have desired properties. In practice, 

however, such an enumeration is unreasonable not only because it is too costly to 

compute, but also because the domain under which the QSPR can be expected to be 

accurate is limited. A much more feasible (and desirable) objective is to enumerate all 

polymers for which the property calculation does not result from an extrapolation. In 

other words, we want to enumerate those polymers for which we have the highest 

confidence that the property prediction was accurate. We do this by imposing several 

limitations on which polymers will be considered for enumeration. 



 First, we consider only those signatures present in the property training set and 

therefore consider only a subset of the chemical space. This is justified since it is clearly 

an extrapolation to perform property prediction on polymers with chemical groups 

unknown to the forward-QSPR. This limitation is easily implemented by generating 

constraint equations using only the atomic signatures which are present in the training set. 

 Next, we take measures to prevent property extrapolation on polymers which are 

significantly different in size from the molecules in the training set. We impose this 

limitation in two forms. First, we limit the maximum occurrence of any atomic signature 

in a potential polymer based on the maximum occurrence of that signature in the training 

set. Second, we impose limitations on the number of basis vectors with non-zero 

coefficients in any linear combination and also limitations of the values for the 

coefficients of those non-zero coefficients. 

 The limitation on the number of non-zero basis vectors limits the size of potential 

polymers because our Hilbert basis and coefficients are restricted to non-negative 

integers. Therefore, there is an increase in the average number of atoms per polymer 

associated with an increase in the number of basis vectors used within a linear 

combination. More importantly, this limitation must be imposed simply because in many 

cases it is computationally infeasible to consider all linear combinations of all basis 

vectors. For n possible coefficients for each basis vector and b basis vectors, n
b
 possible 

linear combinations exist. Therefore, if the target molecular weight of the enumerated 

molecules is high and the number of basis vectors is high, an exhaustive search of the 

chemical space can be unattainable. 



 The coefficients used in the linear combinations are limited based on a target 

atom count (TAC) restriction which is a count of the number of atoms within a polymer. 

The limitation is implemented such that if the TAC is 50, every possible polymer 

containing up to 50 atoms is considered for enumeration. This is done by computing the 

maximum value of a given coefficient in a linear combination assuming that the other 

coefficients are one, and then considering all combinations of coefficients, up to the 

maximum computed value for each coefficient. Note that by asserting that all possible 

polymers up to a certain atom count are considered, we also must enumerate some 

polymers with atom counts greater than the TAC when using this method. 

 The final limitation used to restrict the generation of novel polymers is a 

confidence metric. While the above limitations simply ignore polymers with chemical 

groups or sizes unknown to the QSPR (which are obvious extrapolations), the confidence 

metric assigns a scalar value to each potential molecular signature, which is used to rank 

polymers by the expected prediction accuracy for a given property. This brings up the 

critical question important to all machine learning models: “How do we know which 

predictions are accurate and which predictions are inaccurate?” This question has 

recently been addressed in the cheminformatics arena with the development of 

discriminators for prediction accuracy in QSPRs  [27-29]. Using this type of approach, 

one can determine how much trust to put into a given prediction. As an example, in our 

recent work involving a classification for protein structure prediction [30], we had an 

overall prediction accuracy of 51.3% for an ordering problem. However, by using a 

confidence metric inherent to the model, we were able to achieve over 95% accuracy on 

the 25% of the dataset with the highest confidence. The ability to perform such a 



discrimination is particularly relevant here, where one must sort through potentially large 

numbers of enumerated polymers matching given properties.  

 For this work, we have chosen to use a metric reported by Sheridan et al. [29]. In 

a large study utilizing datasets covering 8 different properties and tens of thousands of 

training molecules, they found that the best-predicted molecules were those with the 

highest similarity and/or the most neighbors in the training set. This result is intuitive in 

that we expect regressions to have the highest accuracy in domains nearest the training 

data. In some cases, the authors went so far as to produce error bars for each prediction of 

a given property. Therefore, for this work, we have chosen to use a confidence metric 

which is calculated as the normalized Euclidean distance to the nearest molecule in the 

training set. (To calculate the normalized Euclidean distance, we first scale each molecule 

to have unit norm in the signature chemical space and then compute the Euclidean 

distance between the two molecules. [note: You should explained a bit further how that 

distance is computed, is it using normalized signature vector? ) 

Using the confidence limitations presented, we can reduce the run-time of the 

algorithm by limiting the chemical space and the number of basis vectors. We can reduce 

the number of enumerated polymers using maximum occurrence limitations and a 

confidence metric cutoff. Instead of arbitrarily choosing some portion of the chemical 

space to enumerate, we isolate the subset where we have the highest confidence in our 

predictions. 

Summary (you should move this at the end of the paper and add some results to it) 

The inverse-QSPR Methodology presented herein offers a procedure for 

searching through the entire chemical space of polymers to isolate those matching desired 



properties in a deterministic manner. For certain applications, it is possible to enumerate 

every possible polymer within a given confidence threshold. In cases where the signature 

chemical space given by the training set is too large, or where the molecular weights of 

the training set are high, such an exhaustive search may not be possible. However, it is 

always that case that at least some subspace can be searched thoroughly to produce 

polymers with high confidence predictions. 

In order to demonstrate the efficacy of the approach, we first show that the 

signature descriptor can be used in a forward-QSPR approach to generate equations for 

predicting certain properties of interest to polymer design. We then show, similar to the 

approach of Camarda and Maranas [8], that these QSPRs can be used in the inverse 

design process to design a target polymer for which the properties have been 

experimentally determined, but were used nowhere in the training of the model. 

 

RESULTS: 

 Predictive QSPRs are essential for the accurate design of novel polymers and it is 

therefore important to assess the predictive accuracy of regression models developed 

using the signature descriptor. Here, we have chosen 6 properties of interest to polymer 

design – the molar volume (V), the amorphous density (ρa), the Fedors-type cohesive 

energy (Ecoh1), the van Krevelen-type cohesive energy (Ecoh2), the specific heat capacity 

(Cp
s
), and the glass transition temperature (Tg). In developing QSPRs for these properties, 

there are two important issues to consider. First, the appropriate signature height must be 

chosen, and second, care must be taken to avoid over-fitting the QSPR. In order to 

address both issues, we use a brute-force evaluation of cross-validation squared 



correlation coefficients (q
2
) at each signature height between 0 and 7 and each possible 

number of descriptors as selected by forward stepping. The final model results from 

training on the entire dataset using the signature height and descriptor count assessed to 

have the highest predictive accuracy as measured by the q
2
. A representative plot 

showing q
2
 as a function of height and descriptor count is shown in Figure 3 for the Tg 

dataset. A summary of results for the 6 datasets is shown in Table 1. At worst, the mean 

error encompasses under 6% of the range for a given property. The q
2
 ranges from 0.81 to 

0.95 and the r
2
 (for the final models) ranges from 0.89 to 0.96. Cross validation plots of 

experimental versus predicted values for the 6 properties are given in Figure 4. 

 For the design problem, we decided to search for polymers similar to Nylon-6,10, 

which has a Tg of 313 K, a Cp
S
 of 439 J·mol

-1
·K

-1
, and a ρa of 1.04 g·cm

-3
. In order to 

avoid extrapolation, three constraints were enforced during molecular construction. First, 

the signatures and constraint equations used for polymer reconstruction were calculated 

using only the 33 polymers for which data was available for all three properties (see 

supplementary material). Second, the maximum occurrence of any signature within a new 

polymer was limited to the maximum occurrence of that signature within the 33 polymer 

reconstruction dataset. Third, the signature molecular descriptor for any new polymer 

was restricted to lie within a normalized Euclidean distance of 0.1 from the molecular 

descriptors in the reconstruction dataset. Using this approach, we limit the design of new 

polymers to produce a manageable number of polymers in regions of the chemical space 

where we expect prediction accuracy to be highest. 

Signature calculation for the 33 polymers resulted in 63 unique atomic signatures 

from which 23 homogenous equations, 3 modulus equations, 1 graphicality constraint, 



and 1 PRU constraint were derived. Solutions to the homogenous system resulted in a 

Hilbert basis of 25 vectors. The basis for the non-homogenous system gave 4707 

particular solutions. Removing basis vectors that violated the maximum occurrence 

constraint left 19 homogenous basis vectors and 2907 particular solutions. Molecular 

signature enumeration was performed using all linear combinations of up to 3 basis 

vectors and one particular solution, with the TAC set such that no polymer with under 50 

atoms would be missed. The results from the enumeration, separated by the number of 

homogenous basis vectors with non-zero coefficients, are listed in Table 2. Restriction of 

the basis vector coefficients and the signature space dimensionality based on the 33 

polymer reconstruction dataset resulted in a solution space of over 800 million polymer 

signatures. Restriction of this space by the maximum occurrences reduced the number by 

about 69% while restriction of this space based on confidence metric (cf. section 4) 

reduces the number by over 99%. When all constraints are considered, we found only 

1327 polymer signatures which, by our measures, are unlikely to represent extrapolations 

from the model. 

Due to combinatorial explosion, it is intractable to consider polymers whose 

signatures result from linear combinations where all basis vectors have non-zero 

coefficients. Here, we have made a restriction where only 3 basis vectors (and one 

particular solution) were allowed non-zero coefficients. How much did we miss? Based 

on the 50 atom limit, the entire solution space is comprised of over 800 million polymer 

signatures. We have considered less than .0002% of these potential solutions. However, 

with an increase in the number of basis vectors, there is also an increase in the mean 

number of atoms within the solutions. As is indicated in Table 2, when 3 basis were used, 



the average number of atoms per polymer is 45.5, while the average for the 

reconstruction dataset is only 18.9.  This indicates that we are largely uninterested in over 

99% of the solutions that we did not calculate, just based on molecule size alone.  

 Ignoring any molecular property constraints, 1327 molecular signatures were obtained 

with molecular property distributions as shown in the histograms in Figure 5. All except 

one out of the 33 polymers used for training were reconstructed. The exception, 

bisphenol A polycarbonate,had the third highest molecular weight of the group, and 

required a linear combination of over 3 basis vectors to represent its signature. Finally, 

we screened the 1327 molecular signatures to find solutions matching the target 

properties.  This screen was performed by using a range around the target properties (313 

K for Tg, 439 J⋅mol
-1
⋅K

-1
 for Cp

s
, and 1.04 g⋅cm

-3
 for ρa) of plus or minus their respective 

absolute mean errors as computed using the QSPRs (see Table 1).  In the end, we 

obtained 80 signature molecular descriptors predicted to exhibit the desired properties. 

Reconstruction of the 80 molecular descriptors resulted in 178 polymers predicted 

to be within the target range. Eight examples of the enumerated polymers are given in 

Table 3. Most importantly, our method enumerated the structure for Nylon-6,10 (Table 4) 

which has a 313K Tg, a 439 J⋅mol
-1
⋅K

-1
 heat capacity, and a 1.04 g⋅cm

-3
 density. This 

validates our approach as the polymer was used nowhere in the training of this model. 

The entire process (signature calculation, QSPR calculation, constraint generation, basis 

calculation, reconstruction, etc.) required less than 2 days of real-time computation on a 

single processor desktop PC.  

DISCUSSION: 



The ability to perform in silico design of novel molecules with desired properties 

has the potential to greatly decrease both the time and cost of trial-and-error procedures. 

A deterministic enumeration of lists of compounds satisfying the target properties is 

advantageous in that it allows further processing based on properties which are difficult 

to include in the inverse-design formalism. For example, it is infeasible to include 

properties which require long computation times in an inverse-design approach. 

Additionally, properties such as synthetic accessibility are inherently difficult to represent 

mathematically and optimization to produce a single molecule is likely to produce one 

that is difficult to synthesize. 

Despite these advantages, deterministic enumeration for computer-aided 

molecular design is often dismissed due to the combinatorial complexity of the problem. 

Indeed, the chemical space is potentially infinite and therefore an exhaustive 

consideration of all possible molecules is seemingly impossible. An important 

observation, however, is that most forward-QSPR formulations are empirical. There is a 

limited domain under which the predictions are accurate and therefore only a subset of 

the chemical space should be considered for enumeration. Using this observation, we 

were able to limit the entire chemical space of linear homopolymers to ~800 million by 

throwing out compounds with a large number of atoms and descriptors which did not 

occur in the QSPR training sets. Further restrictions based on maximum descriptor values 

and similarity to molecules in the training set resulted in an enumeration of 178 

molecules out of the chemical space for which we expected accurate predictions of 

desired properties. 



We have demonstrated the feasibility of deterministic enumeration for inverse-

design with our ability to rediscover 32 of the 33 polymers in the reconstruction dataset 

and the ability to design a molecule novel to the model with experimentally determined 

properties. The ability to perform inverse-design using the signature descriptor is 

complemented by the ability to develop correlations for several properties of interest to 

polymer design, and therefore, use of the signature descriptor for forward-QSPR and 

inverse-QSPR is a promising approach for the computer-aided molecular design of novel 

polymers. Software for signature calculation is available for free at 

http://www.cs.sandia.gov/~jfaulon/QSAR/index.html. 
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Table 1: Prediction accuracy for polymer properties using the signature descriptor. The 

squared correlation coefficients for cross-validation (q
2
) and resubstitution (r

2
) are given. 

The mean error percentages are calculated as the absolute mean errors divided by the 

range of experimentally determined values. 

Property 

# Mols in 

Training 

Set 

# Atomic 

Signatures 

Optimal 

Signature 

Height 

q
2
 r

2
 

Cross Validation 

Absolute Mean 

Error 

Mean 

error % of 

range 

Tg 261 132 1 0.81 0.93 27.97 
5.77 

Cp
S
 51 12 0 0.91 0.93 16.62 

4.27 

ρa 99 92 1 0.86 0.89 0.05 
4.54 

Ecoh1 87 13 0 0.95 0.95 4592.4 
3.15 

Ecoh2 82 12 0 0.95 0.96 6037.3 
2.35 

V 98 12 0 0.93 0.94 7.40 
2.76 

 

Table 2: Results from signature enumeration. Each signature represents a point in the 

chemical space from which molecular graphs can be reconstructed to generate polymers. 

The mean number of atoms per molecule will go up with the number of non-zero basis 

vectors included in the linear combinations used for enumeration. 

# of 

Homogenous 

Basis 

Vectors 

# of Possible 

Signatures 

Signatures 

Satisfying 

Max. Occ. 

Signatures 

within 

Distance 

Acceptable 

Signatures 

Mean # of 

Atoms per 

Molecule 

# of 

Training 

Molecules 

Recovered 

0 1286 615 12 12 8.1 12 

1 375,431 155,042 115 46 27.5 7 

2 27,514,763 9,871,753 1130 346 41.2 9 

3 782,388,775 240,705,584 3315 923 45.5 4 

Total 810,280,255 250,732,994 4572 1327 43.4 32 

 



Table 3: Eight of the 178 polymer repeat units generated from inverse-QSPR with 

properties targeted for a Tg of 313 K, a Cp
S
 of 439 J·mol

-1
·K

-1
, and a ρa of 1.04 g·cm

-3
. 

Structure Tg 

(K) 

Cp
S 

(J·mol
-1
·K

-1
) 

ρa 
(g·cm

-3
) 

O

O

O

Cz

Nz

 

308.2 437.8 1.06 

O

Oz

O

Cz

HN

 

319.5 434.4 1.06 

O

O

O

Cz

NzN
H  

305.4 449.0 1.08 

O

O

O

Cz

Nz

 

299.9 437.8 1.06 

O

Oz

OCz

HN

 

324.5 448.4 1.03 

O

O Cz

Nz

 

295.8 432.7 1.00 

Nz

NH

O

CzO

 

327.7 455.4 1.05 

O

OO

Cz

Nz

 

294.1 426.3 1.04 

 



Table 4: Structure for Nylon-6,10 generated from a targeted design of polymers with a Tg 

of 313 K, a Cp
S
 of 439 J·mol

-1
·K

-1
, and a ρa of 1.04 g·cm

-3
. The polymer was used 

nowhere in the training of the model. Experimentally determined and QSPR-calculated 

properties are given. 

 
N

NH

O

CO

 
 

poly(N-methyl hexamethylene 
sebacamide) 

 

Tg (K) Cp
s
 (J•mol-1•K-1

) ρa (g/cm
3
) 

Exp Pred Exp Pred Exp Pred 

313 327.7 439 455.4 1.04 1.047 

 



Figure 1: Molecular signature for poly(phenyl methylacrylate) 

C

C

O

O  

h
ΣΣΣΣ poly(phenyl methylacrylate) 
1.0 [O]([C][C]) 

1.0 [O](=[C]) 

2.0 [H]([Cz]) 

8.0 [H]([C]) 

1.0 [Cz]([Cz][H][H]) 

1.0 [Cz]([C][C][Cz]) 

1.0 [C](p[C]p[C][O]) 

5.0 [C](p[C]p[C][H]) 

1.0 [C]([Cz][O]=[O]) 

1.0 [C]([Cz][H][H][H]) 

 

 

Figure 2: Graphical depiction of the bond occurrence (
2
σi → 

2
σj ). Here, 

2
σi supplies the 

height one bond between the carbon root and the last carbon atom child. If a root swap is 

performed with this last carbon atom, then the resulting height one signature is 

[C]([H][H][C][C]), which we designate as 
1
σi. Similarly, if a root swap is performed on 

2
σj and its carbon atom child, then truncated to height one, its signature will match that of 

1
σi. 

 



Figure 3: Optimization of the signature height for a set of linear homopolymers with glass 

transition temperature data. The optimum signature height is selected as the one which 

produces the highest cross validation squared correlation coefficient in order to preserve 

predictive accuracy. 

 



Figure 4: Cross-validation plots of predicted versus experimental values for several 

polymer properties. The value of the property for each point plotted is predicted using 

only the other data points for training. 

 



 

Figure 5: Histograms illustrating the QSPR calculated values for enumerated polymers 

using the inverse-design procedure with no targeted values. 
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