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Abstract 

We investigate the properties of Johansen’s (1988, 1991) maximum eigenvalue and trace tests for 

cointegration under the empirically relevant situation of near-integrated variables. Using Monte 

Carlo techniques, we show that in a system with near-integrated variables, the probability of 

reaching an erroneous conclusion regarding the cointegrating rank of the system is generally 

substantially higher than the nominal size. The risk of concluding that completely unrelated series 

are cointegrated is therefore non-negligible. The spurious rejection rate can be reduced by 

performing additional tests of restrictions on the cointegrating vector(s), although it is still 

substantially larger than the nominal size. 
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1. INTRODUCTION 

 

Cointegration methods have been very popular tools in applied economic work since their 

introduction about twenty years ago. However, the strict unit-root assumption that these methods 

typically rely upon is often not easy to justify on economic or theoretical grounds. For instance, 

variables such as inflation, interest rates, real exchange rates and unemployment rates all appear to 

be highly persistent, and are frequently modelled as unit root processes. But, there is little a priori 

reason to believe that these variables have an exact unit root, rather than a root close to unity. In 

fact, these variables often show signs of mean reversion in long enough samples.1 Since unit-root 

tests have very limited power to distinguish between a unit-root and a close alternative, the pure 

unit-root assumption is typically based on convenience rather than on strong theoretical or 

empirical facts. This has led many economists and econometricians to believe near-integrated 

processes, which explicitly allow for a small (unknown) deviation from the pure unit-root 

assumption, to be a more appropriate way to describe many economic time series; see, for 

example, Stock (1991), Cavanagh et al., (1995) and Elliott (1998).2 

 

Near-integrated and integrated time series have implications for estimation and inference that are 

similar in many respects. For instance, spurious regressions are a problem when variables are near-

integrated as well as integrated, and therefore, it is also relevant to discuss cointegration of near-

integrated variables; see Phillips (1988) for an analytical discussion regarding these issues. 

Unfortunately, inferential procedures designed for data generated by unit-root processes tend not 

to be robust to deviations from the unit-root assumption. For instance, Elliott (1998) shows that 

large size distortions can occur when performing inference on the cointegration vector in a system 

where the individual variables follow near-unit-root processes rather than pure unit-root processes. 

 

The purpose of this paper is to investigate the effect of deviations from the unit-root assumption on 

the determination of the cointegrating rank of the system using Johansen’s (1988, 1991) maximum 

eigenvalue and trace tests. Unlike inference regarding the cointegrating vectors, this issue has not 

been investigated much in the literature. The first contribution of the current paper is therefore to 

document the rejection rates for standard tests of cointegration, using the Johansen framework, in a 

                                                 
1 For studies relying on cointegration methods, see, for instance, Wallace and Warner (1993), Malley and Moutos 
(1996), Cardoso (1998), Bremnes et al. (2001), Jonsson (2001), Khamis and Leone (2001) and Bagchi et al. (2004). 
Studies arguing the stationarity of these variables include Song and Wu (1997, 1998), Taylor and Sarno (1998), Wu 
and Chen (2001) and Basher and Westerlund (2006). 
2 Phillips (1988) considers both processes that have roots smaller than unity (“strongly autoregressive”) and larger 
than unity (“mildly explosive”) in his analysis of near-integrated processes. In this paper, however, we only consider 
the empirically most relevant case of processes with roots less than unity. 
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system where the variables are near-integrated. Through extensive Monte Carlo simulations, we 

show that the probability of reaching an erroneous conclusion regarding the cointegrating rank of 

the system is generally substantially higher than the nominal size. That is, the nominal size of the 

test can vastly understate the risks of finding a spurious relationship between unrelated near-

integrated variables. In a simple bivariate system, the spurious rejection rate can approach 20 and 

40 percent for the maximum eigenvalue and trace tests respectively, using a nominal size of five 

percent. Even higher rejection rates are found in a trivariate system. The second contribution is to 

show how a sequence of additional tests on the cointegrating vector(s) can help improve the 

performance of the tests and reduce the spurious rejection rate. However, even after taking these 

extra steps, the rejection rate of the test is still considerably larger than the nominal size. This is 

particularly true for the trivariate system where spurious rejection rates between 15 and 20 percent 

are documented for nominal five percent tests.  

 

Overall, the performance of the trace test appears worse than that of the maximum eigenvalue test. 

Both tests, however, have large enough deviations from the nominal size that practitioners should 

be aware of the problems associated with Johansen’s procedures under these circumstances. The 

proposed sequence of additional tests helps alleviate some of the sensitivity of the Johansen 

procedures to deviations from the strict unit-root assumption. They do not, however, eliminate the 

problem.  

 

The remainder of this paper is organised as follows: Section 2 gives a brief introduction to 

Johansen’s methodology and Section 3 presents the Monte Carlo study. In Section 4, we present 

an empirical illustration of the problems associated with near-integrated variables using U.S. data 

on CPI inflation and the short nominal interest rate. Section 5 concludes. 

 

2. TESTING FOR COINTEGRATION USING JOHANSEN’S METHODOLOGY 

 

Johansen’s methodology takes its starting point in the vector autoregression (VAR) of order p 

given by 

 

tptptt εyAyAμy ++++= −− L11 ,     (1) 

 

where ty  is an nx1 vector of variables that are integrated of order one – commonly denoted I(1) – 

and tε  is an nx1 vector of innovations. This VAR can be re-written as 
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If the coefficient matrix Π  has reduced rank r<n, then there exist nxr matrices α and β  each with 

rank r such that βαΠ ′=  and tyβ′  is stationary. r is the number of cointegrating relationships, the 

elements of α are known as the adjustment parameters in the vector error correction model and 

each column of β  is a cointegrating vector. It can be shown that for a given r, the maximum 

likelihood estimator of β  defines the combination of 1−ty  that yields the r largest canonical 

correlations of tyΔ  with 1−ty  after correcting for lagged differences and deterministic variables 

when present.3 Johansen proposes two different likelihood ratio tests of the significance of these 

canonical correlations and thereby the reduced rank of the Π  matrix: the trace test and maximum 

eigenvalue test, shown in equations (4) and (5) respectively. 

 

( )∑
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1

ˆ1ln λ       (4) 

 

( )1
ˆ1ln +−−= rmax TJ λ       (5) 

 

Here T is the sample size and iλ̂  is the i:th largest canonical correlation. The trace test tests the 

null hypothesis of r cointegrating vectors against the alternative hypothesis of n cointegrating 

vectors. The maximum eigenvalue test, on the other hand, tests the null hypothesis of r 

cointegrating vectors against the alternative hypothesis of 1+r  cointegrating vectors. Neither of 

these test statistics follows a chi square distribution in general; asymptotic critical values can be 

found in Johansen and Juselius (1990) and are also given by most econometric software packages. 

Since the critical values used for the maximum eigenvalue and trace test statistics are based on a 

pure unit-root assumption, they will no longer be correct when the variables in the system are near-

                                                 
3 For a detailed description of the procedure, see, for example, Johansen (1995). 
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unit-root processes.4 Thus, the real question is how sensitive Johansen’s procedures are to 

deviations from the pure-unit root assumption. 

 

Although Johansen’s methodology is typically used in a setting where all variables in the system 

are I(1), having stationary variables in the system is theoretically not an issue and Johansen (1995) 

states that there is little need to pre-test the variables in the system to establish their order of 

integration. If a single variable is I(0) instead of I(1), this will reveal itself through a cointegrating 

vector whose space is spanned by the only stationary variable in the model. For instance, if the 

system in equation (2) describes a model in which ( )′= ttt yy ,2,1y  where ty ,1  is I(1) and ty ,2  is 

I(0), one should expect to find that there is one cointegrating vector in the system which is given 

by ( )′= 10β . In the case where Π  has full rank, all n variables in the system are stationary.5 

 

The fact that stationary variables in a system will introduce restricted cointegrating vectors is 

something that should be kept in mind in empirical work. That is, it is good econometric practice 

to always include tests on the cointegrating vectors to establish whether relevant restrictions are 

rejected or not. If such restrictions are not tested, a non-zero cointegrating rank might mistakenly 

be taken as evidence in favour of cointegration between variables. This is particularly relevant 

when there are strong prior opinions regarding which variables “have to” be in the cointegrating 

relationship. An obvious example is the literature on equilibrium real exchange rates. For example, 

in studies using the so-called BEER approach – which relates the real exchange rate to its 

fundamental determinants – cointegration techniques are extremely common.6 After finding 

support for a cointegrating vector in a system, it is almost always the case in that literature that the 

coefficient on the real exchange rate is normalized to one, thereby forcing it to be part of the 

cointegrating relationship. However, tests of whether all other coefficients in the cointegrating 

vector are zero are rarely performed. Even rarer are tests of whether the only cointegrating vector 

is due to the stationarity of some other variable in the system, despite the fact that the proposed 

determinants of real exchange rates in many cases can be argued to be stationary.  

 

                                                 
4 Based on previous studies – see, for example, Elliott, 1998 – it is no far stretch to conjecture that the Brownian 
motions in the limiting distribution given in, for instance, Johansen (1988) equation (18) would simply be replaced by 
the corresponding Ornstein-Uhlenbeck process to which near-unit-root variables converge. As always with near-unit-
root variables, the problem is that the local-to-unity parameter is unknown and thus also the percentiles of the limiting 
distribution.   
5 This means that the Johansen test can be used as a panel unit root test as suggested by Taylor and Sarno (1998) and 
Österholm (2004). 
6 See, for example, Clark and MacDonald (1999) for a discussion of estimation of equilibrium real exchange rates. 



 6

The lack of need to a priori distinguish between I(1) and I(0) variables is based on the assumption 

that any variable that is not I(1), or a pure unit-root process, is a stationary I(0) process. This 

apparent flexibility, therefore, does not make the method robust to near-integrated variables, since 

they fall into neither of these two classifications. However, the above specification tests of the 

cointegrating vector suggest a way of making inference more robust in the potential presence of 

near-unit-root variables. For instance, considering the bivariate case described above, explicitly 

testing whether ( )′= 10β  will help to rule out spurious relationships that are not rejected by the 

initial maximum eigenvalue or trace test.7 Although we argue that such specification tests should 

be performed in almost every kind of application, they are likely to be extra useful in cases where 

the variables are likely to have near-unit-roots and the initial test of cointegration rank is biased.8 

 

3. MONTE CARLO STUDY 

 

3.1. Setup 

 

The data generating process (DGP) for the nx1 vector ty  is given by 

 

ttt T
c εyIy +⎟
⎠
⎞

⎜
⎝
⎛ += −11       (6) 

 

where c is the local-to-unity parameter that, for simplicity, is assumed to be common to all 

variables, I  is the nxn identity matrix, and tε  is an nx1 vector of normally distributed iid 

disturbances such that ( ) 0ε =tE  and ( ) Iεε =′ttE . We investigate the spurious rejection frequency 

of the Johansen maximum eigenvalue and trace tests for systems of size ( )32=n  and set the 

sample size to ( )500250100=T , which covers most empirically relevant cases. For all 

combinations of n and T, we let c take on values between 0 and -60.9 The nominal size of all tests 

is set to five percent. 

 

                                                 
7 One way of viewing tests of such restictions is as unit-root tests within the VAR. Thus, if the first stage rank test is a 
form of overall panel test of the unit-root assumption in the data, the tests on the cointegrating vector act as 
supplementary unit-root tests in the cases where either a full set of unit-roots is not found (that is, 0=r ) or where 
stationarity of the entire system (that is, nr = ) is not found.  
8 It should be stressed that specification tests on the cointegrating vector are also biased when the variables have near-
unit-roots; see Elliott (1998). This may potentially reduce the usefulness of these additional specification tests but does 
not invalidate them as robustness checks. 
9 This range for c covers most of the plausible values documented in the literature; see, for example, Stock (1991) and 
Campbell and Yogo (2006).  
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We estimate the VAR in equation (2). Given the DGP in equation (6), lag length in the VAR is set 

to the correct value of 01 =−p . Furthermore, we use the empirically most common specification, 

which allows for a constant in the cointegrating relationship but no deterministic trend in the data. 

For notational convenience, the constant term will be suppressed in the following analysis. 

 

Since the variables in the system are completely unrelated, the frequency with which evidence of a 

cointegrating relationship is found should ideally be equal to the nominal size.10 However, 

rejection of the null hypothesis, 0:0 =rH , does not automatically lead to the false conclusion that 

there is cointegration between the variables in the system. In the bivariate case, rejecting 

0:0 =rH  will not lead to a rejection of the null hypothesis of no cointegration if: 

 

a) 1:0 =rH  is also rejected. For the DGP considered above, this implies that 

both variables are stationary as the matrix Π  has full rank. 

b) 1:0 =rH  cannot be rejected but the restriction i) ( )01=′β  or ii) 

( )10=′β  cannot be rejected either. In either of these cases, we would 

conclude that there is no cointegration between ty1  and ty2 . If the 

restriction in i) is judged valid, the conclusion is that ty1  is stationary and 

that it does not have a long-run relationship with ty2 . If the restriction in ii) 

is instead judged valid, the conclusion drawn would be symmetric. 

 

In the trivariate case, rejecting 0:0 =rH  will not lead to a rejection of the null hypothesis of no 

cointegration if: 

 

c) 1:0 =rH  and 2:0 =rH  are also rejected. For the DGP considered above, 

this implies that all three variables are stationary as the matrix Π  has full 

rank. 

d) 1:0 =rH  cannot be rejected but the restriction iii) ( )001=′β , iv) 

( )010=′β  or v) ( )010=′β  also cannot be rejected. Similar to the 

                                                 
10 An alternative viewpoint is that the problem arising from near integrated variables is one of power rather than size, 
and that whenever 0<c  the correct conclusion is nr = . However, in empirical applications, cointegration tests are 
typically used to evaluate whether there is a relation between the variables in the system – not to test whether all 
variables in the system are stationary – and we accordingly believe that it is most relevant to view the issue as a matter 
of size. In our subsequent analysis, we will also test for the outcome nr =  in order to improve the overall size 
properties of the test, as discussed in detail in the main text. 
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bivariate case b), we would conclude that the only cointegrating vector in 

the system is due to a stationary variable rather than cointegration between 

variables. 

e) 1:0 =rH  is rejected but 2:0 =rH  is not, at the same time as the 

restrictions vi) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

010
001

β , vii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

100
001

β  or viii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

100
010

β  

cannot be rejected. Just like in b) and d), we would conclude that there is no 

cointegration between variables and that the cointegrating vectors are due to 

stationary variables. 

 

The interpretation of the restrictions on the cointegrating vector offered above – that variables may 

be integrated of different orders – is clearly not strictly correct since we know that all variables are 

near-integrated with the same local-to-unity parameter. However, it is the interpretation that an 

applied researcher, working within the implicit assumptions of the Johansen framework, would 

draw. Finally, it should be pointed out that the above testing scheme raises some concerns 

regarding the properties of the tests under the alternative of cointegration. In particular, when the 

matrix Π  is found to have full rank – and all n variables in the system accordingly are judged 

stationary – the abilitiy to actually detect cointegration among stationary near-integrated variables 

is limited. Although outside the scope of this paper, such issues clearly need to be addressed in a 

formal extension of the Johansen framework to near-integrated variables.      

 

3.2 Results 

 

Figures 1 and 2 show the spurious rejection frequencies for the bivariate and trivariate systems 

respectively. The left columns in both figures show the spurious rejection frequencies when the 

cointegrating rank of the system alone is taken as evidence of cointegration between variables. 

This is simply when we conclude that 1=r  in the bivariate case and either 1=r  or 2=r  in the 

trivariate case. Recall that 0=r  or nr =  both imply that a correct conclusion has been drawn 

since the variables in the systems here are completely unrelated. In the right column, on the other 

hand, the additional tests in b), d) or e) are also conducted. This means that the correct conclusion 

of no cointegration between variables can be drawn also for 1=r  in the bivariate case and for 

1=r  or 2=r  in the trivariate case and not only for 0=r  or nr = . 
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Figure 1. Spurious rejection frequency for bivariate system. 
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Figure 2. Spurious rejection frequency for trivariate system. 
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Conisdering the bivariate system in Figure 1, it is clear from the left column that if one relies 

exclusively on the estimated rank of the system for inference, there is a large risk of spuriously 

concluding that completely unrelated variables are cointegrated. When c is small in absolute value, 

the rejection frequency is close to the nominal size. However, it is evident already for 10−=c  that 

the tests are severely over rejecting; in particular, the trace test has very poor properties with a 

spurious rejection frequency of approximately 18 percent. The problem reaches a peak for a value 

of 17−=c , where the maximum eigenvalue and trace tests reach spurious rejection frequencies of 

approximately 21 and 38 percent respectively, regardless of sample size. As c becomes even larger 

in absolute value, the rejection frequency falls and approaches zero for 40−=c . The reason for 

this is that both the maximum eigenvalue and trace test correctly conclude that 2=r ; that is, that 

both variables are stationary. The top row of Figure A1 in the Appendix further illustrates this 

phenomenon by showing the results for the individual rank tests in the case of 500=T . Turning 

to the right column in Figure 1, it can be seen that if tests of ( )01=′β  and ( )10=′β  are 

conducted, after failing to reject that 1=r , the spurious rejection frequency falls dramatically for 

both tests. However, while the problem is alleviated, it is still concluded that there is a 

cointegrating relationship around ten percent of the time when c is in the neighbourhood of -17;  

this is the case regardless of the test used. 

 

The results for the trivariate system shown in Figure 2 are qualitatively very similar to those from 

the bivariate system, but the problem of spurious rejection is quantitatively worse for the larger 

system. There is a large interval of values for c, for which both the maximum eigenvalue and trace 

tests have very high spurious rejection frequencies, regardless of whether we look solely at the 

rank (left column) or conduct the additional tests after determining the rank (right column). For a c 

of approximately -18 to -20, the rejection frequency is at its highest. Even if the additional tests on 

the cointegrating vectors are conducted, the maximum eigenvalue and trace tests have 

unacceptably high rejection rates: 16 and 21 percent respectively regardless of sample size. 

Finally, for 40−=c  or smaller, the spurious rejection frequency is virtually zero as both tests 

always conclude that the rank of Π  is equal to three. This is again further illustrated in the bottom 

row of Figure A1 in the Appendix. 

 

Summing up, neither the maximum eigenvalue nor the trace test is reliable in terms of assessing 

whether variables are cointegrated when the data do not have exact unit roots. For reasonable 

values of c, the spurious rejection frequency can be several times higher than the nominal size. 
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4. AN EMPIRICAL ILLUSTRATION 

 

We next turn to an empirical application where it can be argued that the DGP underlying the series 

is potentially near-integrated. Given the high persistence of nominal interest rates and inflation in 

many countries, a popular approach to test the Fisher hypothesis in more recent years has been to 

employ cointegration techniques; see, for example, MacDonald and Murphy (1989), Wallace and 

Warner (1993), Crowder and Hoffman (1996) and Junttila (2001). This makes sense to some 

extent as it has been pointed out that the Fisher hypothesis is better interpreted as a long-run 

equilibrium condition (Summers, 1983). However, much research has questioned the implicit or 

explicit assumption in these papers that inflation and the nominal interest rate are I(1); see, for 

example, Wu and Zhang (1996), Culver and Papell (1997), Lee and Wu (2001), Wu and Chen 

(2001) and Basher and Westerlund (2006). The existence of exact unit-roots in either inflation or 

nominal interest rates is thus far from certain, and it is interesting to revisit the question of 

cointegration between them in the light of the above Monte Carlo study. 

 
Figure 3. Data. 
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We use monthly data on the US short nominal interest rate, given by the three month treasury bill 

and denoted ti , and CPI inflation, tπ , from January 1974 to October 2006. Data were provided by 

the Board of Governors of the Federal Reserve System and are shown in Figure 3. 
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Table 1 shows the results from the Augmented Dickey-Fuller (Said and Dickey, 1984) unit root 

test, where lag length has been established using the Akaike (1974) information criterion. As can 

be seen, the null hypothesis of a unit root cannot be rejected for either variable. In addition, Table 

1 shows the 95% confidence intervals for the local-to-unity parameter c and the corresponding 

autoregressive root ρ=1+c/T, for each of the variables. These are obtained by inverting the ADF 

test statistic as described in Stock (1991). The range of possible values for c clearly covers the 

values for which the largest spurious rejection rates were recorded in the Monte Carlo study. 

 
Table 1. Results from Augmented Dickey-Fuller test. 

 ADFτ  95% confidence 
interval for c 

95% confidence 
interval for ρ 

tπ   -2.271 
(0.182) [-18.019, 2.776] [0.954, 1.007] 

ti  -2.722 
(0.071) [-24.144, 1.680] [0.939, 1.004] 

Note: p-value in parentheses (). 

 

Next, we turn to the issue of determining the cointegrating rank of the system, which is done by 

estimating equation (2) with ( )′= ttt iπy . Lag length is set to 101 =−p  based on the Akaike 

information criterion and the constant is restricted to allow for an intercept in the cointegrating 

relationship but no deterministic trend in the data. Table 2 shows the results from the cointegration 

tests. Both tests reject the null of zero cointegrating vectors. The hypothesis that there is one 

cointegrating vector cannot be rejected on the other hand; that is, based on the cointegration test, 

there is no support for both variables in the system being stationary. Based solely on the evidence 

in Table 2, we would conclude that there exists a cointegrating relationship. 

 
Table 2. Results from cointegration test. 
Null hypothesis traceJ  maxJ  

0=r   22.045 
(0.028) 

16.402 
(0.042) 

1=r  5.642 
(0.220) 

5.642 
(0.220) 

Note: p-value in parentheses (). 

 

Typically, finding that the rank of Π  is one in the system above is taken as evidence for 

cointegration between the nominal interest rate and inflation. Following good econometric 

practice, we should, however, also test whether the cointegrating vector satisfies either the 

restriction ( )10=′β  or ( )01=′β . As shown in the Monte Carlo study above, these additional 

tests also substantially reduce the risk of spuriously concluding that near-integrated variables are 
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cointegrated. The results are given in Table 3 and, as can be seen, ( )10=′β  is rejected whereas 

the restriction ( )01=′β  is not. Our conclusion is hence that the above finding of a cointegrating 

vector does not lend support for cointegration between the nominal interest rate and inflation. 

Instead, based on conducted tests, the empirical evidence points to the nominal interest rate and 

inflation being integrated of different orders. In such a case, no long-run equilibrium relationship 

can exist between the two.11 

 
Table 3. Results from hypothesis tests on the cointegrating vector. 

Restriction Test statistic 

( )10=′β  6.911 
(0.009) 

( )01=′β  0.391 
(0.532) 

Note: p-value in parentheses (). 
 

5. CONCLUSION 

 

This paper has investigated the properties of Johansen’s maximum eigenvalue and trace tests for 

cointegration under the empirically relevant situation of near-integrated variables. Overall, the 

results show that there is a substantial probability, much larger than the nominal size of the test, of 

falsely concluding that completely unrelated series are cointegrated. We find that a systematic 

check of additional tests on the cointegrating vector(s) – based on Johansen’s claim that there is 

little need to pre-test variables for unit roots – helps reduce the spurious rejection frequency. 

However, the spurious rejection frequency remains large and appears to increase with the number 

of variables in the system, even after applying such specification tests. 

 

The results are obtained in a Monte Carlo simulation under perfect circumstances. That is, the data 

are normally distributed and the lag-length in the VAR in levels is known and equal to one. In 

practice, we do not have the benefit of being given the correct model – neither in terms of the 

variables in the system nor the lag length – and the problems shown in this paper are likely to be 

exacerbated. 

 

The findings in this paper further illustrate the sensitivity of cointegration methods to deviations 

from the pure unit-root assumption, as originally noted by Elliott (1998) in regards to inference on 

the cointegrating vectors. Since unit-root tests cannot easily distinguish between a unit root and 

                                                 
11 Stationary inflation but integrated nominal interest rate is consistent with a unit root in the real interest rate. Support 
for a unit root in the real interest rate can be found in, for example, Rose (1988). 
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close alternatives, this raises a precautionary note to the interpretation of results from cointegration 

studies. In particular, it raises questions regarding the conclusions drawn in previous studies that 

have relied on cointegrating methods despite having found evidence of stationarity of the included 

variables; see, for example, Crowder and Hoffman (1996) and Granville and Mallick (2004). One 

way of making the Johansen procedure more robust to near-unit-roots may be through a 

Bonferroni type bounds procedure as proposed by Cavanagh et al. (1995) for inference on the 

cointegrating vector and by Hjalmarsson and Österholm (2007) for residual-based tests of 

cointegration.  
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APPENDIX 
 
Figure A1. Frequency with which it is concluded that the cointegrating rank r. 

 
Note: Sample size is T=500. Nominal size is 5%. 
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