

Fire Research Activities at Nuclear Regulatory Commission NIST 2007 Annual Fire Conference

Contraction of States of S

Mark Henry Salley, P.E. Fire Research Team Leader MXS3<u>@nrc.gov</u> 301-415-2840

Major Program Areas

- Fire Modeling for Nuclear Power Plant Applications
- Fire PRA
- Operator Manual Actions
- <u>Cable Response to Live Fire</u> (CAROLFIRE)
- Collaboration with EPRI, NIST, EdF, U of MD
- Provide a overview on each major program

Fire Model V&V NUREG-1824

- "Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications"
- NFPA 805: "Fire models shall be verified and validated."
- Comparing 5 models with experimental data to determine predictive capabilities
- Follows ASTM E 1355
- 13 different parameters/26 different experiments
- Graphical comparisons of the experimental measurements and the model output

Three Classes of Fire Models

Hand Calculations

Two-Zone Models

CFD

$$T_g - T_\infty = 6.85 \left(\frac{\dot{Q}^2}{A_0\sqrt{H_0}h_kA_T}\right)^{1/3}$$

McCaffrey, Quintiere, Harkleroad (MQH)

Contraction of Nuclear Regulatory Researce

FDS, NIST

CFAST, NIST

NUREG-1824

• Examined 13 different fire dynamics parameters:

- Hot Gas Layer Temperature
- Hot Gas Layer Height
- **Plume Temperature**
- **Ceiling Jet Temperature**
- **Oxygen Concentration**
- **Smoke Concentration**
- **Room Pressure**
- Radiant Heat Flux
- **Total Heat Flux**
- Wall Heat Flux
- Wall Temperature
- Target Temperature
- **Flame Height**

ICFMP BE #4, 5

Results of NRC V&V (NUREG 1824)

fice of Nuclear

Fire Model User's Guide

- Provide expert insight
- Specific nuclear power plant fire modeling issues
- Provide guidance for model inputs and interpretation of model outputs
- Characterize the uncertainty of model outputs
- Draft for comment in early 2008
- Final report to be issued in late 2008

Fire Modeling PIRT

- Phenomena Identification and Ranking Table (PIRT)
- Structured expert elicitation process
- Focus on the dominant fire phenomena in important NPP fire scenarios
- Rank the phenomena in terms of importance and level of knowledge
- Use to prioritize future research
- Meetings to be held Spring/Summer 2007
- Report issued early 2008

Future Work-Cable Testing

- Large stock of representative cable stored at NIST
- Data on HRR, flame spread for different cable types, configuration
- Validation data for cable failure models
- Tests to be run in 2008

Fire PRA NUREG/CR6850

- Partnership between NRC-RES and EPRI on technical issues in fire PRA (Probabilistic Risk Analysis)
- Support by consultants, Sandia National Laboratory, and University of Maryland
- Objective: Develop, field test, and document state-of-the-art in fire PRA

Product: NUREG/CR-6850, EPRI 1008239 "EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities"

• Published in September 2005.

gulatory Researc

• Two well-attended, RES/EPRI workshops conducted in 2005 and 2006.

USE OF METHODOLOGY

• Support for 10CFR50.48c implementation with pilot plants

- NFPA 805 Frequently-Asked-Questions (FAQ) Program
- Fire PRA audit
- ANS fire risk standard
 - NUREG/CR-6850 established state-of-the-art
- Reactor Oversight Process (phase 3 fire protection SDP)
- Expected: Support Standard Review Plan (SRP) on fire PRA; Analyses under current fire protection regulations

Protecting People and the Environment

Operator Manual Actions NUREG - 1852

Demonstrating the Feasibility and Reliability Of Operator Manual Actions In Response to Fire

Protecting People and the Environment

Operator Manual Actions (OMAs)

Those actions performed by operators to manipulate components and equipment from outside the main control room (MCR) to achieve and maintain post-fire hot shutdown, but not including "repairs."

CAROLFIRE Project Objectives Two areas of investigation:

- Resolution of the 'Bin 2' circuit configurations:
 - Regulatory Issue Summary 2004-03, Rev 1 "Risk-informed Approach For Post-Fire Safe-Shutdown Circuit Inspections"
 - Documents findings from a February 2004 NRC facilitated workshop puts cable/circuit configurations in one of three bins:
 - Bin 1: Configurations that are most likely to fail (e.g., leading to spurious operation
 - Bin 2: Configurations that need more research
 - Bin 3: Configurations that are unlikely or least likely to fail (e.g., leading to spurious operation).
- Fire Modeling Improvement
 - To reduce uncertainty associated with predictions of fireinduced cable damage

The 'Bin 2' Issues

• The Bin 2 issues:

- A. Spurious actuations caused by Inter-cable shorting for thermoset cables
- B. Spurious actuations caused by Inter-cable shorting between thermoplastic and thermoset cables
- C. Concurrent spurious actuations associated with failures impacting three or more cables
- D. Multiple spurious operations in control circuits with properly sized control power transformers (CPTs)
- E. Fire-induced hot shorts lasting more than 20 minutes
- CAROLFIRE's goal:
 - Assess Bin 2 items A-E through experiments
 - Provide data to NRR for resolution

Fire Model Improvement

- RES has separate efforts underway dealing with Verification and Validation of fire models
 CAROLFIRE compliments these efforts
- Data needed to:
 - Support improved cable thermal response and electrical failure fire modeling tools
 - Reduce modeling uncertainties
- Collaborative partners at NIST and UMd are leading the modeling efforts
- SNL did the testing
 - Extensive efforts to gather data that correlates thermal response to electrical response
 - Range of exposure conditions from simple to complex
 - Range of cable products

The Testing Approach

Two Scales of testing are being pursued
Small-scale radiant heating experiments
Intermediate-scale open burn tests

Testing a broad range of cable products

Cable types being tested FIRE TEAM represent wide range of NPP products

Cable Equation/Sourcies	Insulation &	Material	Cond.	No.	Manufacturer	Notes ⁽³⁾
Function/Service	Materials	Type	(AWG)	Cond.		
	(I/J)		(AUG)			
Power	XLPE/CSPE	TS/TS	8	3	Rockbestos	All XLPE cables were selected from the
Control	XLPE/CSPE		12	7	Surprenant	Firewall III® product line. All are nuclear
Instrumentation	XLPE/CSPE		16	2		qualified. The 16AWG, 2/C cable is
Instrumentation	XLPE/CSPE		18	12		shielded, others are un-shielded.
Control	Vita-Link®	TS/TS	14	7		A "fire-rated" cable based on silicone insulation that ceramifies when exposed to flames.
Control	XLPO/XLPO	TS/TS	12	7		Newer style 'low-smoke, zero halogen' formulation, IEEE-383 qualified.
Control	SR/Aramid Braid	TS/TS	12	7	First Capitol	Industrial grade cable from "sister company" to Rockbestos Surprenant
Control	Tefzel/Tefzel	TP/TP	12	7	Cable USA	Based on Tefzel-280 compound
Control	EPR/CSPE	TS/TS	12	7	General Cable	Industrial grade cable
Control	XLPE/PVC	TS/TP	12	7		Mixed type - thermoset insulated, thermoplastic jacketed
Control	PE/PVC	TP/TP	12	7		Industrial grade cables.
Power	PVC/PVC	TP/TP	8	3]	
Control	PVC/PVC		12	7]	
Instrumentation	PVC/PVC		16	2]	Industrial Grade cable, Shielded
Instrumentation	PVC/PVC		18	12		Industrial Grade cable, Unshielded

Additional Notes:

(1) - XLPE = Cross-linked polyethylene; CSPE = Chloro-sulfanated polyethylene (also known as Hypalon); XLPO = Cross-linked polyelfin;

SR = Silicone rubber; EPR = Ethylene-propylene rubber; PVC = Poly-vinyl chloride; PE = Polyethylene (non cross-linked).

(2) - TS = Thermoset; TP = Thermoplastic; shown as: (insulation type)/(jacket type).

(3) - All power and control cables are un-shielded

Small Scale Tests

- Penlight heats target cables via grey-body radiation from a heated shroud
- Well controlled, well instrumented tests
- Allows for many experiments in a short time
- Thermal response and failure for single. cables and small cable bundles (up to six cables)
- Cable trays, air drops, conduits

Office of Nuclear Regulatory Resear

- Layout of the intermediate-scale test structure.
- Structure was located within a larger test facility.

Intermediate-Scale Tests

- Less controlled, but a more realistic testing scale
- Hood is roughly the size of a typical ASTM E603 type room fire test facility (more open to allow for ready access)
- Propene (Propylene) burner fire source (200 kW typical)

Cables in trays, conduits and air drop

Instrumentation

- Cable thermal response (surface and interior)
- Raceway surface temperature
- Exposure environment
- Cable electrical Response via two monitoring systems
 - The SNL Insulation Resistance Measurement System
 - Surrogate Circuit Diagnostic Units (circuit simulators)

Cable Failure Model

$$\rho_s c_s \frac{\partial T_s}{\partial t} = \frac{k_s}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T_s}{\partial r} \right)$$

1-D heat conduction into homogenous cylinder. Thermal conductivity (k) and specific heat (c) assumed constant for all cables. Density (
$$\rho$$
) obtained from cable diameter and mass per unit length. Failure temperature obtained experimentally.

$$-k_s\frac{\partial T_s}{\partial r}=\dot{q}_c''+\dot{q}_r''$$

Office of Nuclear Regulatory Researc The Fire Model provides the convective and radiative heat flux at the cable surface.

Source: Andersson and Van Hees, SP Fire, Sweden.

Results

Courtesy Steve Nowlen and Frank Wyant Sandia National Laboratory

More Results

Courtesy Steve Nowlen and Frank Wyant Sandia National Laboratory

Conclusion

CAROLFIRE addressed need areas

- Resolution of deferred spurious actuation circuit configurations
- Improving the fire modeling of cable response and failure
- Status:
 - All testing has been completed
 - Final reports in publication process:
 - Volume 1, on the Bin 2 items, Volume 2, on fire modeling improvement will be issued for 45 day Public Comment in May 2007,
 - Final Reports expected in 2008

