
A Hybrid Constraint Programming / Local Search
Approach to the Job-Shop Scheduling Problem

Jean-Paul Watson1 and J. Christopher Beck2

1 Discrete Math and Complex Systems Department,
Sandia National Laboratories,

Albuquerque, New Mexico, USA
jwatson@sandia.gov

2 Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario, Canada

jcb@mie.utoronto.ca

Abstract. Since their introduction, local search algorithms – and in particular
tabu search algorithms – have consistently represented the state-of-the-art in so-
lution techniques for the classical job-shop scheduling problem. This is despite
the availability of powerful search and inference techniques for scheduling prob-
lems developed by the constraint programming community. In this paper, we in-
troduce a simple hybrid algorithm for job-shop scheduling that leverages both the
fast, broad search capabilities of modern tabu search and the scheduling-specific
inference capabilities of constraint programming. The hybrid algorithm signifi-
cantly improves the performance of a state-of-the-art tabu search for the job-shop
problem, and represents the first instance in which a constraint programming al-
gorithm obtains performance competitive with the best local search algorithms.
Further, the variability in solution quality obtained by the hybrid is significantly
lower than that of pure local search algorithms. As an illustrative example, we
identify twelve new best-known solutions on Taillard’s widely studied benchmark
problems.

1 Introduction

Local search algorithms for the traditional makespan-minimization formulation of the
job-shop scheduling problem (JSP) have dominated the state-of-the-art for at least the
past 15 years. These include Nowicki and Smutnicki’s landmark TSAB tabu search
algorithm [13], Balas and Vazacopoulos’ guided local search algorithm [1], Nowicki
and Smutnicki’s follow-on i-TSAB tabu search algorithm [14], and most recently Zhang
et al.’s hybrid tabu search / simulated annealing algorithm [25]. These algorithms are
all built upon a foundation of one or more powerful, problem-specific move operators,
which are able to efficiently identify promising feasible and high-quality solutions in the
neighborhood of a given solution. Metaheuristic search strategies then leverage these
move operators to perform global search for minimal-cost solutions; the complexity of
these strategies ranges from simple tabu search (in the case of TSAB) to highly intricate
hybridizations of tabu search, path relinking, and elite pool maintenance schemes (in
the case of i-TSAB).

On established benchmark problems [19, 20], the progression of local search algo-
rithms has consistently established new upper bounds over time, perhaps leading one
to question the utility of further research in the area. We address such criticism with
the following observations. First, on the most difficult benchmark instances, there is no
indication that the upper bounds are necessarily close to the optimal solutions, i.e., there
likely remains significant room for performance improvements. Second, although the
aforementioned local search algorithms collectively have established the best-known
solutions to benchmark instances, no single algorithm can consistently generate these
solutions. Consequently, improved algorithms yielding reductions in performance vari-
ability are desirable. Third, proportionally little research is dedicated to understanding
why local search algorithms are so effective on the job-shop scheduling problem; de-
veloping such knowledge is foundational to consistently achieving high-performance in
other problem domains.

Perhaps somewhat paradoxically, constraint programming (CP) algorithms are more
commonly used than their local search counterparts to obtain solutions to real-world
scheduling problems, e.g., using ILOG’s Scheduler software library [17]. This is widely
attributed to a combination of the ability to easily incorporate various idiosyncratic
“side” constraints that are pervasive in real-world scheduling problems (such constraints
can require significant redesign of local search algorithms) and to effectively deduce,
via powerful domain-specific constraint propagators, the implications of various sched-
uling decisions. However, despite the level of research effort dedicated to the develop-
ment of scheduling-specific constraint propagation and search techniques (e.g., see [2,
4]), the performance of CP algorithms on the traditional JSP has significantly lagged
that of their local search counterparts. To date, the strongest CP-based algorithm is
solution-guided multi-point constructive search [3], although the performance of even
this algorithm lags that of modern tabu search algorithms for the JSP [9] in terms of
both time and final solution quality.

Hybridization of local search and CP on JSPs without side constraints does not,
therefore, immediately appear to be a promising research direction. However, the fol-
lowing two unexplored aspects of these algorithms provide what we feel to be contrary
evidence, and motivate the line of research developed in this paper:

– The strong propagation techniques in CP are more efficient in constrained search
states. That is, the polynomial time inference algorithms are more likely to be able
to find implied constraints, and to reduce the search space, in states that are al-
ready highly constrained. When a good solution has been found, strong “back-
propagation” from the upper bound on the makespan results in such a highly con-
strained search state. Therefore, we conjecture that while CP is unable to compet-
itively find good solutions, once given a good solution, it may be able to improve
on it more quickly than a local search approach.

– A popular conceptualization of the power of modern local search algorithms is
that they balance intensification with diversification [9]. Intensification, which can
loosely be understood as searching “near” an existing good solution, is often im-
plemented by repeatedly restarting search from a good solution that has been found
earlier. Diversification, in contrast, tries to distribute the search effort in unexplored
areas of the search space. It is often implemented by maintaining a varied set of

promising solutions and combining them in a variety of ways, such as via path re-
linking [7]. However, modern tabu search algorithms seem to do a relatively poor
job of intensification. Watson [22] showed that a relatively small number of itera-
tions after restarting from a good solution, tabu search is a considerable distance
from the starting solution. Further, a posteriori analysis of algorithmic traces indi-
cates that tabu search often fails to locate high-quality solutions that are quite close
to high-quality solutions located by tabu search [22]. In contrast, solution-guided
constructive search performs a much more focused search around its guiding so-
lution [3]. Therefore, we conjecture that improved performance may result from
using CP to strongly intensifying around a diverse set of high-quality solutions
generated by tabu search.

The remainder of this paper is organized as follows. We begin in Section 2 with a
brief discussion of the job-shop scheduling problem and the benchmark instances used
in our analysis. The foundational algorithms for our hybrid approach – iterated simple
tabu search (i-STS) and solution-guided multi-point constructive search (SGMPCS) –
and our simple hybrid are described in Section 3. Our experimental methodology is
introduced in Section 4, followed by a description of empirical performance results in
Section 5. Section 6 details some implications of our results, followed by our conclu-
sions in Section 7.

2 Problem Description and Benchmark Instances

We consider the well-known n × m static, deterministic JSP in which n jobs must be
processed exactly once on each of m machines [5]. Each job i (1 ≤ i ≤ n) is routed
through each of the m machines in a pre-defined order πi, where πi(j) denotes the jth
machine (1 ≤ j ≤ m) in the routing order of job i. The processing of job i on machine
πi(j) is denoted oij and is called an operation. An operation oij must be processed on
machine πi(j) for an integral duration τij > 0. Once initiated, processing cannot be pre-
empted and concurrency on individual machines is not allowed, i.e., the machines are
unit-capacity resources. For 2 ≤ j ≤ m, oij cannot begin processing until oi(j−1) has
completed processing. The scheduling objective is to minimize the makespan Cmax, i.e.,
the maximal completion time of the last operation of any job. Makespan-minimization
for the JSP is NP -hard for m ≥ 2 and n ≥ 3 [6].

An instance of the n×m JSP is uniquely defined by the set of nm operation dura-
tions τij and n job routing orders πi. In nearly all benchmark instances, the τij are uni-
formly sampled from the interval [1, 99], while the πi are given by random permutations
of the integer sequence 1, . . . ,m. As discussed in Section 4, our experimental results are
generated using a subset of Taillard’s benchmark instances, specifically those labeled
ta11 through ta50 [19]. This subset contains 10 instances of each of the following
problem sizes: 20×15, 20×20, 30×15, and 30×20. We have selected these instances
because they are widely studied (all competitive algorithms introduced since 1995 have
been tested on these instances), are known to be very challenging (even state-of-the-art
algorithms fail to consistently find solutions with makespans equal to the best known
solutions), and there remains “headroom” for improvement in best-known makespans
(as illustrated by the often large gap between those values and the best-known lower

bounds). For these same reasons, we ignore the easier instances in Taillard’s problem
suite, in addition to many historical instances (e.g., the “ft”, “la”, and “orb” instances)
for which modern JSP algorithms can consistently locate optimal solutions.

3 Algorithms

In this section, we discuss the two foundational algorithms in detail before presenting
the simple hybridization we investigate in this paper.

3.1 Iterated Simple Tabu Search

Beginning with an early approach by Taillard [21], tabu search algorithms have consis-
tently represented the state-of-the-art in obtaining high-quality solutions for the JSP. A
variety of researchers have introduced tabu search algorithms of increasing effective-
ness and complexity. Specific algorithmic advances of note in this progression include
the introduction of (1) the highly restrictive N5 critical path-based move operator [13],
(2) search intensification mechanisms in conjunction with sets of “elite” or high-quality
solutions [13], and (3) search diversification mechanisms in the form of path relink-
ing [14]. These techniques are simultaneously embodied in Nowicki and Smutnicki’s
i-TSAB algorithm, which has represented the state-of-the-art since 2003. With the ex-
ception noted below, the sole competitor is a hybrid tabu search / simulated annealing
algorithm introduced by Zhang et al. [25]. The Zhang et al. algorithm uses simulated
annealing to generate an initial set of elite solutions, which are then processed via tabu
search-driven intensification. The primary differences between the Zhang et al. algo-
rithm and i-TSAB are the lack of an explicit diversification mechanism (path relinking
is used in i-TSAB) and the use of the N6 move operator introduced by Balas and Vaza-
copoulos [1] (i-TSAB employs the N5 move operator).

Although remarkably effective, i-TSAB is an extremely intricate and complex al-
gorithm. Such complexity is a significant drawback to researchers, as in practice it im-
pedes reproducibility, adoption, and subsequent study. In the specific case of i-TSAB,
the intricacy makes it difficult to assess the contribution of the various algorithmic com-
ponents to its overall performance. Toward this goal, we previously introduced a sim-
plified version of i-TSAB, which we denote iterated simple tabu search, or i-STS [9].
As discussed below, i-STS contains the key algorithmic ingredients of i-TSAB while
reducing the overall complexity and maintaining near-equivalent performance.

A basic tabu search lies at the core of i-STS, built around the N5 move operator.
Short-term memory is used to prevent inversion of recently swapped pairs of adjacent
operations on a critical path. Following [21], the tabu tenure is periodically and ran-
domly sampled from a fixed interval [L,U]. Search in i-STS proceeds in two phases.
In the first phase, the basic tabu search algorithm is executed for a small, fixed number
of iterations from each of |E| different random initial solutions. The best solution from
each iteration-limited run is saved, and forms the initial set E of elite solutions.

In the second phase of i-STS, the elite solutions, E, are iteratively processed by
both intensification and diversification mechanisms, each selected at any given iteration
with respective probabilities pi and pd, pi +pd = 1. To perform search intensification, a

single elite solution e ∈ E is selected at random and an iteration-limited tabu search is
executed from e. Due to tie-breaking during move selection, facilitated by the pervasive-
ness of plateaus of equally fit neighboring solutions in the JSP [23], different trajectories
can locate solutions of variable quality. If a solution e′ with a lower makespan than e
is located, e′ replaces e in E. To perform diversification, two elite solutions e1, e2 ∈ E
are selected at random. Path relinking is then performed to generate a solution e′ that
is approximately equi-distant from both e1 and e2. Iteration-limited tabu search is then
executed from e′, as is performed in the intensification process. If a solution e′′ is iden-
tified with a lower makespan than e1, then e′′ replaces e1 in E. The second phase of
i-STS continues until an aggregate number of basic tabu search iterations M have been
executed, with the best solution e ∈ E returned upon completion.

3.2 Solution-Guided Multi-Point Constructive Search

Solution-guided multi-point constructive search (SGMPCS) is a recently proposed al-
gorithm that combines constructive tree search, randomized restart, and heuristic guid-
ance from good solutions found earlier in the search [3]. The basic approach is a CP
tree search with a limit on the number of dead-ends (“fails”) that are encountered be-
fore restarting. Each tree search is guided by using an existing sub-optimal solution as
a value-ordering heuristic. Once a variable to be assigned has been chosen (see below),
the value chosen is the one in the guiding solution, provided that value is still in the
domain of the chosen variable. Otherwise, any other value-ordering heuristic may be
used. As in i-STS, a small set of “elite” solutions is maintained, one of which is chosen
with uniform probability to guide a given tree search. When a tree search exhausts its
fail limit, it returns the best solution it has found (if any). That solution, if it exists,
replaces the guiding solution in the elite pool.

Beck [3] showed that SGMPCS has strong, but not state-of-the-art, performance
on job shop scheduling, makespan minimization problems. While finding significantly
better solutions than chronological backtracking and randomized restart (using the same
propagators, heuristics, and, in the latter case, fail limit sequences), SGMPCS was not
able to perform as well as i-STS.

Details A simplified version of SGMPCS is used in this paper. This version fixes a
number of the parameters in the full algorithm. As the version presented here is a partic-
ular parametrization of the full version, we continue to refer to it as SGMPCS. Readers
interested in the full version are referred to Beck [3].

Pseudocode for SGMPCS is shown in Algorithm 1. The algorithm initializes a set,
E, of elite solutions and then enters a while-loop. In each iteration, a chronological
backtracking search is guided with a randomly selected elite solution (line 6). If a solu-
tion, s, is found during the search, it replaces the starting elite solution, r. Each individ-
ual search is limited by a fail bound: a maximum number of fails that can be incurred.
The entire process ends when the problem is solved, proved insoluble within one of the
tree searches, or when some overall bound on the computational resources (e.g., CPU
time or number of fails) is reached.

More formally, a search tree is created by asserting a series of choice points of the
form: 〈Vi = x〉 ∨ 〈Vi 6= x〉, where Vi is a variable and x is the value assigned to Vi.

Algorithm 1: SGMPCS: Solution-Guided Multi-Point Constructive Search
SGMPCS():

1 initialize elite solution set E
2 while not solved and termination criteria unmet do
3 r := randomly chosen element of E
4 set upper bound on cost function
5 set fail bound, b
6 s := search(r, b)
7 if s is better than r then
8 replace r with s

9 return best(E)

SGMPCS can use any variable-ordering heuristic to choose the variable to assign. The
choice point is formed using the value assigned in the guiding solution or, if the value in
the guiding solution is inconsistent, a heuristically chosen value. Let a guiding solution,
r, be a set of variable assignments, {〈V1 = x1〉, 〈V2 = x2〉, . . . , 〈Vm = xm〉},m ≤ n,
where n is the number of decision variables. Let dom(Vi) be the set of possible values
(i.e., the domain) of variable Vi. The variable-ordering heuristic has complete freedom
to choose a variable, Vi, to be assigned. If xi ∈ dom(Vi), where 〈Vi = xi〉 ∈ r, the
choice point is made with x = xi. Otherwise, if xi /∈ dom(Vi), any value-ordering
heuristic can be used to choose x ∈ dom(Vi).

At line 4 in the pseudocode, an upper bound is placed on the cost function for the
subsequent search. We use two different methods in our experiments. The local upper
bound is one less than cost of the guiding solution (i.e., cost(r)−1). The global upper
bound is one less than the best solution that has been found (i.e., cost(best(E))−1). In-
tuitively, the local upper bound allows a more heuristic search since local improvements
will be accepted into the elite set while the global upper bound tries to maximize the
impact of the inference algorithms as it always searches in the most constrained space
possible.

Given a large enough fail limit (line 5), an individual search can exhaust the search
space. Therefore, completeness depends on the policy for setting the fail limit. In our
experiments, we will use two fail sequence polices: Fixed and Luby. The Fixed limit
simply uses a constant fail-limit for each search. Obviously, such a policy is not com-
plete. The Luby limit is an evolving sequence that has been shown to be the optimal
sequence for satisfaction problems under the condition of no knowledge about the so-
lution distribution [12]. The sequence is as follows: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4,
8, That is, the fail limit for the first and second searches is 1, for the third search is
2, and so on. Following [24] and our own preliminary experimentation, we multiply the
elements of the sequence by a fixed constant. As the sequence increases without limit, a
single search will eventually have a fail limit that is sufficient to search the entire search
space and therefore the overall algorithm using the Luby fail limit is complete.

SGMPCS is a general framework for constructive tree search. To apply SGMPCS
to the JSP, solutions are encoded using the well known disjunctive graph representa-
tion. Texture-based heuristics [4] are used to identify a machine and time point with

maximum contention among the operations and to then choose a pair of unordered op-
erations. The heuristic is randomized by specifying that the 〈machine, time point〉 pair
is chosen with uniform probability from the top 10% most critical pairs. The ordering
found in the guiding solution is asserted. Note that because the decisions are binary, the
pair in the solution must be locally consistent, otherwise the pair of operations would
already be sequenced in the opposite order. The standard constraint propagation tech-
niques for scheduling [15, 10, 11] (available via the ILOG Scheduler library) are also
used.

3.3 A Very Simple Hybrid Approach

Given the complexities of the two foundational algorithms, our approach to hybridiza-
tion in this paper is the most concise that we could envision. We begin by executing
i-STS for a fixed number of total iterations of the underlying tabu search algorithm.
The intent of this phase is to quickly generate a set of high-quality solutions. At the end
of these iterations, the best |E| solutions that have been found are used as the initial
elite set for SGMPCS (line 1 of the SGMPCS pseudocode). SGMPCS is then run for a
fixed, comparatively larger (in contrast to i-STS) CPU time and the best solution found
is returned.

There is clearly much more we could do. However, this simple (and perhaps, simple-
minded) hybrid directly and concisely addresses the two motivations we had for this
research, as described in Section 1.

4 Experimental Methodology

Our analysis is based on multiple runs of the hybrid on each of the Taillard benchmark
instances we consider. Each run consists of executing i-STS for 5M iterations, which
requires a few minutes of CPU time, depending on the problem size. For each run, we
use an elite pool size of 8, and pi = pd = 0.5; these parameter settings were chosen
based on prior empirical studies of both i-TSAB [14] and i-STS [9]. All remaining
free parameters of i-STS are set identically to that reported in [9]. At the end of 5M
iterations, the best |E| elite solutions are used as the starting elite set for SGMPCS.
SGMPCS is then run for 30 CPU minutes and reports the best solution found. Each
problem instance is run 10 times independently for a given parameter configuration.
i-STS is implemented in C++ while SGMPCS uses ILOG Scheduler 6.5 (also in C++).
All code was compiled using the GNU gcc compiler. Experiments were executed on
a cluster containing 2GHz Dual Core AMD Opteron 270 nodes, each with 2GB RAM
running Red Hat Enterprise Linux 4.

Given an experimental setup for a problem instance (10 runs per instance, fixing
the behavior of i-STS), we next consider the various configurations of the remaining
free SGMPCS parameters. Following [3], we perform a full factor experimental design,
considering: (1) |E| ∈ {1, 4, 8} (for SGMPCS; in i-STS, |E| is fixed to 8), (2) local and
global upper bounds, and (3) a fixed fail limit of 500, in addition to scaled Luby limits
with parameters 100 and 200. We observe that when |E| = 1, local and global upper
bounding strategies are equivalent. Consequently, we execute a set of 10 runs on each
of Taillard’s instances under fifteen distinct configurations of SGMPCS.

5 Results

Our analysis is broken into four components: parameter sensitivity (Section 5.1), per-
formance relative to state-of-the-art algorithms for the JSP (Section 5.2), best-known
upper bounds (Section 5.3), and proving optimality (Section 5.4).

5.1 Parameter Sensitivity

We first analyze the performance of the various SGMPCS parameterizations relative
to one another, in an effort to determine parameter sensitivity and a sole candidate for
comparison of the hybrid algorithm with other state-of-the-art JSP algorithms. We per-
formed a two-way (factorial) ANOVA on the resulting data.1 The three independent
variables are elite pool size, fail limit, and upper bound method, while the sole de-
pendent variable is the makespan of the best solution obtained. The outcome of this
experiment indicated that there were no significant main or interaction effects between
the SGMPCS parameters and the quality of the final solution obtained. The largest p
value obtained was for |E|, and was equal to 0.499. This result is in direct contrast to
[3], in which all main factors and interactions were statistically significant. The sole
difference in the experimental designs is the mechanism used to initialize the elite so-
lution set for SGMPCS (i-STS versus random solutions). It appears that while different
parameterizations of SGMPCS influence the degree to which the algorithm can im-
prove upon random initial solutions, this sensitivity disappears once solution quality is
“sufficiently” good, e.g., as is the case for i-STS solutions.

Next, we examine the absolute difference in performance between the various al-
gorithm configurations. For a given problem instance and solution makespan M , we
define the relative error as RE = (M − LB)/LB ∗ 100, where LB is the largest known
lower bound for the instance. For our analysis, we take LB from [20], where such val-
ues have been recorded by Taillard since the introduction of these problem instances.
Consider a specific parameterization of SGMPCS in our hybrid algorithm, and one of
the following statistics defined over the set of 10 runs on a given problem instance: best
makespan, average makespan, and worst makespan. The mean relative error, or MRE,
for the given parameterization and makespan statistic is then computed simply as the
mean RE taken over the 40 problem instances.

The resulting MRE statistics for our hybrid algorithm are shown in Table 1. Bold-
faced entries indicate that the corresponding SGMPCS parameterization yielded the
best performance with respect to the given makespan statistic. We exclude results for
parameterizations with the Luby 100 fail limit, as they generally, though marginally,
under-perform the respective Luby 200 fail limit strategy. Consistent with the two-way
ANOVA analysis, the differences in all makespan statistics are minimal in absolute
terms, varying at most by 0.20% in any given column. Although no parameterization
stands out as a winner, the parameterization with |E| = 8, a fixed fail limit of 500,
and the local upper bound obtained the most consistent performance, as measured in
terms of average makespan of solutions obtained. For this reason, we emphasize this
parameterization of SGMPCS in subsequent analyses.

1 All statistical analyses were performed using the publicly available R software package.

|E| Fail Limit Upper Bound Best MRE Mean MRE Worst MRE
1 Fixed 500 Local/Global 3.146 3.490 3.897
1 Luby 200 Local/Global 3.178 3.502 3.886
4 Fixed 500 Local 3.134 3.392 3.705
4 Luby 200 Local 3.143 3.424 3.718
4 Fixed 500 Global 3.129 3.408 3.726
4 Luby 200 Global 3.136 3.425 3.746
8 Fixed 500 Local 3.123 3.369 3.706
8 Luby 200 Local 3.142 3.397 3.691
8 Fixed 500 Global 3.103 3.400 3.709
8 Luby 200 Global 3.148 3.409 3.694

Table 1. Mean relative error (MRE) statistics for the i-STS / SGMPCS hybrid on Taillard’s bench-
mark instances for various parameter configurations. Bold-faced entries in an MRE column indi-
cate the configuration obtaining the best performance.

Instance Best i-TSAB Zhang Hybrid
Group Known Best Mean Best Mean Worst
ta11-20 2.29 2.81 2.37 2.92 2.26 2.45 2.83
ta21-30 5.38 5.68 5.44 5.97 5.52 5.71 6.00
ta31-40 0.46 0.78 0.55 0.93 0.50 0.68 0.85
ta41-50 4.02 4.70 4.07 4.84 4.22 4.63 5.15
Overall 3.04 3.49 3.11 3.67 3.13 3.37 3.71

Table 2. MRE statistics for i-TSAB, Zhang et al.’s hybrid tabu search / simulated annealing
algorithm, and our hybrid i-STS / SGMPCS algorithm, on Taillard’s benchmark instances.

5.2 Performance Relative to the State-of-the-Art

Having established the relative insensitivity of our hybrid algorithm performance to
SGMPCS parameter settings, we now analyze performance relative to state-of-the-art
search algorithms for the JSP. We select two baselines for comparison: Nowicki and
Smutnicki’s i-TSAB tabu search algorithm [14] and Zhang et al.’s hybrid tabu search /
simulated annealing algorithm [25]. The i-TSAB algorithm represents the state-of-the-
art from 2003 onwards, while Zhang et al.’s algorithm is a recently introduced com-
petitor. A single “winner” is not easily determined, lacking carefully controlled exper-
iments and availability of the source code of the two algorithms. However, it is clear
from published MRE performance analysis that these two algorithms are superior to
all predecessors. Finally, we do not compare the performance of our hybrid with that of
previously published CP algorithms, e.g., [16], as those algorithms have not historically
proved competitive on the standard JSP; to the best of our knowledge, SGMPCS is the
best-performing pure CP algorithm for the JSP, as reported in [3].

As indicated previously in Section 5.1, we consider the performance of our hybrid
algorithm obtained with the best overall mean performance, obtained with |E| = 8,
a fixed fail limit of 500, and the local upper bound. While it may be argued that the

comparison should be based on the mean MRE obtained across all parameter settings,
Nowicki and Smutnicki document significant parameter tuning in the development of i-
TSAB, and Zhang et al. undoubtedly performed similar experimentation, although it is
not explicitly documented in [25]. The MRE performance statistics for the two compar-
ative baselines and our hybrid algorithm are shown in Table 2; in addition, we compute
the MRE for the best-known solutions recorded in [20] as of November 30, 2007. Un-
fortunately, Nowicki and Smutnicki [14] only report results for a single run of i-TSAB,
complicating interpretation. Absent a rigorous alternative, we treat the corresponding
MRE results as representative of mean i-TSAB performance. The Zhang et al. statis-
tics are taken over 10 independent runs of their algorithm on each problem instance.
Without the actual sample populations, it is not possible to make statistical inferences
regarding the relative superiority of the Zhang et al. algorithm and our hybrid algorithm.
Consequently, we proceed with a qualitative analysis.

First, we compare the performance of our hybrid with that of i-TSAB. On all but the
ta21-30 problem group, the hybrid outperforms i-TSAB in terms of mean MRE. Over-
all, the hybrid outperforms i-TSAB by 0.12% in terms of mean MRE; again, we are
treating the individual i-TSAB samples as representative of mean performance. While
the percentage advantage is small in absolute terms, we observe that due to the difficulty
of these instances, apparently small differences have historically differentiated state-of-
the-art algorithms from second-tier competitors. Although we cannot rigorously deter-
mine whether our hybrid performance dominates that of i-TSAB, it is clear that the
performance is, at a minimum, indistinguishable.

Next, we compare the performance of our hybrid with that of Zhang et al.’s al-
gorithm, hereafter referred to simply as Zhang’s algorithm. In terms of mean MRE,
the hybrid algorithm dominates the Zhang algorithm both overall and in each problem
sub-group; overall, the advantage is 0.30%. In terms of best MRE, each algorithm dom-
inates on two of the four problem groups, with Zhang holding a slight 0.02% advantage
overall. Of particular interest is the excellent worst MRE performance of our hybrid
algorithm. On two of the problem groups, the worst MRE of the hybrid is better than
the mean MRE of the Zhang algorithm. Overall, the hybrid worst MRE performance is
only slightly worse that the Zhang mean MRE performance, with a difference of only
0.04%. Clearly, a significant advantage of our hybrid algorithm is the consistency of
the state-of-the-art performance, which is often elusive (e.g., in the case of the Zhang
algorithm) on very difficult benchmark problems.

A major issue in comparative assessment of state-of-the-art algorithms for the JSP
involves quantification of computational effort. In addition to issues involving the use
of disparate computing hardware, software engineering decisions and coding skill make
such comparisons notoriously problematic. We do not address these issues here. Rather,
we observe that from analyses of published performance reports [14, 25], all three test
algorithms were executed on modern computing hardware (Pentium III or greater) and
the allocated run-times on the larger problem instances were all within a factor of three.

Finally, an obvious question is: Does our hybrid outperform the basic i-STS algo-
rithm? In other words, does the premature termination of i-STS followed by SGMPCS
outperform the full-length i-STS algorithm. Drawing from our previously analysis of
i-STS [9], the best and mean MREs of i-STS are respectively 3.30% and 3.55%. From

Instance Prev. Best-Known New Best-Known Instance Prev. Best-Known New Best-Known
ta11 1359 1357 ta19 1335 1332
ta21 1644 1643 ta24 1646 1645
ta32 1795 1794 ta34 1829 1828
ta40 1674 1671 ta41 2018 2006
ta46 2015 2011 ta47 1903 1899
ta49 1967 1966 ta50 1926 1924

Table 3. The makespan of new best-known solutions identified by the hybrid i-STS / SGMPCS
algorithm for Taillard’s benchmark problems.

Table 2, this represents an under-performance of of 0.17% and 0.18% for best and worst
MRE, respectively, relative to our hybrid algorithm. Such large differences provide very
strong evidence that our hybrid algorithm significantly outperforms the original i-STS
baseline, as is confirmed by subsequent non-parametric two-sample tests.

5.3 Best-Known Upper Bounds

Given the strong performance of our hybrid i-STS / SGMPCS algorithm, it is worth not-
ing that various runs, under various parameterizations of SGMPCS, yielded a remark-
able twelve new best-known solutions to Taillard’s benchmark instances. Although our
main research goal is not to enter “horse-race” competitions of the type that are partic-
ularly common in Operations Research [8], the ability of an algorithm to establish new
best-known solutions in a given domain is a common (albeit heuristic, because it fails
to account for factors such as run-time, coding ability, machine, and related factors)
benchmark for establishing the state-of-the-art in performance. At the very least, the
ability of an algorithm to establish new best-known solutions with reasonable comput-
ing effort provides strong evidence of general effectiveness. Consequently, we record
both the previous and our newly obtained best-known solutions to Taillard’s benchmark
instances in Table 3. Of particular note is the ability of our algorithm to establish new
best-knowns for five of the ten 30×20 instances, which are among the most difficult JSP
benchmarks – especially given that we did not scale allocated CPU time in proportion
to problem instance size.

For the single parameterization of SGMPCS used in Table 2 (|E| = 8, Fixed 500,
local upper bound), Table 4 indicates the number of problem instances in each group
for which the best solution found by the parameterization over its 10 runs is better
than, equals, or is worse than the best-known solutions. The best-known solutions are
the lowest makespans in Taillard’s table [20] and Zhang et al’s results [25]. As can be
observed, this single parameterization of the hybrid algorithm is able to meet or improve
upon the current best known solutions in 33 of the 40 instances. This is an impressive
result given that the best-known solutions are the best solutions found by a wide variety
of algorithms rather than those of a single algorithm.

Instance Group # New Best # Equal Best Known # Worse
ta11-20 0 10 0
ta21-30 1 6 3
ta31-40 3 7 0
ta41-50 5 1 4
Overall 9 24 7

Table 4. The number of instances in each group for which the best solution found by the hybrid
(with parameters |E| = 8, Fixed 500, local upper bound) is better than, equal to, or worse than
the current best known. Each instance group contains 10 instances.

Hybrid Parameters ta14 ta31 ta34 ta35 ta36 ta38 ta39
|E| = 8, Fixed 500, Local 10 10 1 0 10 4 10
|E| = 8, Luby 200, Local 10 10 1 1 10 2 9

Table 5. The number of runs (out of 10) for which the hybrid algorithm found and proved the
optimal solution. Note that no use is made of existing lower bounds for these proofs.

5.4 On Proving Optimality

Unlike previous state-of-the-art algorithms for JSP, our hybrid (when using the Luby
bound) is a complete algorithm. It is therefore possible to find and prove an optimal
solution directly rather than based on previously known lower bounds. Even when using
a fixed fail limit, it may be possible to find a proof of optimality on some instances.

Table 5 displays the number of runs (out of 10) for which two parameterizations of
SGMPCS were able to find and prove optimal solutions. That is, in each case, an indi-
vidual tree search exhausted the search space without reaching its fail limit. The other
parameterizations had similar performance. Again, we observe relatively consistent per-
formance in proving optimality across different runs of the same parameterization and
instance. Of particular note is ta34 as, according to [20], this is the first time that the
optimal solution for this problem has been found and proved.

6 Discussion

Our strong empirical results are somewhat surprising given the very simple nature of
the hybrid algorithm. We have achieved state-of-the-art results by running two strong,
but not necessarily state-of-the-art, algorithms in sequence, using the best solutions
found by the first algorithm to initialize the second. While the underlying algorithms are
complex, the effort to hybridize them consisted almost entirely of writing a translation
between the solution representations of the two algorithms.

As noted in Section 1, this work was motivated by non-formalized ideas about dif-
ferences in the search styles of the two foundational algorithms. While our results are
positive, it is important to note that this paper does not test these ideas. The ideas need to
be examined through careful formalization and experimental design. It is possible that

there are other underlying explanations of our results, unrelated to these motivations.
More rigorous testing of these ideas will be the focus on follow-on research.

There are a number of other interesting observations arising from this study, which
we address in the balance of this section.

The Performance of |E| = 1: The strong performance of the hybrid with |E| = 1 is
quite surprising, though it is consistent with previous SGMPCS results [3]. When |E| =
1, the best solution found by i-STS is used as the only elite solution for SGMPCS. We
would expect that such an undiversified search would result in high variance: if we were
unlucky, the elite solution would not be in the vicinity of a better solution. However,
the results in Table 1 show that the worst MRE for |E| = 1 is not significantly worse
than that for the other values of |E|. We believe that for an explanation we will need
to understand more about both the distribution of solutions in the JSP search space and
the behavior of SGMPCS in searching that space.

The Impact of Solution Guidance: The main innovation in SGMPCS is the use of elite
solutions to guide constructive search. To evaluate the importance of this aspect of the
algorithm, we also ran the hybrid but replaced SGMPCS with chronological backtrack-
ing and randomized restart. In both cases, we ran i-STS for 5M iterations, as above. In
the case of chronological backtracking, one less than the cost of the best solution found
by i-STS was used as the upper bound on the cost function and the same randomized
heuristics and propagators described above were used. The only differences are that the
value ordering was always determined by the min-slack heuristic [18] and there was
no restarting of the search (i.e., the fail limit was infinite). For randomized restart, the
upper bound on the cost function, the propagators, and the heuristics were identical
to that of chronological backtracking. We experimented with the same three fail limit
sequences used for SGMPCS.

Overall, performance was poor. Over the 400 runs of chronological backtracking
(10 runs per instance), an improvement over the i-STS starting solution was found
in only one run. The improvement reduced the makespan by one time-unit. Similarly,
over the 1200 runs of randomized restart (10 runs by 3 fail limits by 40 instances), an
improvement was only found in 6 runs. Again each of these improvements only reduced
the makespan by one time-unit.

The randomized restart results are particularly interesting because the only differ-
ence with SGMPCS (with global upper bound) is the value-ordering heuristic. We con-
clude, therefore, that elite solution guidance is a critical component of the hybrid.

7 Conclusions and Future Research Directions

Historically, the performance of constraint programming approaches – despite the avail-
ability of strong, domain-specific propagation and heuristic search techniques – has
lagged that of local search algorithms on the classical job-shop scheduling problem.
We introduced a simple hybrid algorithm that leverages the broad search capabilities of
a high-performance tabu search algorithm for the JSP (i-STS) with the domain-specific
inference capabilities of the state-of-the-art constraint programming algorithm for the

JSP (SGMPCS). The performance of the hybrid algorithm is at least competitive with
the two state-of-the-art algorithms for the JSP: Nowicki and Smutnicki’s i-TSAB tabu
search algorithm and Zhang et al.’s hybrid tabu search / simulated annealing algorithm.
While various factors outside our immediate control prevent us from making a more
rigorous and precise statement regarding relative performance, we additionally observe
that our hybrid algorithm was able to locate 12 new best-known solutions to Taillard’s
notoriously difficult benchmark instances, providing additional evidence of the effec-
tiveness of our approach. Further, our hybrid algorithm provides two additional advan-
tages over the i-TSAB and Zhang et al. algorithms. First, we demonstrate that perfor-
mance is largely insensitive to the choice of the fundamental parameters underlying
the algorithm. Second, and perhaps most importantly, the hybrid is able to consistently
achieve excellent performance, e.g., the worst-case performance is roughly equivalent
to the mean performance of the Zhang algorithm.

While this paper focuses on the introduction and analysis of a hybrid algorithm
in terms of performance, our original motivation was to better understand why con-
straint programming algorithms for the JSP – in particular, SGMPCS – generally under-
perform their local search counterparts. Although it is now clear that SGMPCS has a
niche relative to local search in state-of-the-art algorithms for the JSP, we have only
begun preliminary investigations into understanding this niche and how SGMPCS ex-
ploits it. For example, we have preliminary evidence that SGMPCS acts primarily as an
intensification mechanism for the elite solutions generated by i-STS, and is empirically
more efficient than tabu search in that role. The insensitivity of SGMPCS performance
to parameter settings also raises a number of issues, for example, the need to better un-
derstand why elite pool size is not a major factor in CP-based search, while it appears
fundamental in local search. Overall, the present contribution establishes the hybrid i-
STS / SGMPCS algorithm as an interesting test subject; future research will analyze
these and other questions raised by this performance analysis.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada, the Canadian Foundation for Innovation, the Ontario Research
Fund, Microway, Inc., and ILOG, S.A.. Sandia is a multipurpose laboratory operated by
Sandia Corporation, a Lockheed-Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000

References

1. E. Balas and A. Vazacopoulos. Guided local search with shifting bottleneck for job-shop
scheduling. Management Science, 44(2):262–275, 1998.

2. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based Scheduling. Kluwer Academic
Publishers, 2001.

3. J. C. Beck. Solution-guided multi-point constructive search for job shop scheduling. Journal
of Artificial Intelligence Research, 29:49–77, 2007.

4. J. C. Beck and M. S. Fox. Dynamic problem structure analysis as a basis for constraint-
directed scheduling heuristics. Artificial Intelligence, 117(1):31–81, 2000.

5. J. Blażewicz, W. Domschke, and E. Pesch. The job shop scheduling problem: Conventional
and new solution techniques. European Journal of Operational Research, 93(1):1–33, 1996.

6. M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research, 1(2):117–129, 1976.

7. F. Glover, M. Laguna, and R. Martı́. Scatter search and path relinking: Advances and appli-
cations. In F. Glover and G.A. Kochenberger, editors, Handbook of Metaheuristics. Kluwer
Academic Publishers, 2003.

8. J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1:33–42, 1996.
9. A.E. Howe J.P. Watson and L.D. Whitley. Deconstructing nowicki and smutnicki’s i-tsab

tabu search algorithm for the job-shop scheduling problem. Computers and Operations Re-
search, Anniversary Focused Issue on Tabu Search, 33(9):2623–2644, 2006.

10. P. Laborie. Algorithms for propagating resource constraints in AI planning and scheduling:
Existing approaches and new results. Artificial Intelligence, 143:151–188, January 2003.

11. C. Le Pape. Implementation of resource constraints in ILOG Schedule: A library for
the development of constraint-based scheduling systems. Intelligent Systems Engineering,
3(2):55–66, 1994.

12. M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms. Infor-
mation Processing Letters, 47:173–180, 1993.

13. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42(6):797–813, 1996.

14. E. Nowicki and C. Smutnicki. An advanced tabu search algorithms for the job shop problem.
Journal of Scheduling, 8(2):145–159, 2005.

15. W. P. M. Nuijten. Time and resource constrained scheduling: a constraint satisfaction ap-
proach. PhD thesis, Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, 1994.

16. W. P. M. Nuijten and C. Le Pape. Constraint-based job shop scheduling with ILOG Sched-
uler. Journal of Heuristics, 3:271–286, 1997.

17. Scheduler. ILOG Scheduler 6.5 User’s Manual and Reference Manual. ILOG, S.A., 2007.
18. S. F. Smith and C. C. Cheng. Slack-based heuristics for constraint satisfaction scheduling. In

Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages
139–144, 1993.

19. E. D. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64:278–285, 1993.

20. É.D. Taillard. http://ina.eivd.ch/collaborateurs/etd/default.htm. November, 2007.
21. É.D. Taillard. Parallel taboo search technique for the jobshop scheduling problem. Tech-

nical Report ORWP 89/11, DMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, 1989.

22. J.-P. Watson. On metaheuristic “Failure Modes”: A case study in tabu search for job-shop
scheduling. In Proceedings of the Fifth Metaheuristics International Conference, 2005.

23. J.P. Watson. Empirical Modeling and Analysis of Local Search Algorithms for the Job-
Shop Scheduling Problem. PhD thesis, Department of Computer Science, Colorado State
University, 2003.

24. H. Wu and P. van Beek. On universal restart strategies for backtracking search. In Proceed-
ings of the Thirteenth International Conference on Principles and Practice of Constraint
Programming, pages 681–695, 2007.

25. C.Y. Zhang, P. Li, Y. Rao, and Z. Guan. A very fast TS/SA algorithm for the job shop
scheduling problem. Computers and Operations Research, 35(1):282–294, 2008.

