
 Advanced Scientific Computing Research
FY 2006 Accomplishment

Scheduling Parallel Jobs on Shared Resources
Cynthia Phillips*, Sandia National Laboratories

Michael A. Bender, State University of New York, Stony Brook

Summary

We proved that simple randomized scheduling algorithms can effectively use grid computing
resources in the worst case even with maximum volatility in machine speed.

The MICS Combinatorial and Global
Optimization project team designs and
analyzes efficient algorithms for computing
(near) optimal solutions to problems with
explicit combinatorial structure. This year’s
accomplishments include enhancements to
the PICO parallel integer programming
solver. We have also developed formal
insight into the underlying reasons for the
superior performance of tabu search
metaheuristics for capacitated vehicle
routing problems. This is a simplified
version of the problem faced by DOE in the
transportation of special materials.
Furthermore, our previous research on
finding compact formulations for integer
programming problems, first developed for
protein comparison, had significant impact
in a project outside of MICS. It reduced the
running time of an industrial logistics
problem from 24 hours to 12 minutes.

* (505) 845-7296, caphill@sandia.gov

This summary focuses on a particular
subproblem within this broader scope:
scheduling parallel tasks on shared
processors such as a grid computing
environment. When users compete for
shared resources, individual users receive
varying and unpredictable service due to the
changing loads on the machines. We proved
that even with worst-case speed changes,

simple randomized algorithms can complete
a set of parallel tasks in near-optimal time.

We model the parallel computation as a
directed acyclic graph (DAG) such as the
one illustrated in Figure 1. Each node
represents a subtask of the computation. For
this first study we assume all subtasks
require the same amount of computation
(work). A directed edge from node n1 to
node n2 represents a precedence constraint:
node n1 must complete before n2 can begin.
This structure is typical of search-based
optimization problems. For example, when
searching for parameters that elicit extreme
behavior in a simulation, the result of one
simulation may determine the parameters for
the next. This structure is revealed online,
meaning a subtask is not known until one or
more of its immediate predecessors finish.

Figure 1 A parallel computation represented
as a directed acyclic graph (DAG). An edge

represents a precedence constraint. A task is
ready only if all predecessors have finished.

We wish to execute this parallel job on a set
of shared processors. Because we cannot
control the behavior of other users, the
performance of the machines is
unpredictable. A machine may even
effectively fail after we have dispatched a
job. We cannot preempt and restart a job,
nor can we migrate to a new processor.
However, we can dispatch it to multiple
processors and kill duplicates once one
succeeds. We wish to minimize the time
required to finish the job (i.e. the completion
time of the last subtask to finish).

We model machine performance volatility
by allowing an adversary to determine the
speed of each processor over time.
Processors may run arbitrarily fast or slowly
and change speeds arbitrarily often. Since
processor performance variation is extreme,
we cannot use a tool like Network Weather
Service (NWS) to predict processor
performance. The adversary knows the
structure of the program. But our scheduler
is allowed to make random choices that the
adversary does not know.

Two properties of the DAG effect the job’s
completion time: the total amount of work
and the critical path length. The critical path
is the longest chain of precedence
constraints, a measure of inherent serial
computation. The scheduler does not know
W, the total amount of work in the system or
D, the length of the critical path. We say a
problem is work-dominated for a system
with p processors if the average work per
processor is log p times larger than the
critical path length. It is path-dominated if
the critical path is log p times larger than the
average work. Otherwise, it is balanced. In
describing algorithm performance, we
consider two quantities. Tw is the time the

system requires to complete the job if all
processors are always busy doing non-
redundant work. No schedule can finish the
job faster than time Tw. Td is the amount of
time required to finish the critical path if a
single processor of average speed worked on
it consistently. This is not a lower bound on
the completion time, since faster processors
might work on the critical path, but it is
closely related.

We consider two randomized algorithms. In
the ALL algorithm, whenever a processor is
free, we assign it a task selected uniformly
at random from all ready tasks. The LEVEL
algorithm selects only from ready tasks
closest to a start node of the DAG. ALL
tries to reduce the remaining work. LEVEL
tries to reduce the remaining critical path.

We proved for work-dominated problems,
both algorithms run in (optimal) time1 Tw.
For path-dominated problems, ALL runs in
time Td and LEVEL runs in time log*p Td
where log*p is the number of iterated
logarithms needed to bring p to a constant (a
small constant for any reasonable value of
p). In the balanced case, LEVEL runs in
time Tw + log*p Td and ALL runs in time
(log p)k Tw + (log p)1-k Td, where 0 ≤ k ≤ 1
depends on balance. There is an example
with this runtime. Thus in the balanced
case, it is provably better to replicate low-
level jobs than to consider all ready jobs.

 This shows we can effectively use grid
resources even with maximum speed
volatility. Randomly replicating job
dispatches protects against uncertainty in the
worst case with little cost in performance.

For further information on this subject contact:
Dr. Anil Deane, Program Manager
Mathematical, Information, and Computational
 Sciences Division
Office of Advanced Scientific Computing Research
Phone: 301-903-1465
deane@mics.doe.gov

1. All times are asymptotic, meaning we ignore constant multiplicative factors.

	Cynthia Phillips*, Sandia National Laboratories
	Michael A. Bender, State University of New York, Stony Brook

