#### **Creatinine Measurement**

# NKDEP Manufacturers' Forum March 11, 2005

Greg Miller, Ph.D.
Virginia Commonwealth University
Richmond, VA

#### CAP, 2003, Fresh Frozen Serum, N = 5624 Creatinine = 0.90 mg/dL (79.7 mmol/L)



Instrument/method peer group

Miller et al. Arch Pathol Lab Med 2005;129:297-304

#### Creatinine bias vs. RMP over time

| RMP value =           | 0.86 mg/dL             | 0.90 mg/dL             |
|-----------------------|------------------------|------------------------|
|                       | Bias 1994 <sup>a</sup> | Bias 2003 <sup>b</sup> |
| Beckman CX            | 0.08                   | 0.12                   |
| <b>Dade Dimension</b> | 0.08                   | 0.06                   |
| <b>Roche 717/747</b>  | 0.22                   | 0.00                   |
| Olympus               | 0.13                   | 0.11                   |
| Ortho Vitros          | 0.14                   | 0.10                   |

<sup>&</sup>lt;sup>a</sup> Arch Pathol Lab Med 1998;122:587-608

<sup>&</sup>lt;sup>b</sup> Arch Pathol Lab Med 2005; 129:297-304

### IMEP-17, 2002, Fresh Frozen Serum, N = 833 Creatinine = 0.84 mg/dL (74.6 mmol/L)

**VERTICAL BARS = ±1 SD for distribution of participant results** 



Bio-Rad inter-lab QC comparison (within-lab monthly SD for a single lot QC)\*



**12 Months** 

\* Bio-Rad Laboratories, Inc. Liquid Multiqual, 2002

# How does current performance impact calculated GFR

- Four parameter MDRD equation
- Serum creatinine at GFR = 60 mL/min/1.73m<sup>2</sup> (adults)
  - ▶ 1.0 mg/dL 60 Yr, F, not African-American
  - ▶ 1.2 mg/dL 60 Yr, F, African-American
  - ▶ 1.3 mg/dL 60 Yr, M, not African-American
  - ▶ 1.5 mg/dL 60 Yr, M, African-American

### Impact of creatinine bias on GFR

Bias, mg/dL



Adapted from: Kalyani Murthy MD, Paul C Stark ScD, Frederick Van Lente PhD, James Fleming PhD, Andrew S Levey MD

### Impact of method variability on GFR

SD = 0.06 mg/dL (50%tile of CAP peer groups)



# What creatinine method performance is needed

- Creatinine bias and SD should not increase the error in calculated GFR more than 10-15%
- Simulation using 491 patients in MDRD baseline group who had creatinine 1.0-1.5 mg/dL
  - Assume central lab (routine method) had zero bias, and SD = 0.03 mg/dL
  - Add bias and random error to the baseline creatinine values
  - Calculate increase in root mean squared error of the estimated GFR vs. the measured GFR



Total error budget for creatinine measurement as a combination of biases and SDs that produce a relative increase of less than 10% (red line) or less than 15% (blue line) in the error when estimating GFR using the MDRD equation.



Bias vs. a GC-IDMS RMP and inter-laboratory SD for 50 creatinine routine method peer groups for assay of a fresh frozen serum pool with creatinine 0.90 mg/dL in the 2003 CAP Comprehensive Chemistry Survey superimposed on the total error budget for creatinine measurement.

## Creatinine method non-specificity must also be addressed

- Alkaline Picrate
  - Keto acids
  - Glucose and other metabolites
  - Proteins
  - Drugs
- Enzymatic
  - Drugs (fewer)

### Issues raised at the NKDEP Manufacturers' Forum in July 2004

- Global pressure for calibration traceability to IDMS (recalibrate to remove bias)
- Need to coordinate method re-calibration with revised MDRD equation
  - Correction factors for creatinine are difficult to implement due to FDA labeling and potential for confusion among users
  - Timing of change and communication to users must be coordinated on a national/global scale
- Impact on PT grading
  - Bimodal distribution during transition
  - CAP agreed to support dual grading
  - Involve CMS in grading criteria during transition
  - Global PT/EQA impact