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Abstract

Although models are now routinely used for addressing environmental problems, both in research and management applications,
the problem of obtaining the required parameters remains a major challenge. An attractive procedure for obtaining model
parameters in recent years has been through inverse modeling. This approach involves obtaining easily measurable variables (model
output), and using this information to estimate a set of unknown model parameters. Inverse procedures usually require optimization
of an objective function. In this study we emulate the behavior of a colony of ants to achieve this optimization. The method uses the
fact that ants are capable of finding the shortest path from a food source to their nest by depositing a trail of pheromone during their
walk. Results obtained with the ant colony parameter optimization method are very promising; in eight different applications we
were able to estimate the ‘true’ parameters to within a few percent. One such study is reported in this paper plus an application to
estimating hydraulic parameters in a lysimeter experiment. Despite the encouraging results obtained thus far, further improvements
could still be made in the parameterization of the ant colony optimization for application to estimation of unsaturated flow and

transport parameters. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the past several decades, considerable ad-
vances have been made in the mathematical description
of water flow and solute transport processes in variably
saturated soils and groundwater systems. A large num-
ber of models of different degrees of complexity and
dimensionality are now available for predicting subsur-
face flow and transport [21,23,31]. Still, effective appli-
cation of such models to practical field problems suffers
from the lack of knowledge of model parameters and
their uncertainty. Model parameters are often difficult, if
not impossible, to measure directly because of time,
money, instrumentation, scale, and conceptual con-
straints. To deal with the issue of model parameter
identification, inverse modeling (IM) has provided an
attractive alternative method to direct measurement.

*Corresponding author. Tel.: +41-01-823-5359; fax: +41-01-823-
5375.
E-mail address: abbaspour@eawag.ch (K.C. Abbaspour).

IM constitutes estimation of input parameters from
readily measurable model output variables. Input
parameters are obtained by minimizing an objective
function describing the difference between measured and
simulated data. Most optimization algorithms used for
parameter estimation in variably saturated flow and
transport studies [10,13,22,25,32] are gradient-type
methods that have the disadvantage of being very sen-
sitive to the initial guesses of the parameters, while also
being prone to convergence to local minima [14,19]. In
this paper we propose a global search algorithm for
estimating model parameters based on optimization by a
colony of ants.

Social insects, such as ants, bees, termites and wasps,
often exhibit a collective problem-solving ability [5]. In
particular, ants are capable of finding the shortest path
between their nest and a food source [4]. This opti-
mization capability is apparently achieved by secreting
recruitment pheromone on their path when the ants are
in a transport mode [20].

The process by which ants are able to establish the
shorter of two paths between two points A and B is
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Fig. 1. Example of real ants finding the shortest path: (a) initially ants
choose paths ACB and ADB with equal probability; (b) path ACB,
being shorter, receives more pheromone with time; (c) more phero-
mone attracts more ants; hence, eventually all ants will follow path
ACB.

illustrated in Fig. 1. Initially, ants have an equal chance
of choosing between paths ACB and ADB. However,
after some time path ACB, by virtue of being shorter,
receives more pheromone from ants going in both di-
rections (ACB, BCA). The shorter path with extra
pheromone tends to attract more ants, which in turn will
lead to more pheromone accumulation. The collective
behavior that emerges is a form of autocatalytic (posi-
tive feedback) process, which will soon result in all ants
following the shorter path.

Inspired by this ant-based optimization principle,
researchers have proposed several algorithms for solu-
tion of classical combinational optimization problems
such as the traveling salesman problem (TSP) [15], the
quadratic assignment problem [11], or the job-shop
scheduling problem [7], all of which were reasonably
successful. This paper presents an adaptation and ap-
plication of the ant colony optimization (ACO) tech-
nique to the inverse estimation of unknown parameters
in unsaturated flow models.

2. The ant colonization search algorithm

Since, to the best of our knowledge, ACO has not
been used before in the area of soil and hydrological
sciences, we first briefly review its benchmark applica-
tion to the TSP [9]. In the TSP, the objective is to find
the shortest path that connects (visits) each of Y towns
once. Let z(¢), (i=1,...,Y) be the number of ants in
town i at time ¢, and let Z be the total number of agents
(ants). Each artificial ant in town i is an agent who
places a substance called “trail” (pheromone for real
ants) on a visited path, and then chooses to visit the next
town j with a probability that is a function of the town
distance, dj;, and of the amount of trail present on the
connecting path. Also, each agent is trained to visit a

town only once by keeping track of towns visited in a
“tabu’ list.

Let 7;;(¢) be the intensity of the trail on edge (i, /) at
time ¢. Each ant at time 7 chooses the next town, where it
will be at time ¢ + 1. Let us define a “run” as Z moves
required by the Z ants in the interval (¢, +1). For Y
towns it hence will take Y runs of the model to complete
an ““iteration” during which each ant has completed a
tour. The trail intensity 7;; is updated according to the
equation

T;(t + 1) = pt;i(¢) + Aty (1)

where p (< 1) is a coefficient such that (1 — p) represents
the evaporation (loss) of trail between times ¢ and ¢ + 1,
and

A
AT,‘/ = Z ATZ, (2)
k=1

where Arffj is the quantity per unit of length of trail
substance (pheromone in the case of real ants) placed on
edge (i, ) by the kth ant between times ¢ and ¢ + 1. The
quantity Atf; is given by

£ if kth ant uses edge (i, /)
At = in its tour (between ¢ and ¢+ 1), (3)

0 otherwise,

where Q is a constant related to the quantity of trail laid
by ants, and L; is the tour length of the kth ant.

To satisfy the constraint that an ant must visit all Y
towns, a data structure called the tabu list is associated
with each ant; this tabu list saves the towns already
visited up to time ¢ and forbids an ant to visit the same
town again before Y runs (a complete tour) have been
completed. When a tour is completed, the tabu list is
used to compute the ants’ current solution (i.e., the
distance of the path covered by an ant). The tabu list is
then emptied and the ant is free to again choose. We
define tabu; as the dynamically growing vector that
contains the tabu list of the kth ant.

Let us define the “visibility” n,; as 1/d;; (i.e., the re-
ciprocal of the distance between two towns). This
quantity does not change during a run of the ACO, as
opposed to the trail 7 that changes according to Eq. (1).
We can then define the transition probability from town
i to town j for the kth ant as

] ()’

pf{,(t) = ZAeallowedk ek (01 ()
0

if j € allowedy, @)
otherwise,

where allowed;, = {Y — tabu;} and where ¢ and f are
parameters that control the relative importance of trail
versus visibility. The transition probability is a trade-off
between the visibility (which states that close towns will
be selected with a higher probability, thus implementing
a greedy heuristic strategy), and the trail intensity at
time ¢ (which states that paths with a lot of traffic must
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be highly desirable, thus implementing the autocatalytic
process). A greedy heuristic strategy is a strategy that
helps find acceptable solutions in the early stages of the
search process.

After Y runs all ants have completed a tour, and their
tabu lists will be full; at this point for each ant k the
value of the tour length Z; is computed and the values
Arfj are updated according to Eq. (3). Also, the shortest
path found by the ants (i.e., min; L;, k=1,...,7) is
saved and all tabu lists are emptied. This process is it-
erated until the tour counter reaches the maximum (user
defined) number of iterations.

Dorigo et al. [8] compared ACO with several other
popular algorithms for solving the Oliver30 problem (a
30-town problem) and concluded that with few excep-
tions, ACO always found the best-known solution.

3. Application of ACO to inverse modeling

The first step in any IM study is the definition of an
objective function. Our objective in using IM is to find a
parameter set  that minimizes the general function

/ i

CEDRDI IACETAE 5

i=1

where g is the objective function, f is the vector of input
parameters, / is the number of observed variables, vy is
the measured value of the ith variable at the jth location
and the kth time, v, is a corresponding simulated value,
w; 1s the weight of the ith variables, Wi is the weight
associated with individual measurements, g; is the total
number of measurements over time and 7; is the total
number of measurements over space for the ith variable.

The algorithm ACO-IM described below is an ad-
aptation of a previously developed program, Sequential
Uncertainty Fltting (SUFI) [3], to ACO. The main dif-
ference between the two programs is in the updating of
the prior parameter uncertainty as described in the fol-
lowing paragraphs.

The main concept behind the SUFI algorithm can be
summarized in the following steps: (1) depict each un-
known parameter by an interval based on available in-
formation, i.e., [100-800] for the imaginary parameter p
in Fig. 2; (2) discretize each interval into a number of
strata, let the middle of each stratum represent that
stratum; (3) run the simulation model of choice for all
(exhaustive sampling), or a randomly selected subset of
all the possible parameter combinations (an iteration);
(4) score each stratum on the bases of the smallness of
the value of the objective function in such a way that
small values of objective function receive higher scores;
(5) eliminate from the ends of the parameter intervals
the strata with small or no scores, thereby decreasing the
initial range of parameter uncertainty, and finally; (6)
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Fig. 2. Illustration of parameter discretization, values of objective
function g for different parameter values, gmin,g, and parameter
updating based on the criteria (g < gmin), and (g < 7).

repeat the process until a desired stopping rule is
reached. In SUFTI algorithm, each stratum, initially set
to a score of zero, receives a score of 1 if the value of the
objective function, g, for that stratum satisfies the con-
dition (g < g.r), where g is a user-defined value. In the
illustrative example in Fig. 2, for the condition
(g < ger = min), Where gy is the minimum value of the
objective function obtained in an iteration, only one
stratum receives score, and hence the updated parameter
(p}), based on this criterion, would have a very narrow
range [500-600]. This case will provide a fast but less
than optimum solution as the global minimum (at about
400 in Fig. 2) will be missed. For the criterion
(g<ga < T), where T has a value greater than g, the
updated parameter would look like the second line in
Fig. 2 (p5) with a range of [200-700], which is smaller
than the initial range of [100-800] but still much larger
than the (g < g = gmin) criterion. For this case, there is
a larger probability of finding the global minimum but a
larger number of iterations must be performed.

For parameter updating, the user in SUFI program is
presented by score distributions for several g, con-
ditions, and is asked to update each parameter by
studying the scoring patterns of the different strata [3].
In the following paragraphs we present a more formal
description of the above steps, and point out that the
scoring, and hence the updating of the parameters in
ACO-IM is determined by a function that tries to
achieve a balance between different interests, mainly, a
desire to reach a fast solution modified by a desire to
avoid the local minima.

3.1. Formulating ACO-IM

The ACO-IM problem can be described as follows.
Let g(f) : D — R, as given by (5), be a continuous and
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bounded function, and f be a h-dimensional state vec-
tor. Also, let R be real numbers, and D be the search
space of f8. The objective is to find the state vector f§ that
minimizes g(ff). Without loss of generality, we can take
D as the hyperparallelepiped

where ;" and B denote, respectively, the lower and the
upper bounds of the parameter f5;, The upper and the
lower bounds are based on prior information using ex-
isting knowledge.

Since ACO has been developed for ordered problems,
its application to a continuous problem requires first
discretization of the search space, D. This is done by
dividing the interval [, , B;] of each parameter f; into a
number, say m;, of strata. If each stratum be represented
by the value at the middle of the stratum, then there will
be M = mymy, ..., m, permutations or possible pathways
through the space of input parameters. We refer to M
as the exhaustive sampling scheme (ESS). Let
Bij(i=1,...,b and j=1,...,m;) be the stratum j of
parameter f5; in the search space of D.

The above discretization scheme is schematically
shown in the right-hand side of Fig. 3 for four par-
ameters, with each parameter interval [8;, 8] divided
into five strata. There are no hard rules for choosing the
stratification of the parameters, except that initially they
should uniformly cover the complete parameter space,
unless additional information exists that would favor
one region of parameter space above another. While
having more strata would speed up convergence of the
ACO problem, this advantage should be balanced
against the speed of the simulation program since the
number of calls to a simulation program rapidly in-
creases as the number of strata increases. To limit the
number of function calls, one could select only a random
subset of M, or N, which we refer to as a random
sampling scheme (RSS), and/or invoke parallel pro-
cessing. The ACO-IM algorithm easily lends itself to
parallel processing techniques. Based on our experience
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Fig. 3. Graphical representation of discretized parameter space on the
right and the pathway structure on the left.

so far, N > 0.1 M generally leads to optimum solutions,
while and N < 0.1 M often leads to less than optimum
solutions.

3.2. Assigning tasks to ant agents

To satisfy the constraint that each ant must follow
only one pathway, we generate a pathway-structure list
as shown in the left side of Fig. 3. Using this list, each
ant will follow one of M, or N pathways, i.e., the
pathway (1,1,1,2), or (2,4,2,4) as shown in Fig. 3.
Therefore, at the most we need a total of M ants, with
each ant acting like an agent having the following tasks:
e seclecting a pathway from the pathway list and re-

membering the values of the parameter strata along

its pathway,

e at the end of the pathway, passing the parameter val-
ues to a simulation program,

e getting simulated values back from the simulation
program,

e calculating the value of the objective function for its
pathway, and

e on the basis of the value of the objective function,
placing a certain amount of trail (pheromone in the
case of real ants) on each stratum visited along its
pathway.

Once all ants complete the above tour, one ‘ant-cycle’
or one ‘iteration’ is completed. Eventually the trail will
be used to score a pathway. The low scoring pathways
will vanish (in the case of real ants the pheromone
evaporates on pathways with less traffic) and new
pathways evolve around high scoring paths.

3.3. Calculating the trail and scoring parameter strata

Let 7,(/) be the intensity of trail on pathway
u (u=1,...,N) and iteration I. For the example in Fig.
3, ant number 209 places the same amount of trail on
stratum 2 of the first parameter, stratum 4 of the second
parameters, stratum 2 of the third parameter, and stra-
tum 4 of the fourth parameter. In the TSP problem the
trail intensity was defined as a function of the length of a
path. In ACO-IM we use value of the objective function
of a pathway to assign the trail. The trail intensity on
each path is calculated in such a way that the larger
values of the objective function (i.e., longer paths for
real ants) receive smaller trails. This is accomplished
according to the following equation

TM([):{exp(4.6(%)), 8u < Gers (6)

0, 8u > er,

where g, is the value of the objective function for the uth
pathway, g is a critical value (to be defined later) above
which t, = 0 (see Fig. 2), and g, is the minimum of all
gs (u=1,...,N) for an iteration. Note that in an
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ACO-IM problem the trail intensity is no longer a
function of time, as it was in the TSP, and is defined per
iteration. The above equation states that pathways with
values of the objective function larger than g, receive no
trail (for real ants the trail on longer paths evaporates
quickly), while below g, the intensity of trail is expo-
nentially larger for smaller values of the objective
function (for real ants a shorter path from nest to food
source receives increasingly more pheromone). At
Zmin, T.(1) 1s set equal to an arbitrary value of 100 (this
value would be equivalent to Q in the TSP, which is
incidentally also equal to 100).

Note that any single stratum f; in D may be the
crossroad of many ant pathways. The trail share (cal-
culated with Eq. (6)) of each stratum f; from each
pathway can be summed to yield ¢,; as

¢ij(1) = Z Tu(])7 (7)

uecrossing pathways

where crossing pathways are all the pathways that cross
stratum f;;. In addition, let o;; (/) be the standard de-
viation of all values of the objective function involving
B;;- The value of g;; (I) depicts the sensitivity of the f;;
stratum with respect to other strata in D. Fig. 4 illus-
trates a pattern of both ¢,; and ¢;; distributions over the
strata of the hypothetical four-parameter example in
Fig. 3.

To assess the evolution of new pathways through
parameter spaces we must formulate a trade-off between
the following three considerations: (1) the autocatalytic
process that accounts for rapid discovery of good solu-
tions. This objective is achieved through Eq. (6) where
pathways with smaller values of the objective function
receive exponentially higher trails, (2) the greedy heu-
ristics strategy that helps one to find acceptable solu-
tions in the early stages of the search process. This
objective is achieved by selecting g, to be as close as
possible to gu, (see Fig. 2), and (3) the distributed
computation strategy that avoids premature conver-
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B; e {e—i o o— w o o—|
B, * * o— ot o ® ° — 10—
B, ° ﬁT ° —| |—o ° ° ° —|
(@ (b)

¢i/‘ Sy

Fig. 4. Typical trail intensity distribution (a) and sensitivity distribu-
tion (b) for each parameter stratum. The larger bars indicate larger
trail values and higher sensitivities.

gence. This objective is achieved by giving more weight
to strata with higher sensitivities o;;.

In Fig. 4(a), regions of larger trail intensity (shown
with larger bars) are generated by smaller values of the
objective function, and hence are more likely to contain
the desired optimum solution. This suggests that we may
eliminate regions with zero or small amounts of trail (a
move that may constitute a greedy behavior). On the
other hand, strata with large sensitivities (Fig. 4(b)) may
not have been represented well by their middle points
and should not be eliminated.

In order to decide how to update the parameters, we
define the term ‘score’, Sj;, for each f; calculated by the
following expression similar to the transition probability
of the TSP problem

(‘f’fj)A (”i/’)N
Sy = A N> (8)
=t 2 25 (6y) (oy)

where we let the value of 4 = 1, and calculate N and T
by using

N = CNE,
S 9)
T= &min +cr £ 5
g
where y;; is the mean of trail of the f;; strata, g;; is the
standard deviation of trail on the f; strata, p, and o,
are, respectively, the mean and the standard deviation of
the objective function for an iteration, and ¢y and ¢y are
constants that were determined to be about 0.3 and 0.5,
respectively (see Appendix A for more details). The ratio
of standard deviation to mean is known as the vari-
ability and our objective in scoring each stratum
through Eq. (8) is to assign a larger value to T if the
variability of the objective function is large (refer to
Fig. 2) and to assign also a larger value to N if the
sensitivity (g;;) of the stratum f; is large, hence satis-
fying the criteria for distributed computation.

The parameters A, N, and T in (8) control the rela-
tive importance of the trail intensity (which implements
the autocatalytic process) versus sensitivity (which ad-
dresses the demand for distributed computation). Al-
though the greedy nature of artificial ants dictates that
parameters be updated on the basis of the smallest value
of T (i.e., T = gmin) alone, the addition of ¢;; and ¢,
influences an ant’s decision, the effect of which is similar
to the effect of a mutation operator in a genetic algo-
rithm. [24] We refer henceforth to the above scoring
strategy as the ANT scoring strategy. A definition of the
parameters involved in ACO-IM appears in Table 1.

3.4. Updating of parameters and stopping rules

Once the scoring is completed, parameters are up-
dated by eliminating the strata with small scores from
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Table 1
Definition of the parameters involved in ACO-IM
Parameter Definition
A N, T Parameters controlling the effect of ¢,;, 0;;, and g, respectively, on S;;
ey, Cr Constants associated with parameters N and T’
Zmin Minimum value of the objective function in an iteration
Ger Critical value of objective function above which a pathway receives no trail
Sy Score of stratum j of parameter i
By Stratum j of parameter f3;
s Og Mean and standard deviation of objective function in an iteration
T, Amount of trail laid on pathway u by a crossing ant
b Total amount of trail accumulated on stratum j of parameter i
gy Standard deviation of objective function for stratum j of parameter i

both ends of the intervals. This results in parameters
with narrower ranges (uncertainties). Note that if the
high scoring strata fall on either end of the parameter
intervals, the parameters could be extended in that di-
rection. This makes the initial guess of the parameter
intervals not very crucial, and at the same time allows a
deleted parameter stratum to re-enter the calculation.
The system is subsequently reinitialized with updated
parameters and the process repeated.

The iterations continue until a stopping rule is satis-
fied. This may occur when (1) a desired value of the
objective function is reached, or (2) no more changes in
the value of the objective function are obtained in con-
secutive iterations, or (3) the number of precision digits
used to signify a parameter becomes more than the ac-
curacy needed to represent that parameter value, or (4)
the 95% confidence interval of the variable distributions,
resulting from the propagation of uncertainty in the
parameters, contains 95% of the measurements (plus
their errors).

The above distribution is obtained by Monte-Carlo
through the sampling of the ant paths at the end of each
run by simply looking at the distribution of variable
values corresponding to the different paths. The 95%
confidence interval for a variable (95PCI) is obtained by
calculating the cumulative distribution and marking the
variable values at 0.025 and 0.975.

For environmental projects, where there are usually
measurements errors and the models often do not cap-
ture all of the relevant process and boundary conditions,
we propose using option 4 above as a more appropriate
stopping rule. In Fig. 5 we illustrate the concept of
‘conditioned parameter distribution’. The first iteration
of the ACO-IM is based on a prior estimate of the
uncertainty domain of the model parameters and
therefore, because of the often large initial uncertainties,
the 95PCI of any model variable is large. This is shown
by the space within the example curves ‘@’ in Fig. 5. As
iterations proceed, the uncertainty domain of the
parameters become smaller and the parameter distri-
butions are more and more conditioned on the mea-
surements of the variable(s) used in the objective
function. Thus, conditioned parameter distribution in

the context of this study refers to parameter distribu-
tions such that, when propagated stochastically through
a simulation program, the 95PCI of the simulated
variable would contain more than 95% of the measured
points (i.e., curves ‘b’ in Fig. 5). In ACO-IM, the iter-
ations can be continued until the upper and the lower
limits of the 95PCI coincide with a single curve. This
curve is produced by a set of single-valued parameters
generally referred to as the ‘best-fit parameters’ (curve
‘¢’ in Fig. 5). However, as illustrated by curve ‘¢’, fitted
parameters produce simulations that often miss most of
the measured points. In our opinion, fitted parameters
are inadequate for analysis of environmental problems if
used without the uncertainty associated with them. In
gradient type optimization programs such as Leven-
berg-Marquardt (LM) [17], the covariance of the
parameter matrix and hence the 95% confidence interval
associated with each parameter are based on linear re-
gression analysis. The problem, therefore, with the cal-
culated parameter uncertainties are that they hold only

2
= a
=
<
>
S b
s
C
b

Time, or space

Fig. 5. Simulations based on the ‘conditional parameter distribution’
concept vs. the ‘best-fit parameters’. Best-fit parameters produce sim-
ulations that usually miss most of the measurements, that is, curve d,
whereas conditioned parameter distributions produce simulations that
respect most of the measurements, that is, curves c.
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approximately for the non-linear analysis [13]. Instead,
to account for parameter uncertainties, we suggest ob-
taining conditioned parameter distributions, where most
of the data points are respected within the 95PCI.

Furthermore, the problem of algorithm convergence,
as the result of correlation among parameters is per-
haps less severe in obtaining conditioned parameter
distributions than fitted parameters. This is because the
former considers ranges rather than point values.
However, as with any other algorithm, in case of
strong parameter correlation in ACO-IM it would also
be necessary to constrain one of the dependent
parameters.

4. Testing ACO-IM

4.1. Test case 1. application of ACO-IM to an unsatu-
rated flow problem

To test the ACO algorithm, we used Example 2 from
the HYDRUS-1D and HYDRUS-2D Windows-based
software packages [26,27]. We chose this example,
firstly, because it considers a simple and yet non-trivial
one-dimensional water flow in a two-layered field profile
of the Hupselse Beek watershed in the Netherlands, and
secondly, because we can assume that we know the ‘true’
parameters and test how closely ACO-IM can estimate
them.

The two-layered system being simulated is schemati-
cally described in Fig. 6. The equation being solved is a
one-dimensional isothermal Darcian flow in a variably
saturated rigid porous medium, expressed by the fol-
lowing form of the Richards equation:

20 o [ oh
5—5<Ka+K>—& (10)

where 0 is the volumetric water content (cm® cm™3), 4 is
the pressure head (cm), S is the sink term (d™'), K is the

230 1 2
Measured water content 9 10
— Atnodes: 11, 21, 51, 63
13 14
210 [~
7 Measured pressure head
= At nodes: 10, 25, 40, 50
19 20
cm
(em) 90 -
20 [ N
[I:III Root zone
— 57 58
R— Second layer
o 65 66

Fig. 6. Flow system and the finite element mesh for the first example.

hydraulic conductivity (cm d™'), z is a vertical coordi-
nate (cm), and ¢ is time (d). Atmospheric data and ob-
served groundwater levels provided the required
boundary conditions for the numeric model. The soil
profile consisted of two layers: a 40-cm thick A-horizon,
and a B/C-horizon that extended to a depth of 300 cm
(Fig. 4). The depth of the root zone was 30 cm. The soil
surface boundary conditions involved actual precipita-
tion and potential transpiration rates for a grass cover.
The surface fluxes were incorporated by using average
daily rates distributed uniformly over each day. The
bottom boundary condition consisted of a prescribed
drainage flux-groundwater level relationship given by
[27]

q(h) = —arexp(ay [ h = G ), (11)

where a; and a, are empirical parameters, and G is the
reference position of the groundwater level.

The initial moisture profile was taken to be in equi-
librium with the initial groundwater level at 55 cm below
the soil surface. Soil hydraulic characteristics were de-
scribed according to the van Genuchten model [29] for
the water retention curve,

0(h) — 0, 1
S == =0, “Ta iy "0 (12)
and
0(h)y=0, h=0 (13)

and the van Genuchten—-Mualem model [18] for the
hydraulic conductivity function

m12
K(h) = {Ksss-m — (s h<o,
K, h =0,

(14)

where o and n are shape parameters, S, is effective water
saturation, m = 1 — 1/n, 0, and 0, are the residual and
saturated water contents, respectively; and K; is the
saturated hydraulic conductivity.

The water retention and flow curves for both soils are
shown in Fig. 7. For the inverse problem we assumed
that the following six parameters were unknown:
oy, ny, Koo, no, and K. The information usually avail-
able for inverse analyses are some variables (e.g., pres-
sure head, water content, concentration, or flux from the
bottom of a soil column or a lysimeter) measured at
certain depths and at certain times. In this test case we
arbitrary assumed to have 20 pressure head data
measured on days 120, 160, 200, 240, 270, and at nodes
11, 25, 40, and 50; and 12 water content data measured
on days 130, 180, and 220, and at nodes 11, 21, 51, 63.
These ‘measurements’ were taken from the output files
of Example 2 of HYDRUS_2D. Then, the objective
function was written as
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where /1 is the measured pressure head, #’ is the simu-
lated pressure head, 0 is the measured water content, ¢/
is the simulated water content, and the weights were
calculated according to the relationship (1/ka?) for each
variable with ¢ being the standard deviation of a vari-
able and k being the number of samples [6].

Initially, we assumed a large range of uncertainties
for the unknown parameters, as listed in Table 2. We
estimated the unknown parameters using various strat-
ification strategies and various number of searching ant
agents. All tests with the number of ant agents exceeding
10% of the exhaustive set M led to basically the same
results (+2% differences in the estimated parameters).

In the run reported here, initially we divided each
parameter into 5 strata, which produced a total of
M = 15625 exhaustive runs. But we executed only 20%
of the exhaustive set and used N = 3125 ant agents to

Table 2

do the search. We stopped after the sixth iteration with
the results summarized in Table 2. The entire run took
about two hours on a Pentium 600 MHz computer. The
stratification and the scoring for the greedy and the
ANT strategy are shown in Table 3 for the first itera-
tion. Note once again that the difference between
greedy and ANT strategy is that for greedy strategy we
only use gmi, as the only criteria for scoring the pa-
rameter strata. Hence, only one stratum per parameter
receives score, while for the ANT strategy more strata
combinations receive scores. The consequence of this is
that the updated parameters based on the greedy
strategy are more compact than a corresponding ANT
strategy. For convenience, in ANT strategy, we divided
the scores of all strata for each parameter by the
smallest score; hence, there is always one stratum with a
score of 1.

After the first iteration, we followed separately the
greedy path and the ANT path for parameter updating.
Table 2 shows the results of both paths. For the greedy
path the third and the fourth iterations produced the
same value of the objective function, hence we consid-
ered the third iteration as the final one. While for the
ANT strategy we stopped after the sixth iteration when
the measured and expected simulated pressure head and

Initial parameter uncertainty range and final estimates obtained using the ANT and the greedy strategies

Unknown parameter Initial uncertainty

Final parameter and uncertainty

Final parameter and uncertainty

(true values) range range based on ANT strategy range based on the greedy strategy

oy (0.0174) [0.0-0.05] 0.0173 0.02425
[0.0172-0.0175] [0.022-0.028]

ny (1.3757) [1.0-2.0] 1.38 1.29
[1.371-1.382] [1.28-1.36]

Ky (29.75) [0.0-200.0] 28.85 96.0
[28.74-29.82] [80.0-112.0]

o, (0.0139) [0.01-0.03] 0.01386 0.01435
[0.01381-0.01393] [0.0112-0.0148]

ny (1.6024) [1.5-3.0] 1.604 1.65
[1.5983-1.6044] [1.56-1.8]

Ky, (45.34) [0.0-200.0] 44.6 32.8
[44.43-45.76) [16.0-40.0]

Objective function 0.53 0.000019 0.029
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Table 3

Summary of parameter stratification, strata scores, and updated
parameters based on greedy and ANI strategies for iteration 1 of
example 1

Iteration 1
Parameter stratification

o 0.0 0.01 0.02 0.03 0.04 0.05
n 1.0 1.2 1.4 1.6 1.8 2.0
Ky 0.0 40.0 80.0 120.0 160.0 200.0
o 0.01 0.016 0.022 0.028 0.034 0.04
n 1.5 1.8 2.1 2.4 2.7 3.0
Ky 0.0 40.0 80.0 120.0 160.0 200.0
Greedy strategy:
W 00 o 2 = [0.02-0.03]
m 01 0 00 m = [1.2-14]
le 00 1 00 Updated parameters Ksl = [80*120]
m 100 00 o = [0.01-0.016]
m 1 00 00 m = [1.5-18]
Ko = [OAO]
Ko 1 00 00
ANT strategy:
w03 ;COT’ 0 o = [0.01-0.04]
m 07 4 10 m =[1.2-18]
K 1 1 1 11 Updated parameters Ksl = [0—200]
ujl 8 5 3 21 oy = [0.01-0.034]
n; 42 2 11 ny = [1.5-2.4]
Ky 1 11 11 Ko = [0-200]

water content curves were practically indistinguishable
as shown in Fig. 8. The sequential nature of the al-
gorithm allows us to continue iterations until arriving at
the exact solution. This would not be possible with the
greedy strategy.

It appears that the ANT scoring strategy, while using
the greedy force through 7 to obtain a solution at the
early stages of the search, receives proper signals from
the autocatalytic parameter A and the distributed com-
putation parameter N to jump over local minima and
arrive at an optimum solution.

Fig. 9 illustrates the 95PCI for the pressure head and
water content based on the values of the third, fifth, and

4 day 120 xday220 [Oday270 ANT greedy

200

<
100 1

o
=

-100

-200

Pressure head (¢cm)

-300

100 150
Depth (cm)

200 250

Water content (-)
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sixth iterations at a depth of 10 cm below the soil surface
as a function of time. Also shown in Fig. 9 are the
measured values and the expected values of the simu-
lated variables for the sixth iteration. As iterations
continue, the uncertainty ranges become smaller, lead-
ing to narrower 95PCI. Note that for this “well-defined”
problem (i.e., the measurements were model outputs
without any measurement errors, the boundary con-
ditions as well as the processes were exactly defined) the
expected simulation (i.e., at the 50% confidence interval)
along with the 95PCI for the sixth iteration all coincide
with the measured data. This normally would not hap-
pen in a real-world application.

4.2. Test case 2: comparison of ACO-IM with LM
method

In this section we describe a comparison of the results
of ACO-IM with the LM [17] method implemented in
HYDRUS-1D [26]. The example used is based on an
experiment carried out in a large lysimeter (3 m? by 1.5
m) planted with forest vegetation designed to study the
effect of elevated CO, and nitrogen on forest ecosystems
[28]. We chose this specific example because the data has
all the noise that one would expect in a field experiment
but with controlled boundary conditions. The important
processes included flow, transport of bromide, and root
water and solute uptake. Another reason for using this
example was to demonstrate that IM could be more
than parameter fitting, and has the potential for being
used for system analyses.

The bromide (CaBr,) tracer experiment began in
June 1996, when 30 g of bromide was diluted in 10 I of
water, and distributed homogeneously below the can-
opy. The drained water was collected for a period of
over one year after the tracer application and the bro-
mide concentration was measured on a regular basis.
Pressure head was measured with vertically installed
tensiometers at 25, 50, and 75 cm depth. Three replicate
instruments were installed at each depth and their

0.35
0.3 7
0.25 7
0.2 7
0.15 T ; T T
0 50 100 150 200 250
Depth (cm)

Fig. 8. Measured (symbols) and simulated pressure head and water content obtained by the greedy and ANT scoring strategies.
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Fig. 9. Graphs of the 95% confidence intervals for pressure head and water content for the third, fifth, and sixth iteration showing the progression to

a solution.

averages used to represent the pressure head at that
depth. Water content was measured with time-domain-
reflectometry (TDR) probes of 25 cm length, vertically
installed with centers at depths 25, 50, and 75 cm. Again,
all installations were in triplicates, and the averages were
used to represent the water content at a depth. The
lysimeter was regularly irrigated and actual evapotran-
spiration calculated using the following water balance
equation

ET,=1—-D— A0, (16)

where ET, is actual evapotranspiration, [ is irrigation, D
is drainage, and A6, is the difference in water storage, all
expressed as amounts cumulated for the period of the
ET, measurement.

The governing flow equation and the soil hydraulic
properties were as described for the previous test case.
Transport was described by a convection—dispersion
expression for a miscible, non-sorbing, and conservative
component as given by

00c 0 Oc dqc
ot 0z <9D 62) 0z SCs, (17)
where c is the solute concentration in solution (g cm™3),
D is the dispersion coefficient (cm? d™'), ¢ is Darcian
flux (cm d™'), S is the root water uptake, and C; is the
concentration of soil solution taken up by plant roots
(g em™).
The flow boundary conditions were expressed as:

_K@_’;_ 1) —it), z=0, (18)

_K(g_j_ 1) —g(0), z=1L, (19)

where ¢ is the net infiltration (cm d~') at the top, and
gs is the measured flux (cm d™') at the bottom bound-
ary. The initial and boundary conditions for the con-
centration were expressed as:

c(z,t) =0, t=0, (20)
Oc
0D6—+qc:qco(t), z=0, (21)
z
% =0, z=1, (22)
Oz

where ¢ is the concentration of the infiltrating water,
and ¢ is the Darcian flux density evaluated at the soil
surface.

The objective function was formulated as

glou,ni, K, 00,m2, Koo
34l )
=113 103> (= 1)
=1 k=1
304l )
+4163 > (0n - 0,) (23)
=1 k=1

where the three space measurements were furnished with
tensiometer and TDR data at 25, 50 and 75 cm depths.
Since the TDR data represented an average over 25 cm
vertical depth, the model outputs were also averaged
over 25 cm. The measurement times for both variables
were on days (13, 14, 16, 17, 20, 24, 26, 33, 40, 48, 54, 58,
65, 73,79, 90,97, 104, 111, 119, 126, 133, 139, 155, 162,
169, 174, 279, 284, 291, 300, 306, 312, 319, 327, 333, 340,
347, 354, 361, 368) where day 13 corresponded to June
5, 1996.

Although the lysimeter was originally uniformly
packed, as the result of settling and root distribution a
more compacted bottom layer was formed at about 40
cm depth. Therefore, we considered two layers and es-
timated six parameters as in the test example 1, mainly,
oy, ny, Ky, 00,1y, and K. The stratification strategy for
o,n, and K; were 4, 4, and 10, respectively, and we
simulated only 10% of the exhaustive set and used only
N = 2560 ant agents.

Table 4 summarizes the initial and final parameters
obtained by ACO-IM and the final results obtained by
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Table 4
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Initial parameter uncertainty range and final estimates obtained using Levenberg-Marquardt and ACO-IM algorithms

Unknown parameter Initial uncertainty distribution

used in ACO-IM

Expected parameter values and the
final uncertainty distribution

Fitted parameter and the 95% CI
determined by Levenberg-Marquardt

oy [0.0-1.0] 0.937 0.867
[0.5-1.0] [0.478-1.256]
m [0.1-3.0] 1.288 1.282
[1.1-1.6] [1.242-1.321]
Ky [300-100000] 39110 31627
[300-60 000] [1804-61450]
0 [0.0-1.0] 0.4062 0.124
[0.25-0.5] [0.077-0.172]
ny [1.1-3.0] 1.288 1.518
[1.1-1.6] [1.389-1.648]
Ko [100-100000] 360 159
[100-7000] [13-305]
Objective function 0.53 0.65 0.63

LM algorithm along with the associated uncertainties.
Fig. 10 shows the comparison of LM and ACO-IM in
simulating pressure head and water content at the depth
of 25 cm. For the other depths Figures are not shown
but the comparisons were similar with both models
having practically indistinguishable curves. Only slight
deviations of water content at 50 and 75 cm depths re-
sulted in ACO-IM having a slightly larger objective
function. A review of the parameters in Table 4 reveals
that the identical simulation results in Fig. 10 were ob-
tained with widely different parameters indicating that
the set of hydraulic parameters considered was not very
important in this particular study. This is also evident
from the large uncertainties both algorithms determined
for the parameters.

We began the ACO-IM simulation with very large
initial parameter uncertainties so as to capture all the
measured data within the 95% confidence band. But this
was never achieved for the entire profile regardless of the
degree of parameter uncertainties. Figs. 11 and 12 show
the 95PCI for pressure head and water content for the
second iteration at the depths of 25 and 75 cm, re-
spectively. Although most of the data at the 25-cm depth

25 cm depth
——— ACO-IM

-100

N

o

o
L

Pressure head (cm)

-300

200 300 400

Simulation day

Water content (-)

was captured within the 95PCI, but for the 50-cm depth
(Figure not shown) and the 75-cm depth a large number
of pressure head data was missed. For this example we
consider further conditioning (iteration) of parameters
on the measured data not to be justified, and the pa-
rameters reported in Table 4 with the large range of
uncertainties associated with them are the best results
one could obtained under the given conditions.

To test the hydraulic parameters obtained in Table 4,
we simulated the breakthrough of bromide. Keeping the
hydraulic parameters constant, we fitted two transport
parameters, dispersivity and maximum plant uptake.
Again, these parameters were not very sensitive, and
irrespective of the initial uncertainty distribution, the
95PCI could not contain the measured bromide con-
centration in leachate water. The measured values along
with the simulations with LM and ACO-IM are shown
in Fig. 13. It is evident that the measured Br~ break-
through curve exhibits a more complex behavior than
what was simulated. One explanation for the lack of
significance in the parameters is that this particular
problem, contrary to the previous example, is process-
rather than parameter-controlled. In other words,

0.3
*
0.25 1

0.2 1

200 300

Simulation day

0 100 400

Fig. 10. Comparison of the final simulation results obtained by LM and ACO-IM algorithms for the second example.
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Water content (-)

o
o

1N
i
I

o
w
I

o
[N
I

o
N
L

200 300
Simulation day

400

Fig. 12. The 95% confidence interval for the pressure head and water content based on the second iteration at the 75-cm depth.

838
25 cm depth
4 Measured —— O95PCIBD —-eee- Expected
0 1 1 1
g
=100 1
<
Q
<
g
7 -200 A
1723
e
J-»
-300
0 200 300 400
Simulation day
75 cm depth
¢ Measured — 95PCIBD - Expected
40
20
=)
2
T 01
o
=
g
2 201
v
2
A~
-40
-60
0 100 200 300 400
Simulation day
—44—— Measured = ------- LM —ACO-IM
0.025
E 002
o
an
g
.§ 0.015
E
8 001
=]
o
Q
& 0.005
0 T T T
0 100 200 300 400

Simulation day

Fig. 13. Measured and simulated Br~ breakthrough curves.

variables water content, pressure head, and concentra-
tion are also partly governed by processes not consid-
ered by the simulation model. This revelation by inverse
analysis is quite useful and indicates that IM can be used
for process analysis as well as parameter estimation as
also shown by the authors elsewhere [1]. In this example
it would be meaningless to condition any further the

parameters on the data and expect the parameters to
account for responses that were caused by processes
other than those included in the simulation model.

The peak dominated Br~ breakthrough curve is in-
dicative of preferential flow in the soil system. This
could also be inferred from the very large estimates of
the saturated hydraulic conductivity produced by both
inverse algorithms for the first layer. If there are pro-
cesses in the system not accounted for by the simulation
models, inverse models try to compensate for missing
processes by unrealistically over- or underestimating
some of the parameters. This is a pitfall of IM that needs
more attention. Furthermore, the progressively
worsening of simulations as a function of increasing
depth could be a sign of inadequate modeling of root
distribution and, hence, water and passive solute uptake
by plants. Water content simulations are relatively bet-
ter than pressure heads for all depths (Figs. 11 and 12)
because they are averages over 25 cm depths.

Finally, some of the advantages and disadvantages of
the different IM algorithms can be summarized as be-
low: (1) In ACO-IM degree of parameter conditioning
may be directly controlled through iterations. The more
iterations we perform the more conditioned the
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parameters being sought will become on the set of
measured data. In general, we do not recommend ob-
taining highly conditioned parameters, as they will
perform poorly when simulating other variables not
included in the objective function [2]. In LM algorithm,
degree of conditioning can only be controlled indirectly
by restarting the program with several initial guesses,
and in general, a local minimum nearest to the initial
estimates is produced. (2) In LM algorithms parameter
estimates are given as single-valued parameters plus a
summary statistics that expresses the parameter uncer-
tainty usually in terms of the 95% confidence interval.
The parameter uncertainties need yet to be propagated
before we can assess the degree of conditionality, while
in ACO-IM the uncertainties, which play a central role,
are already propagated. After each iteration, the 95PCI
is reviewed as a guide for further iteration. (3) The LM
method requires many trials with initial guesses of the
unknown parameters and at the end one is never sure
whether to perform another iteration of not. While in
ACO-IM this uncertainty does not exist. (4) In ACO-
IM, the parameters A, N, and T need yet a more robust
estimate, the process is more interactive than LM (which
may be considered a disadvantage by some, although we
favor this interaction), and subjective interference with
the parameter updating may be required, which calls for
some understanding of the problem and depends, more
than the LM method, on the experience of the user. The
subjective interference may be in the form of setting
upper and lower limits for the parameters, although this
option also exists in the inverse option of the HY-
DRUS-1D program. Finally, in the course of the above
comparison, we realized that the two algorithms could
actually compliment each other in a way that an initial
run with ACO-IM could identify the general location of
the initial parameter estimates, which can then be fed to
LM to obtain a final solution.

5. Conclusions

We introduced a new algorithm for inverse parameter
estimation using an optimization procedure inspired by
ant colony foraging behavior. The results presented in
this paper are very encouraging for ACO-IM method.
In the first test, using a well-defined problem, the exact
parameters were identified. While in the second test, a
comparison of the ACO-IM and the popular LM
algorithm produced practically identical simulation
results.

Based on the elementary behavior of an individual ant,
the greedy force combined with the autocatalytic process
would lead to sub-optimal solutions. However, when an
entire colony operates, complicated dynamics are exhib-
ited through distributed computations where greed gives
the right signals to the autocatalytic process to converge

to an optimum solution. Introduction of the parameters
A, N, and T achieved a balance between different dy-
namics that enables ants to jump over local minima.

Despite the encouraging results obtained in this first
study, application of the ant optimization technique to
environmental parameter estimation problems is still at
its infancy. The ACO-IM system could benefit from
improved computational efficiency, as well as a more
robust ANT scoring strategy. This is due to the fact that
the values of N and T through ¢y and ¢y coefficients
seemed to vary slightly for different cases studied. Fu-
ture application of the ACO may need to address these
issues in more detail.

Appendix A

Parameters 4, N, and T in Eq. (8) control the relative
importance of the trail, sensitivity, and critical value of
the objective function. For convenience and in order to
have less parameters to determine, 4 was set equal to 1,
N was expressed in terms of the variability of the trail
received by each stratum, and T was expressed in terms
of the variability of the objective function as follows:
N = CN & 5

Hij

T= &min +cr % )
He

where y,; is the mean of trails placed on the f§; strata, o;;
is the standard deviation of trail on the f;; strata, p, and
g, are, respectively, the mean and the standard deviation
of the objective function for an iteration, and ¢y and c¢r
are constants. Note that g, is the smallest value that T’
can obtain. For large variability in the objective func-
tion, the value of T should be larger in order to have a
better chance of avoiding local minima (refer to Fig. 2).

To determine the values of ¢y and ¢y we used three
different models and tested three different problems. Full
details of the procedure can be found in Lerch [16]. The
three models used were HYDRUS_2D [27], HYDRUS-
1D [26], and MACRO [12]. The first test was similar to
the example 1 in this manuscript with the objective
function written in terms of the water content and
pressure head. In this test we assumed the parameters
saturated hydraulic conductivity (K;), and van Ge-
nuchten shape factors «, and n of the first layer were
unknown. For the second test we used the program
HYDRUS-ID and simulated the breakthrough of a
boron (H;BO,) pulse through Glendale clay loam [30].
In this example we treated the parameters saturated
hydraulic conductivity (Kj), adsorption coefficient (),
and fraction of exchange sites in equilibrium with
solution concentration (f) as unknown and minimized
an objective function based on the breakthrough
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Fig. 14. Normalized difference between actual and modelled variables as a function of ¢; and cy. Typical run showing ¢ = 0.5 and ¢y = 0.3 to be

the best values.

concentration of boron. The third example, simulated
by MACRO [12], dealt with the break through of bro-
mide from an unsaturated soil column. In this example
we estimated boundary hydraulic conductivity (KSM),
pore size distribution index (ZLAMB), and tortuosity
factor (ZN) and minimized an objective function based
on the breakthrough concentration of bromide.

In each example, we first ran the programs with a set
of known parameters, noted the desired simulated
variable as ‘observation’, assumed an uncertain range
for the parameters we wished to treat as ‘unknown’, and
determined the sensitivity of ¢y and ¢y in a classical way
by keeping one of them constant and varying the other.
After some preliminary runs, we tested values:
cr € {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}, and ¢y €
{0.1, 0.2, 0.3, 0.4, 0.5, 0.7}. For each case we deter-
mined the “‘unknown’ parameters by running ACO-IM
algorithm. Our objective was to obtain a set of ¢ and cy
parameters that would in each case lead to parameters
closest to the real parameters.

Fig. 14 illustrates an example of the results obtained
for the first test. This Figure shows the normalized dif-
ferences between the estimated and actual parameters by
ACO-IM versus different values of c¢r and cy. With
small variations, in each case the best values of ¢; and ¢y
were centered around 0.5 and 0.3, respectively. The
above values were used for examples one and two in the
manuscript. However, we feel because of the small de-
viations in ¢y and ¢y in the three examples considered,
more work may be needed to identify a better formu-
lation for 4, N, and T and a more robust estimation of
cr and ¢y parameters.
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