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Abstract

Spacecraft design optimization is a difficult problem, due to
the complexity of optimization cost surfaces and the human
expertise in optimization that is necessary in order to achieve
good results. In this paper, we propose the use of a set
of generic, metaheuristic optimization algorithms (e.g., ge-
netic algorithms, simulated annealing), which is configured
for a particular optimization problem by an adaptive problem
solver based on artificial intelligence and machine learning
techniques. We describe work in progress on OASIS, a self-
configuring optimization system based on these principles.

1 Introduction

Many engineering design optimization problems are instances
of constrained optimization problems. Given a set of decision
variables X and a set of constraints C on X , the constrained
optimization is the problem of assigning values to X to mini-
mize or maximize an objective function F (X), subject to the
constraints C.

Although constrained optimization is a mature field that has
been studied extensively by researcher, there are a number
of open, fundamental problems in the practical application of
optimization techniques. In particular, the problem of select-
ing and configuring an optimization algorithm for an arbitrary
problem is a significant obstacle to the application of state of
the art algorithms to real world problems.

We are currently developing the Optimization Assistant (OA-
SIS) system, an automated, self-configuring optimization tool
for spacecraft design these two issues. The goal of OASIS is
to facilitate rapid “what-if” analysis of spacecraft design by
developing a widely applicable, spacecraft design optimiza-
tion system that maximizes the automation of the optimization
process and minimizes the user effort required to configure the
system for a particular optimization problem instance. In the
rest of this paper, we describe initial work on OASIS.

2 Resource-Bounded Black Box Opti-
mization

The problem of global optimization on difficult, arbitrary
cost surfaces is still poorly understood. The optimization of
smooth, convex cost functions is well understood, and efficient
algorithms for optimization on these surfaces have been de-
veloped. However, these traditional approaches often perform
poorly on cost surfaces with many local optima, since they tend
to get stuck on local optima. Unfortunately, many real-world
optimization problems have such a “rugged” cost surface and
are thus difficult problems for traditional approaches to opti-
mization.

In addition, many real-world optimization problems are
black-box optimization problems, in which the structure of
the cost function is opaque. That is, it is not possible to di-
rectly analyze the cost surface by analytic means in order to
guide an optimization algorithm. For example, F (X) can be
computed by a complex simulation about which the optimiza-
tion algorithm has no information (e.g., to evaluate a candi-
date spacecraft design, we could simulate its operations using
legacy FORTRAN code about which very little is known to the
optimizer except for its I/O specifications). Black-box opti-
mization problems are therefore challenging because currently
known algorithms for black-box optimization are essentially
“blind” search algorithms-instead of being guided by direct
analysis of the cost surface, they must sample the cost surface
in order to indirectly obtain useful information about the cost
surface.

Recently, there has been much research activity in so-called
metaheuristic algorithms such as simulated annealing [5], tabu
search [2, 3] and genetic algorithms [4] for global optimiza-
tion. These are loosely defined, “general-purpose” heuristics
for optimization that proceed by iteratively sampling a cost
surface, and they implement various mechanisms for escap-
ing local optima. Although these algorithms have been shown
to be successful on numerous applications with difficult cost
surfaces, the behavior of these algorithms is still poorly un-
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derstood. Successful application of these metaheuristics1 to a
particular problem requires:

� Selection of the most appropriate metaheuristic for the
problem, and

� Intelligent configuration of the metaheuristic by selecting
appropriate values for various control parameters (e.g.,
temperature cooling schedule for simulated annealing).

Currently, successful applications of metaheuristics are of-
ten the result of an iterative cycle in which a researcher or
practitioner selects and adjusts a number of different meta-
heuristic/control parameter combinations on a problem, ob-
serves the results, and repeats this process until satisfactory
results are obtained. This process of selecting and configuring
a metaheuristic to obtain good results on a given problem is
usually time-consuming, and requires a significant amount of
optimization expertise (which is often very costly to obtain).
As a result, in many cases, the cost of successfully applying
metaheuristic techniques on black-box problems can be pro-
hibitively expensive.

One might wonder whether there is some super-
metaheuristic which can be configured so that it outperforms
all others algorithm configurations for all problems of interest,
or whether it is at least possible to characterize the perfor-
mance of metaheuristic configurations in general. The current
conventional wisdom in the optimization research community
is that this possibility is extremely unlikely (although it not
likely that this can ever be formally proved, due to the empiri-
cal nature of the question). This is supported by related recent
theoretical work such as [7], which shows that over all possible
cost surfaces, the expected performances of all optimization al-
gorithms are exactly equal. Although it is possible that “all
problems of interest” (in our context, all nontrivial spacecraft
design optimization problems) reflect a particular subset of all
possible cost surfaces for which some metaheuristic configu-
ration’s performance dominates that of all others, we strongly
believe that this is not the case. Thus, to obtain the best quality
solution, it is necessary to select and configure a metaheuristic
so that it matches the structure of the problem instance cost
surface.

The resource-bounded black-box optimization problem can
be stated as follows: Let OS be a configurable optimization
system, with several control points, CP1:::CPn (where each
control pointCPi corresponds to a particular control decision),
and a set of values for each control point, fMi;1:::Mi;kg,2 a
configuration is an assignment of values to control points that
defines the overall behavior of the problem solver. Given a
time bound T , and d, a problem instance. Let U(OS; d; T ),

1In the rest of the paper, we use the termsmetaheuristic and metaheuristic
algorithm interchangeably.

2Note that a method may consist of smaller elements so that a method may
be a set of control rules or a combination of metaheuristics.

be a real valued utility function that is a measure of the good-
ness of the behavior of the optimization system on d after
executing for time T . The task of resource-bounded black-box
optimization is to maximize U (i.e., obtain the best possible
solution quality within a given time). In principle, this can
be accomplished by choosing the optimal configuration of OS
for the particular problem instance. In practice, determining
the optimal configuration is difficult, so the system needs to
maximize its performance by a heuristically guided meta-level
search through the space of possible configurations of OS.
That is, the system reconfigures itself dynamically in order to
maximize performance.

3 OASIS Architecture

OASIS (Optimization Assistant) is an integrated software ar-
chitecture for spacecraft design optimization currently being
developed at JPL that supports self-configuring black-box op-
timization.

The three major components of OASIS are:

� A spacecraft design model,

� A suite of configurable metaheuristics, and

� A self-configuring optimizer.

We describe each of these in the following discussion.

3.1 Spacecraft Design Model

The spacecraft design model is a software simulation of a
spacecraft design. The design model takes as input decision
variables to be optimized, and outputs an objective function
value, which is assigned as the result of an arbitrarily complex
computation (i.e., the simulator is a black-box simulation).

Thus, the design model is the component of OASIS that is
the most domain-specific, and is provided by the end users, i.e.,
spacecraft designers. In order for an optimization system such
as OASIS to be useful in practice, it must support a wide range
of design models, which may consist of models implemented
using various languages on different platforms.

The Multidisciplinary Integrated Design Assistant for
Spacecraft (MIDAS) [1] is a graphical design environment
that allows a user to integrate a system of possibly distributed
design model components together using a graphical diagram
representing the data flow of the system. Each node in the di-
agram corresponds to a design model component, which may
be one of 1) a model in a commercial design tool such as
IDEAS, NASTRAN, or SPICE, 2) a program written in C,
C++, or FORTRAN, or 3) an embedded methogram (i.e., this
allows methograms to have a hierarchical structure). Inputs



to nodes in the methogram correspond to input parameters for
the component represented by the node, and outputs from a
methogram node correspond to output values computed by the
component. MIDAS is implemented as a CORBA object, and
supports a wide variety of methods that can be used by exter-
nal client systems (e.g., a GUI) to manipulate the methograms.
This essentially provides an optimization system with a uni-
form interface for any design model encapsulated in MIDAS.
Therefore, our solution to the problem of supporting a wide
range of design models is to support an interface to MIDAS.
That is, OASIS is designed to be an optimization system that
can be used to optimize any MIDAS model.

Thus, the design model, which constitutes the user input to
the OASIS system, is composed of the following:

� A MIDAS diagram that encapsulates the design model,

� A list of decision variables, as well as ranges of their
possible values (may be continuous or discrete), and

� An output from a methogram node that corresponds the
user’s objective function value.3

Figure 1 shows part of a MIDAS methogram for the Neptune
Orbiter model (see Section 4).

Figure 1: Screen shot of a MIDAS methogram (part of a Neptune Orbiter
model).

3.2 Black-Box Optimization Algorithm Suite

OASIS includes a set of configurable black-box optimization
algorithms, which are generic implementations of optimization

3The objective function could either be obtained directly from one of the
existing outputs in the methogram, or it could be computed by adding a new
node that computes, e.g., a weighted linear combination of some set of output
nodes.

algorithms that provide an interface for dynamic reconfigura-
tion of their control points at runtime. Currently, this consists
of a reconfigurable genetic algorithm [4] a reconfigurable sim-
ulated annealing algorithm [5], and some variants of traditional
local optimization algorithms (Powell’s Method and conjugate
gradient algorithm) [6] with random restarts.

3.3 Self-Configuring Optimization System

Given a spacecraft design optimization problem instance in the
form of a design model, the self-configuring optimization com-
ponent of OASIS selects and configures a metaheuristics from
its suite in order to maximize some utility measure (usually,
this is the quality of the design found by the system).

Our approach to optimizer configuration is to view it as a
meta-level heuristic search through the space of possible prob-
lem solver configurations, where candidate configurations are
evaluated with respect to a utility measure, and the goal is find a
configuration that maximizes this utility measure. In principle,
it is possible to do a brute-force search through the space of
possible problem solver configurations. This method is clearly
intractable in general, since the number of configurations is ex-
ponential in the number of control points. Consider a problem
solver with c control points, each with v values; there are cv

problem solver configurations to be considered.
Given the enormous computational expense of searching

through the space of problem solver configurations, one might
wonder whether the search should/could be avoided altogether.
To avoid search completely, there are two alternatives. The
first is to find a metaheuristic that outperforms all others for
all problem instances (and thereby avoiding the problem of
optimizer configuration altogether). As discussed in Section
2, we reject this solution as infeasible. The second alternative
is a syntactic, “lookup-table” approach: classify the problem
instance as a member of some class of problems, then apply
the metaheuristic configuration that is known to work well for
this class of problems. This method can work very well if
we happen to have studied the class of problems to which the
particular instance belongs, and we have available a good tech-
nique for classifying the instance as a member of the class.
This approach, however, is of limited utility if we encounter
an instance of a class that we know nothing about, or if we
cannot correctly classify the problem as one that belongs to a
class for which we have a good metaheuristic configuration.4

Thus, a purely syntactic approach does not suffice. A self-
configuring optimization system needs to search the space of
possible metaheuristic configurations-the challenge is to dis-
cover and apply enough heuristic knowledge to the task to
make it more tractable.

4Indeed, the problems of defining useful notions of classes of problem
instances, and classifying a problem instance as belonging to some particular
class is a challenging pattern recognition problem in itself.



What types of heuristic knowledge are available to be ei-
ther acquired from a human, or through knowledge discov-
ery/machine learning techniques? We identify three general
classes of knowledge which are applicable in this context:

� domain-dependent knowledge about the behavior of meta-
heuristics in a given domain,

� domain-independent, meta-knowledge about optimiza-
tion, and

� domain-independent, but system-dependent structural
knowledge.

Each of these types of knowledge are discussed below:

3.3.1 Domain-dependent knowledge

This includes knowledge about the structure of particular
classes of problems, and the behavior of metaheuristics on
particular problem instances or classes of instances. Examples
of heuristics that can be derive from this type of knowledge
include:

� If a problem instance is in the problem instance class I ,
then configuration C is promising;

� If a problem instance i is in the problem instance class I ,
then it is likely that its cost surface is of type S;

� If the behavior of a configuration C is poor, then the
instance is likely to be in instance class I ;

� If the cost surface of the instance belongs to class S, then
the instance is likely to be in instance class I .

In addition, this class includes any knowledge that can be
used to classify a problem instance as belonging to a particular
class of problems, including pattern classification heuristics
that can be used by a problem instance analysis module.

3.3.2 Domain-independent knowledge

This is a formalization of the knowledge that human optimiza-
tion experts possess about optimization in general. It includes
knowledge about the behavior of metaheuristics on particular
classes of cost surfaces,5 and knowledge about the behavior
of metaheuristics in general. Classes of cost surfaces can be
defined by attributes such as the number of local minima, dis-
tance relationships between local minima, etc. Examples of
heuristics that can be derived from this type of knowledge
include:

5Note the difference between classes of problem instances and classes of
cost surfaces. Cost surfaces are a more abstract, and classes of cost surfaces
can encompass many classes of problems. For instance, the class of cost
surfaces that are “bumpy or rugged” includes cost surfaces from a very large
number of classes of problem instances.

� If a surface of class S, configuration C is promising;

� If the behavior of a configuration C is poor, then, config-
uration C 0 is promising;

� Given some features of the observed behavior of con-
figuration C, it is likely that the cost surface is in class
S.

This class of knowledge may not be as powerful as domain-
dependent knowledge by itself, since it is more abstract in na-
ture and more difficult to apply. For example, analysis of the
cost surface is more computationally expensive than syntactic
analysis of the instance, since it requires expensive runs of the
black-box simulation to evaluate the cost surface. However,
human optimization experts who may not be domain experts
for a particular problem that they are given must often rely on
their body of domain-independent knowledge, in combination
to what domain-dependentknowledge they can obtain. The ap-
parent success of these optimization experts indicates that this
type of knowledge can be a very useful means of controlling
search.

3.3.3 Domain-independent, system-dependent structural
knowledge

It may be possible to exploit the syntactic structure of the prob-
lem representation in a particular adaptive problem solver. For
instance, in OASIS, for a particular problem instance, it may
be possible to analyze the structure of its dataflow graph in the
MIDAS methogram to identify, e.g., decision variables that
affect a relatively large number of other nodes in the graph.
Hence, it may be more important to focus on nodes of high
degree than a node than a node of low degree. At this time, it
seems that useful knowledge of this type may be extremely dif-
ficult to acquire, although this is an area of research that seems
particularly interesting from the design/human-computer in-
terface perspectives, since it entails the understanding of how
engineers structure simulations from a graph-theoretic point of
view.

The various types of knowledge described above can be ap-
plied either directly or indirectly (through chains of inference)
as variable/value ordering heuristics6 in a search algorithm that
searches the space of metaheuristic configurations.

Thus, the central research problem that is currently being ad-
dressed in the OASIS project is the representation and learning
of the classes of knowledge described above. We are currently
exploring the application of neural network and Bayesian learn-
ing algorithms in order to learn domain-dependent knowledge
from large databases of performance data.7

6Variable ordering heuristics guide the choice of control points to change;
value ordering heuristics guide the choice of control point values to try.

7Run-time performance data (such as solution quality as a function of time)
is stored for every optimization algorithm run.



4 Example Spacecraft Design Optimiza-
tion Problems

In this section, we describe two specific spacecraft design op-
timization problems to which we are currently applying the
OASIS system. The first is a low-level optimization of the
physical dimensions of a soil penetrator microprobe. The sec-
ond is a system-level optimization of the configuration of the
communication system of an orbiter spacecraft. These ex-
amples are illustrative of the range of different optimization
problems that arise in spacecraft design.

4.1 The Mars Soil Penetrator Microprobe

As part of the NASA New Millennium program, two micro-
probes, each consisting of a very low-mass aeroshell and pene-
trator system, are planned to launch in January, 1999 (attached
to the Mars Surveyor lander), to arrive at Mars in December,
1999. The probes will ballistically enter the Martian atmo-
sphere and passively orient themselves to meet peak heating
and impact requirements. Upon impacting the Martian surface,
the probes will punch through the entry aeroshell and separate
into a fore- and aftbody system. The forebody will reach a
depth of 0.5 to 2 meters, while the aftbody will remain on the
surface for communications.

Each penetrator system includes a suite of highly miniatur-
ized components needed for future micropenetrator networks:
ultra low temperature batteries, power microelectronics, and
advanced micro-controller, a microtelecommunications sys-
tem and a science payload package (a microlaser system for
detecting subsurface water).

The optimization of physical design parameters for a soil
penetrator based on these Mars microprobe is the first testbed
for the OASIS system. The microprobe optimization domain in
its entirety is very complex, involving a three-stage simulation:

� Separation analysis (i.e., separation from the Mars Sur-
veyor),

� Aerodynamical simulation,

� Soil impact and penetration.

To illustrate the utility of adaptive problem solving, we now
briefly describe current work on a simplified version of the soil
penetration stage.

Given a number of parameters describing the initial condi-
tions including the angle of attack of the penetrator, the impact
velocity, and the hardness of the target surface, the optimiza-
tion problem is to select the total length and outer diameter of
the penetrator, where the objective is to maximize the ratio of
the depth of penetration to the length of the penetrator. We
maximize this ratio, rather than simply maximizing the depth
of penetration, since for the Mars microprobe science mission,

the depth of penetration should ideally penetrate at least the
length of the entire penetrator).

One of the initial condition parameters that has a significant
impact on the structure of the cost surface for this optimization
problem is the soil number, which indicates the hardness of
the target surface. Intuitively, one would expect this to be
an important parameter, since, for example, it is clearly more
difficult to penetrate harder targets (the penetrator could bounce
off the target, for example).
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Figure 2: Sample points from cost surface for soil penetrator
microprobe model. Plot of ratio of depth of penetration to
length of penetrator. Soil number = 13 (soft soil). The z-axis
represents the fitness value.
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Figure 3: Sample points from cost surface for soil penetrator
microprobe model. Plot of ratio of depth of penetration to
length of penetrator. Soil number = 7 (hard soil).The z-axis
represents the fitness value.

Figures 2 and 3 show plots of sample points from the cost



surface of this simplified penetration problem for two different
soil numbers, soillNum=7 (hard), and soilNum=13 (soft). The
cost surface for soilNum=13 is a relatively smooth surface,
while the cost surface for soilNum=7 is a much more rugged
surface Because of the larger number of discontinuities in the
cost surface for soilNum=7, optimization algorithms are more
likely to get stuck in local maxima in this cost surface. We
would expect that a greedy metaheuristic would be very suc-
cessful for the soft surface, while a successful metaheuristic
for the hard surface would require some mechanism to escape
local minima. Therefore, to obtain the best performance on
a similar problem instance (given a different soil number, for
example), one should choose and configure a metaheuristic
to exploit this knowledge appropriately; this process would
benefit from the application of our adaptive problem solving
approach. The soil number is therefore a problem parameter
that the OASIS system can use as a feature with which to clas-
sify problem instances (i.e., into problems with soft and hard
soil numbers).

4.2 The Neptune Orbiter

Neptune Orbiter is a mission concept currently being stud-
ied under the Outer Planet Orbital Express program at the Jet
Propulsion Laboratory. The goals of the mission are to put a
spacecraft in orbit around Neptune using state-of-the-art tech-
nologies in the areas of telecommunications, propulsion, orbit
insertion, and autonomous operations. The spacecraft is ex-
pected to arrive at Neptune five years after launch in 2005 using
a Delta launch vehicle. The subsystem requirements include
100 kbps data rate, solar electric propulsion, solar concentrator
power source and a cost of less than $400M8.

For the initial phase of the optimization demonstration, the
focus is on the orbital operations of Neptune Orbiter. The
launch and cruise phases of the mission will be included in the
optimization once the orbiter problem is well understood. The
driving constraints of the orbiter problem are the optical com-
munication aperture, transmit power, and spacecraft mass. The
transmit power is a direct input into the integrated spacecraft
design model. The other inputs include the science observation
time per orbit and the data compression factor. The output of
the model that is being maximized is the science data volume
per orbit. For designs in which the spacecraft mass is greater
than 260kg, the data volume output is zero. A spacecraft with a
dry mass of greater than 260kg is too heavy to lift on the target
launch vehicle. Thus the mass limit bounds the optimization
problem. Currently, we are using cost models in conjunction
with the simulation of the orbiter as described above to obtain
our cost function-a quantitative estimate of the science return
(measured in, e.g., volume of science data obtained per dollar
cost of the spacecraft).

8In Fiscal Year 1994 dollars.

5 Summary and Conclusion

Designing a widely applicable tool for spacecraft design op-
timization is a significant technical challenge. In this paper,
we have proposed the use of metaheuristic optimization algo-
rithms, which are customized for particular problem instances
by a process of adaptive problem solving, and we have de-
scribed OASIS, our current implementation of a system based
on these principles, and discussed many of the technical issues
that have arisen in its design. By this, we hope to provide a
design optimization tool that can provide spacecraft designers
with the ability to perform successful design optimization with
minimal human effort.
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