Simulation of Probe Motion Effects on Harmonics

I. Transverse Vibrations

H. Glass

11/11/1998

This note is the first in a series investigating the effects of various probe motions and probe manufacturing defects on the harmonics measured by the rotating coil which will be built for use with the LHC high gradient quadrupoles. Since this probe doesn’t exist yet, the approach used in this study was a simulation [ J. DiMarco, Probesim, http://tsmtf.fnal.gov/~dimarco/probesim/probesim.html ]. The program uses 3 data files for input: 1) a file containing the ‘true’ harmonics of the field being measured, 2) a file describing the probe parameters, and 3) a file that describes errors in probe motion. For this note I varied the parameters in file 3 and kept the other 2 files unchanged, with the exception of comparing effects on a pure quadrupole field vs a field having lots of harmonics.

Magnetic field: For the gradient strength, I used the nominal value of 205 T/m (3.485 T @ 17mm). The field quality specs for the MQXB magnets were prescribed in [ W. Chou et al., Fermilab Pub-97/378, Nov 1997 ]. In that report, the harmonics of the lead end, return end, and straight section were specified separately. In the table below, I calculate harmonics for the whole magnet using a total effective length of 5.5 m. The table lists the nominal value for the mean, the uncertainty in the actual value of the mean, and the standard deviation (magnet-to-magnet variation). The reference radius is 17 mm.

Table I. MQXB nominal harmonics

n
<bn>
d(bn)
(bn)
<an>
d(an)
(an)

2
10000


2.833



3
0
0.34
0.85
0
0.34
0.85

4
0
0.26
0.87
0
0.26
0.87

5
0
0.20
0.34
0
0.20
0.34

6
0.482
0.17
0.25
0.015
0.17
0.25

7
0
0.14
0.11
0
0.14
0.11

8
0
0.10
0.07
0
0.10
0.07

9
0
0.08
0.07
0
0.08
0.07

10
-0.033
0.06
0.03
-0.007
0.06
0.03

If we wish to measure the mean and standard deviation through 20-pole, it seems reasonable to demand a measurement accuracy approaching 0.01 units. 

Probe motion has generally worse effects on the measurements of magnetic fields with high harmonic content (see below). For this study, I constructed a field having reasonably bad harmonics by using
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(1)

where the minus sign was used for b10 and a10 to get a larger absolute value for the harmonic. This resulted in the following set of harmonics, and these are the ones used in this study:

Table II. MQXB with rich harmonic content.

n
bn
an

3
0.915
0.915

4
0.908
0.908

5
0.394
0.394

6
0.784
0.317

7
0.178
0.178

8
0.122
0.122

9
0.106
0.106

10
-0.100
0.060

Probe parameters: For simplicity I considered a probe fully contained in the magnet body, with probe length = 4.0 m. I used the nominal coil parameters for the probe [ ref? ], which is a tangential probe having both dipole and quadrupole bucking coils:

radius
18.33 m

tangential coil: opening angle
13º
number of turns
15

D1 vertices (degrees)
31.89, 211.89

D2 vertices (degrees)
328.11, 148.11

Q1 vertices (degrees)
28.76, 118.76, 208.76, 298.76

Q2 vertices (degrees)
61.24, 151.24, 241.24, 331.24

Transverse probe vibrations

The simulation program allows one to insert, among other things, modes of vibration. I studied horizontal vibrations (parameter VIB_X), which displaces the probe axis (as a function of rotation angle) by
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The adjustable parameters are the amplitude A, the phase φ, and the frequency p. I studied the effect on the harmonics of each of these parameters.

An analytical treatment is given by [ A. Jain, Harmonic coils, CERN 98-05 ]. Considering a displacement function D(, and keeping only terms linear in D, the spurious harmonics in a 2n-pole magnet are given by
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where the Kn are the probe sensitivities. In the case of a quadrupole magnet (n=2), the spurious harmonics depend on the probe sensitivity to dipole (K1). For single-mode vibrations, D(θ) = A sin(pθ), the only spurious harmonics are for m = p±1. 

As an example calculation, suppose the probe has a octupole mode vibration (p=4) with amplitude 1.0 mm. If we use the tangential coil in unbucked mode, we expect spurious harmonics at m = 3 and 5. Calculations using Eq. 3 gives C’(3) = 515 units and C’(5) = 459 units. Using the simulation program, we get 385 and 765 units, respectively, which is reasonably close but tells us that the non-linear effects that were neglected may be important. In any case, these harmonics are intolerably large.

Bucking and magnet harmonic content: We expect bucking to improve the situation dramatically. In fact, the bucking coil geometry has been chosen so that K1 = 0 ideally, and thus according to Eq. 3 we should have no spurious harmonics. When the simulation is run on a pure quadrupole field (no higher-order harmonics at all), we indeed see that the probe measures cn = 0 for all n>2. In this ideal case, bucking allows us to completely recover from vibrations. Of course, once we start to measure real magnets, the situation becomes more complicated. Measuring the magnet described by Table II (the rich-harmonic magnet), we find spurious amplitudes c3 = 0.85 and c5 = 0.60 units. While these are far smaller than those obtained without bucking, they are large enough to corrupt the measurement.

Thus, the effect of vibrations becomes worse as the harmonic content of the magnet grows. For the purpose of doing a worst-case analysis, it makes sense to use the Table II harmonics in the simulation.

Simulation studies

Control run: This used no probe motion, but with a probe offset of x = 0.1 mm. The program has difficulty calculating the correct bucking coefficients when the probe is exactly centered, so I used this small (reasonable) offset. This does not introduce any error, since the program uses the measured b1 and a1 to find the harmonic center, and the probe measures the harmonics perfectly (at least to an accuracy of 0.001 units). In the runs having probe motion, the difference in harmonics between these test runs and the control run are reported in the discussion below. All test runs also used x = 0.1 mm.

Frequency dependence: I kept the amplitude fixed at 1.0 mm, the phase at 0., and varied the frequency, n, between 1 and 10. Of course, we should be able to control vibration amplitudes to better than 1 mm, but I chose it this large to be guaranteed of seeing some effect. The results on the normal harmonics are shown in Figures 1 and 2.
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Figure 1. Normal harmonics vs vibration frequency
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-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

2

3

4

5

6

7

8

9

10

11

harmonic (skew)

delta an

freq = 1

freq = 2

freq = 3

freq = 4

freq = 5

freq = 6

freq = 7

freq = 8

freq = 9

freq = 10

 Figure 2. Skew harmonics vs vibration frequency

From these figures we see that the largest effects are for harmonics m=p±1, as expected from the analytical discussion above. However, all the other harmonics are also affected. The magnitude of these effects do not appear to have an obvious dependence on frequency, although the p=4 and p=6 modes seem to more troublesome than the others.

Phase dependence: In this series of runs I kept the amplitude fixed at 1.0 mm and varied the phase of the p=4 mode. The results for sextupole and decapole, which are affected the most by this mode are plotted in Figure 3, along with a more benign spurious harmonic, octupole. All of the results have a 180 degree period (probably because we’re measuring a quadrupole magnet). The sextupole varies between about –1.5 and +0.5 units as a function of phase. The phases at which extrema occur vary for each harmonic in a way that does not appear simple to predict. 
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Figure 3. Spurious harmonics (sextupole through decapole only) vs phase of vibration.

Amplitude dependence: This is the crucial part of the study, because the vibration amplitude is something we should have a reasonable ability to control, and the question we really need to answer is, how much amplitude can we tolerate? In a study made on the VMTF probe [ J. DiMarco ], analysis of the raw flux signals showed that transverse vibrations were in the range 5 – 100 m for p≤3, and were < 2 m for higher order modes. 

For this simulation, I examined the amplitude dependence of the p=4 mode at a phase of 120 degrees, where the harmonics were generally large (see Fig. 3), and varied the amplitude from 1.0 mm down to 50 m. I didn’t go to lower amplitudes because the effects were very small by that point and the trend was clear. I also examined modes p=5 and 6, but at 0 degrees, since I didn’t know where their worst phase was. The results, showing spurious amplitudes vs amplitude, are in Figures 4, 5, and 6.
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Figure 4. Spurious harmonics vs vibration amplitude (freq=4).

The plots are shown with log-log scales so as to highlight the power law dependence. Also, the absolute value of the change in the harmonics are shown; the change can be either positive or negative, but that isn’t as important as understanding the growth of the size of the error with vibration amplitude. Two obvious groups are seen: the harmonics at n=p±1, which vary approximately as A2, and nearly everything else, which depends linearly on amplitude A. There is also a third group having a higher-than-linear dependence, but with generally small values of bn or an.
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Figure 5. Spurious harmonics vs vibration amplitude (freq=5).
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Figure 6. Spurious harmonics vs vibration amplitude (freq=6).

Although the p±1 group causes the most trouble at large vibration amplitude (typically > 0.5 mm), their A2 dependence means they dampen quickly as one works to limit vibrations to smaller amplitudes. It’s the linearly dependent ones that become somewhat annoying in the 100 m range. Fortunately, between 50 and 100 m all the harmonics cn fall below 0.01 units. This is achievable, if this probe works as well as the VMTF probe, and if we work to limit transverse vibrations to < 50 m then we’ll be in good shape.

What’s next: The obvious path for the friendly neighborhood simulator is to investigate torsional motion, which will be the subject of the next note in this series. This will be followed by studying other probe motions such as sagging and bowing. After that, one can explore the effects of coil defects (incorrect radii and vertices). This should keep me busy for another few hours.
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