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Summary 
 
We proved that simple randomized scheduling algorithms can effectively use grid computing 
resources in the worst case even with maximum volatility in machine speed.     
 
The MICS Combinatorial and Global 
Optimization project team designs and 
analyzes efficient algorithms for computing 
(near) optimal solutions to problems with 
explicit combinatorial structure. This year’s 
accomplishments include enhancements to 
the PICO parallel integer programming 
solver.  We have also developed formal 
insight into the underlying reasons for the 
superior performance of tabu search 
metaheuristics for capacitated vehicle 
routing problems. This is a simplified 
version of the problem faced by DOE in the 
transportation of special materials. 
Furthermore, our previous research on 
finding compact formulations for integer 
programming problems, first developed for 
protein comparison, had significant impact 
in a project outside of MICS.  It reduced the 
running time of an industrial logistics 
problem from 24 hours to 12 minutes.  
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This summary focuses on a particular 
subproblem within this broader scope: 
scheduling parallel tasks on shared 
processors such as a grid computing 
environment.  When users compete for 
shared resources, individual users receive 
varying and unpredictable service due to the 
changing loads on the machines.  We proved 
that even with worst-case speed changes, 

simple randomized algorithms can complete 
a set of parallel tasks in near-optimal time. 
 
We model the parallel computation as a 
directed acyclic graph (DAG) such as the 
one illustrated in Figure 1.  Each node 
represents a subtask of the computation. For 
this first study we assume all subtasks 
require the same amount of computation 
(work). A directed edge from node n1 to 
node n2 represents a precedence constraint: 
node n1 must complete before n2 can begin.  
This structure is typical of search-based 
optimization problems.  For example, when 
searching for parameters that elicit extreme 
behavior in a simulation, the result of one 
simulation may determine the parameters for 
the next.  This structure is revealed online, 
meaning a subtask is not known until one or 
more of its immediate predecessors finish. 

 
Figure 1 A parallel computation represented 
as a directed acyclic graph (DAG).  An edge 



 

represents a precedence constraint.  A task is 
ready only if all predecessors have finished. 
 
We wish to execute this parallel job on a set 
of shared processors.  Because we cannot 
control the behavior of other users, the 
performance of the machines is 
unpredictable.  A machine may even 
effectively fail after we have dispatched a 
job.  We cannot preempt and restart a job, 
nor can we migrate to a new processor.  
However, we can dispatch it to multiple 
processors and kill duplicates once one 
succeeds.  We wish to minimize the time 
required to finish the job (i.e. the completion 
time of the last subtask to finish). 
 
We model machine performance volatility 
by allowing an adversary to determine the 
speed of each processor over time. 
Processors may run arbitrarily fast or slowly 
and change speeds arbitrarily often. Since 
processor performance variation is extreme, 
we cannot use a tool like Network Weather 
Service (NWS) to predict processor 
performance. The adversary knows the 
structure of the program. But our scheduler 
is allowed to make random choices that the 
adversary does not know. 
 
Two properties of the DAG effect the job’s 
completion time:  the total amount of work 
and the critical path length. The critical path 
is the longest chain of precedence 
constraints, a measure of inherent serial 
computation. The scheduler does not know 
W, the total amount of work in the system or 
D, the length of the critical path. We say a 
problem is work-dominated for a system 
with p processors if the average work per 
processor is log p times larger than the 
critical path length.  It is path-dominated if 
the critical path is log p times larger than the 
average work.  Otherwise, it is balanced.  In 
describing algorithm performance, we 
consider two quantities. Tw is the time the 

system requires to complete the job if all 
processors are always busy doing non-
redundant work. No schedule can finish the 
job faster than time Tw. Td is the amount of 
time required to finish the critical path if a 
single processor of average speed worked on 
it consistently.  This is not a lower bound on 
the completion time, since faster processors 
might work on the critical path, but it is 
closely related. 
 
We consider two randomized algorithms.  In 
the ALL algorithm, whenever a processor is 
free, we assign it a task selected uniformly 
at random from all ready tasks.  The LEVEL 
algorithm selects only from ready tasks 
closest to a start node of the DAG.  ALL 
tries to reduce the remaining work. LEVEL 
tries to reduce the remaining critical path. 
 
We proved for work-dominated problems, 
both algorithms run in (optimal) time1 Tw. 
For path-dominated problems, ALL runs in 
time Td and LEVEL runs in time log*p Td 
where log*p is the number of iterated 
logarithms needed to bring p to a constant (a 
small constant for any reasonable value of 
p).  In the balanced case, LEVEL runs in 
time Tw + log*p Td and ALL runs in time 
(log p)k Tw + (log p)1-k Td, where 0 ≤ k ≤ 1 
depends on balance.  There is an example 
with this runtime.  Thus in the balanced 
case, it is provably better to replicate low-
level jobs than to consider all ready jobs. 
 
 This shows we can effectively use grid 
resources even with maximum speed 
volatility.  Randomly replicating job 
dispatches protects against uncertainty in the 
worst case with little cost in performance. 
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1. All times are asymptotic, meaning we ignore constant multiplicative factors.  
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