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Abstract

This year AT&T participated in the ad-hoc task and the Filtering, SDR, and VLC tracks. Most of

our e�ort for TREC-7 was concentrated on SDR and VLC tracks. On the �ltering track, we tested a

preliminary version of a text classi�cation toolkit that we have been developing over the last year. In

the ad-hoc task, we introduce a new tf-factor in our term weighting scheme and use a simpli�ed retrieval

algorithm. The same weighting scheme and algorithm are used in the SDR and the VLC tracks.

The results from the SDR track show that retrieval from automatic transcriptions of speech is quite

competitive with doing retrieval from human transcriptions. Our experiments indicate that document

expansion can be used to further improve retrieval from automatic transcripts. Results of �ltering track

are in line with our expectations given the early developmental stage of our classi�cation software. The

results of VLC track do not support our hypothesis that retrieval lists from a distributed search can be

e�ectively merged using only the initial part of the documents.

1 Introduction

Spoken document retrieval (SDR) and retrieval from very large collections (VLC) are the main areas of
interest for AT&T at TREC-7. For most of our work, we use an internally modi�ed version of the SMART
retrieval system developed at Cornell University. [1, 9] We are in the process of developing a text classi�cation
toolkit called ATTICS. The �ltering track gave us an opportunity to stress test an early version of this toolkit
on a large task.

For speech retrieval, we believe that parallel text corpora, for example printed news from the same time
period, can be successfully exploited to improve retrieval e�ectiveness of a system. This is especially true for
the news material currently being used in the SDR track. We use these ideas in our SDR track participation.
Initial results from the use of a parallel corpus are quite encouraging.

As the amount of data available electronically (for example on the Web) grows exponentially, it is becom-
ing increasingly hard to maintain a single centralized index to the data. Distributed retrieval is a solution;
however most distributed retrieval algorithms expect some cooperation from the individual servers, which
is often hard or even impossible to get. In the VLC track we simulate \totally independent" distributed
collections, and use a new result merging algorithm that leverages the summary text for retrieved documents,
usually provided by the search engines, to merge results from various servers.

2 Ad-hoc Runs

Over the last year, we have modi�ed the SMART retrieval system with the following minor changes: 1) we
use a shorter stop-list of 410 stopwords instead of the standard SMART stop-list of 571 stopwords, 2) we
use a new tokenizer that handles hyphens and ampersands (as in AT&T ) in a better manner, 3) phrase
formation is governed by a new set of rules, and 4) we have generated a new set of statistical phrases (187,908
phrases) from the news corpora included in disks 1{5 (AP, WSJ, SJMN, FT, FBIS, LATimes). These phrases
are used in ad-hoc, SDR, and the SMART run of the �ltering track. We do not use any phrases in the VLC
track.
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dtn weighting: d factor � t factor

Table 1: Term Weighting Schemes

Poor performance of the logarithmic tf -factor|1 + ln(tf )|on the TREC-6 ad-hoc task forced us to
revisit our term weighting methodology. The main reasoning for use of a logarithmic tf -factor instead of
(say) the raw tf of the terms is to ensure that high tf for one query term in a document does not place
that document ahead of other documents which have multiple query terms but with low tf values. By
using a logarithmic tf -factor, the e�ect of tf dampens with increasing tf values, and a single match usually
doesn't outweigh multiple matches. We found that for short queries (our main interest in the ad-hoc task)
a logarithmic tf -factor does not adequately reduce the e�ect of large tf values. Therefore we need a tf -
function that reduces the tf contribution even more than the logarithmic tf -factor as tf increases. Double
logarithm|1+ ln(1+ ln(tf ))|is an obvious choice. We also like double logarithm since it doesn't introduce
any new parameters into our weighting scheme.

Next we revisited our pivoted unique document length normalization function. [12] When both words
and phrases are used as terms in a document vector, the de�nition of the number of unique terms in the
document is not elegant, especially since phrases are formed from words but are counted as independent
unique terms. Earlier work has shown that byte length of a document can be successfully used in a pivoted
formula for document length normalization. [12] We switch to using pivoted byte size normalization in our
weighting scheme. As a side bene�t, the weighting code inside SMART is simpli�ed when pivoted byte size
normalization is used. With these changes, we use the term weighting schemes shown in Table 1.

2.1 Approach

This year we use a simple two pass pseudo-feedback based approach in the ad-hoc task. Many groups have
used such an approach in the last few TRECs. Here are the steps in the process:

� Pass-1: Using dtn queries and dnb documents, a �rst-pass retrieval is done.

� Expansion: Top ten documents retrieved in the �rst pass are assumed to be relevant to the query
and documents ranked 501{1000 are assumed to be non-relevant. Rocchio's method (with parameters
� = 3; � = 2; 
 = 2) is used to expand the query by adding twenty new words and �ve new phrases
with highest Rocchio weights. [8] To include the idf -factor in the expansion process, documents are
dtb weighted.

� Pass-2: The expanded query is used with dnb documents to generate the �nal ranking of 1,000
documents.



Task Baseline Expansion from Conservative
Title+Desc dnb.dtn target collection TREC D12345 Collection Enrichment

TREC-6 (AvgP) 0.2290 0.2661 (+16.2%) 0.2781 (+21.4%) 0.2906 (+26.9%)
# Q better/worse 0/0 31/19 34/16

TREC-7 (att98atdc) 0.2182 0.2830 (+29.7%) 0.2861 (+31.1%) 0.2961 (+33.7%)
# Q better/worse 0/0 25/25 32/18

Table 2: E�ect of conservative collection enrichment

2.2 Conservative Collection Enrichment

At TREC-6 some groups (e.g., City University and University of Massachusetts) used a technique that Kwok
calls \collection enrichment". [5] The main idea is to run the �rst pass on a much larger collection than the
target collection. The hope is that a larger text collection will have more relevant documents for the query and
our methods will pull more relevant documents in the top ten or twenty documents, thereby strengthening
the assumption of relevance employed in the query expansion stage. We employ such a technique in our
ad-hoc runs using all TREC disks (1{5) as the large collection.

One obvious problem with this approach is possible \domain mismatch". If the top documents retrieved
from the large collection are from a completely di�erent domain than the top, presumably query-related,
documents in the target database, collection enrichment can cause the query to drift away from target
relevance. During our test with collection enrichment, we found that this indeed was a problem. Therefore
we devised a conservative collection enrichment technique which forces the expanded query to remain in the
target domain by not allowing any expansion terms proposed only by expansion on the large collection.

For example, for query 354: journalist risks, the �rst pass from the large corpus (TREC disks 1{5)
retrieves several stories that talk about a list of missing or detained U.N. workers around the world, some
of them were killed, including a journalist. Even though these documents are reasonably relevant to the
topic, the focus of these documents is di�erent than the topical documents in the target database. These
documents add terms related to the U.N. and its missing employees to the query and drift the query away
from relevance in the target database which does not have reports on missing U.N. journalists.

To �x this problem, we allow only those new terms to be added to the query that are proposed by top
documents retrieved from the target database. To capture some e�ect of collection enrichment, we allow the
large collection to impact the term selection and the �nal weights of the terms. Here are the steps involved
in our conservative collection enrichment:

1. Use the query to retrieve the top ten document from the target collection and build a list of potential
expansion terms along with their proposed Rocchio weights. Only terms that appear in at least two
of the ten documents and have a positive Rocchio weight are considered.

2. Use the query to retrieve ten document from the large collection, and compute the Rocchio weights
for all the expansion terms proposed in step 1.

3. Add term weights proposed in steps 1 and 2 and add the top weighted twenty words and �ve phrases
to the original query. This allows for terms that are weakly proposed (i.e., with a low weight) by the
target collection but are strongly proposed by the larger collection to enter the query and vice-versa.

2.3 Results

We submitted two fully-automatic runs based on the above described algorithms. One run, att98atc, was
based on title-only queries and the other run, att98atdc, used title+description queries. We do not use
the narrative-portion of the TREC topics in any of our runs since we don't believe that real users will ever
provide us with such long queries. To highlight the bene�ts of conservative collection enrichment, we �rst
present the results of running this algorithm on last year's (TREC-6) adhoc task (title+description) and
this year's task (our run att98atdc) in Table 2. The second column in Table 2 shows the baseline average



Run Average Precision Best >= Median < Median
att98atc (title only) 0.2488 0 32 18
att98atdc (title+desc) 0.2961 1 41 8
att97atde (title+desc) 0.2940 0 44 6

Table 3: Results for adhoc runs

precision of a straight retrieval when documents are dnb weighted and queries are dtn weighted. The third
column shows the results when only the target database is used in the query expansion process. For the
TREC-6 task, we get a 16.2% improvement in average precision. This improvement is almost 30% for this
year's task. If we use the large collection for query expansion, column four shows that the performance
improves some more. The last column shows that our conservative collection enrichment further improves
the performance some.

Even though in terms of average precision, the conservative method is not much better than expanding
purely from the large collection, but as the rows labeled # Q better/worse show, it is more stable with
respect to the number of queries that improve or deteriorate in comparison to expansion from the target
collection (the sensible baseline for this comparison since if we compare to unexpanded queries, which is the
baseline used in the average precision rows, all expansion strategies will show large gains and the relative
performance of di�erent expansions will be hard to judge). For the TREC-6 task, when expansion is done
from D12345, 31 queries improve but 19 queries deteriorate (column 4) in comparison to base expansion.
But if we do conservative collection enrichment, we cut our losses to 16 queries instead, (column 5) and we
gain some in average precision. These numbers are even more striking for this year's task. Expansion from
the large collection is worse than expansion from the target collection for half the queries, it is better for
the other half. But the conservative expansion reduces our losses from 25 queries to 18 queries only, and
the losses are, in general, smaller. These results show that conservative collection enrichment is more stable
than pure enrichment, even though the gains in term of average precision are not much.

The o�cial results for our ad-hoc runs are shown in Table 3. Both the runs att98atc and att98atdc did
well, especially given that the medians are drawn from a pool which includes runs that use the full topic
text (rich with content words from the \narrative" portion of the topics) to construct the query. Our runs
just use either very short queries (title only) or short queries (title+description). We also submitted an
experimental run att97atde which enriched the term set by using word cooccurrence pairs as we have used
in the past in the routing task. [11] We were hoping that these pairs would be useful in the ad-hoc setting
too, but using word-pairs didn't improve our retrieval e�ectiveness.

3 SDR Runs

We use our own speech recognizer to process the SDR track data. One of our submitted runs att-s1 uses the
one-best recognizer transcript and does retrieval using an algorithm quite similar to the algorithm we have
used in the ad-hoc task. The other run att-s2 uses word-lattices generated by our recognizer and a parallel
text corpora to do document expansion. The expanded documents are then used for retrieval instead of the
one-best recognizer transcript.

3.1 Speech Recognizer

Our speech recognition process involves the following steps. Prior to recognition, each speech story is
segmented into approximately one minute long prosodically well-formed segments using a CART based
classi�er. [2] The resulting segments are submitted to another wideband/narrowband classi�er for selection
of the acoustic model to be used in recognition of that segment.

The recognizer is based on a standard time-synchronous beam search algorithm. The probabilities de�n-
ing the transduction from text-dependent phone sequences to word sequences are estimated on word level
grapheme-to-phone mappings and are implemented in the general framework of weighted �nite-state trans-
ducers. [7] Transducer composition is used to generate word lattice output.



We use continuous density, three-state, left-to-right, context-dependent hidden Markov phone models.
These models were trained on 39-dimensional feature vectors consisting of the �rst 13 mel-frequency cepstral
coe�cients and their �rst and second time derivatives. Training iterations included eigenvector rotations,
k-means clustering, maximum likelihood normalization of means and variances and Viterbi alignment. The
output probability distributions consist of a weighted mixture of Gaussians with diagonal covariance, with
each mixture containing at most 12 components. The training data were divided into wideband and nar-
rowband partitions, resulting in two acoustic models.

Language Models

We used a two pass recognition process. In the �rst pass, we built word lattices for all the speech using a
minimal trigram language model and a beam that we had determined heuristically to provide manageable
word lattices. These word lattices were then rescored, by removing the trigram grammar weights while
retaining the acoustic weights and intersecting these lattices with a 4-gram language model. The 1-best path
was extracted from the rescored lattices.

Both the �rst pass trigram language model and the rescoring 4-gram model are standard Katz backo�
models [4], using the same 237 thousand word vocabulary. For choosing the vocabulary, all of the words
from the SDR98 training transcript were used. This base vocabulary was supplemented with all words of
frequency greater than two appearing in the New York Times and LA Times segments of LDC's North
American News corpus (LDC Catalog Number: LDC95T21, see www.ldc.upenn.edu), in the period from
June 1997 through January 1998. The vocabulary includes about 5,000 common acronyms (e.g \N.P.R."),
and the training texts were preprocessed to include these acronyms.

The language model training was based on three transcription sources (the SDR98 training transcripts,
HUB4 transcripts, transcripts of NBC nightly news) and one print source (the LDC NA News corpus of
newspaper text). The �rst-pass trigram model was built by �rst constructing a backo� language model from
the 271 million words of training text, yielding 15.8 million 2-grams and 22.4 million 3-grams. This model
was reduced in size, using the approach of Seymore and Rosenfeld [10], to 1.4 million 2-grams and 1.1 million
3-grams. When composed with the lexicon, this smaller trigram model yielded a manageable sized network.
The second pass model used 6.2 million 2-grams, 7.8 million 3-grams, and 4.0 million 4-grams. For this
model, the three transcription sources (SDR, HUB4, NBC) were in e�ect interpolated with the text source
(NA News), with the latter being give a weight of 0.1.

3.2 Retrieval System

For the SDR track, we use the NA News corpus (also used in the language model training described above)
as the large collection for conservative collection enrichment (see Section 2.2). Since the test data is dated
from June 1997 to January 1998, we used news dated from May 1997 to February 1998 (one month before
and after) from the NA news corpus.

Algorithm

We use the following algorithm in our reference run|att-r1, our two baseline runs|att-b1 and att-b2,
and our �rst full SDR run|att-s1. This algorithm is exactly the algorithm we have used in the ad-hoc
track with some parameters changed to deal with the small size of the speech database.

� Pass-1: Using dtn queries and dnb documents, a �rst-pass retrieval is done.

� Expansion: Top �ve documents retrieved in the �rst pass are assumed to be relevant to the query and
documents ranked 101{200 are assumed non-relevant. The query is expanded by adding ten new words
and two new phrases using Rocchio's formulation (parameters � = 2; � = 1; 
 = 1). To include the
idf -factor in the expansion process, documents are dtb weighted.

� The above expansion step is performed once on the target collection and once on the large NA news
collection. Conservative collection enrichment is done as described in Section 2.2.



� Pass-2: The expanded query is used with dnb documents to generate the �nal ranking of 1,000
documents.

One of the main motivations for using the above algorithm is to keep our ad-hoc algorithm uniform across
tasks.

Lattice Based Document Expansion

The one-best transcript from a recognizer misses many content words and adds some spurious words to the
spoken document. The misses reduce the word-recall (proportion of spoken words that are recognized) and
the spurious words reduce the word-precision (proportion of recognized words that were spoken). We believe
that information retrieval algorithms would bene�t from a higher word recall and are robust against poor
word precision. An approach to enhance word recall is to add new words that \could have been there" (words
that were probably spoken but weren't the top choice of a speech recognizer) to the automatic transcriptions
of a spoken document.

Several techniques are plausible for bringing new words into a document. An obvious one from an IR per-
spective is document expansion using similar documents: �nd some documents related to a given document,
and add new words from the related documents to the document at hand. And from a speech recognition
perspective, the obvious choice is to use word lattices which contain multiple recognition hypotheses for any
utterance. A word lattice contains words that are acoustically similar to the recognized words could have
been said instead of the words recognized in the one-best transcription.

We use both these techniques to do controlled document expansion for our second full SDR run att-s2.
In our experiments we found that each method when used alone adds more spurious words to a document
than is desirable. However, a controlled document expansion that incorporated information from both the
sources helps in reducing the spurious words, allowing the good words to still be added to a document.

We take the one-best recognition for a story and look for similar stories in the print media (NA news).
This is done by simply running the one-best recognition for the story as a raw-tf�idf weighted query on the
NA news database. The idea being that important news would also be reported in the print media, and we
can leverage words from there to enrich our spoken documents. We do not enforce any conditions like `the
returned stories from NA news should be from the same day or near the same date as the spoken document',
even though one can imagine that this could possibly help.

We found that for speech stories that are not reported in the print media, marginally related stories are
retrieved in response to the query (speech story), and unrelated words are brought into the story. To contain
this problem, we force our expansion algorithm to choose only those words that are also present in the word
lattice generated by our recognizer for the speech story. This restriction guarantees that the words being
added to a document are also proposed by the speech recognizer, albeit with a low con�dence.

The parameters for document expansion were chosen somewhat arbitrarily based on a quick inspection
of the expansion terms and our experience with relevance feedback. We didn't have any testbed to tune our
parameters. The following steps are used:

1. Twenty documents are retrieved from the NA news corpus for a given speech document. The one-best
transcription for a speech document weighted using raw-tf�idf is used as a query.

2. 25% of the unique words, at most 50, new words are added to the speech document using Rocchio's
formula. I.e., if the original one-best recognition has 80 unique (not counting repetitions) words, then
20 new words are added; if it has 200, then 50 new words are added; and if it has 300, then also only
50 new words are added. Following are some details of the expansion process:

� Rocchio parameters � = 4; � = 1; 
 = 0 are used.

� Only words that occurred in at least 10 of the 20 documents retrieved in step 1 are used as
expansion terms.

� Both the original speech document and the top documents from step 1 are dtb weighted (see
Table 1) for Rocchio's formula. This yields expanded document vectors that have idf in the
weights.



Transcription Used in Run WER Term Recall Term Precision
Reference att-r1 0 100 100
Baseline-1 att-b1 34.1% 78.98% 78.02%
Baseline-2 att-b2 46.9% 68.40% 68.04%
Full SDR-1 att-s1 32.4% 81.79% 81.58%

Expanded Docs att-s2 | 83.74% 67.50%

Table 4: Analysis of recognition and document expansion

Retrieval Baseline Expansion from Collection Best Above Below
Condition dnb.dtn target collection NA News Enrichment Median Median

Reference 0.4548 0.5083 0.4864 0.4992 5 16 2
att-r1 | +11.7% +6.9% +9.8%

Baseline-1 0.4115 0.4925 0.4493 0.4700 9 10 4
att-b1 | +19.7% +9.2% +14.2%

Baseline-2 0.3358 0.3941 0.3983 0.4065 6 14 3
att-b2 | +17.4% +18.6% +21.1%

Full SDR-1 0.4371 0.5069 0.4839 0.5065 4 16 3
att-s1 | +16.0% +10.7% +15.9%

Full SDR-2 0.4535 0.5300 0.4981 0.5120 7 13 3
att-s2 | +16.0% +10.7% +15.9%

Table 5: Results for SDR track

3. Idf is removed from the expanded document vectors by dividing by component words' idf s. Now we
have expanded document vectors that are dnb weighted. These expanded documents are used instead
of the one-best transcriptions in the same retrieval algorithm as used in the run att-s1, and this run
was submitted as our second SDR track run att-s2.

Results and Analysis

The recognition word error-rate, average term recall (proportion of spoken words that are recognized), and
average term precision (proportion of recognized words that are spoken) for various automatic transcriptions
are shown in Table 4. To compute the word recall and the word precision, we take all the stories that have
more than ten index terms (non-stop word-stems as indexed by SMART, multiple occurrences of a stem
counted as one term) in the human transcription and compute how many of the original index-terms (non-
stop word-stems only, repetitions not counted) are recognized in the automatic transcription. We also count
the number of spurious terms recognized by a recognizer. We compute per-document term recall and term
precision, and average these values across documents to get the numbers reported in Table 4. We omit all
storied that have less than ten terms since the recall/precision �gures for them are quite unstable. The main
reason behind discounting multiple occurrence of a term is that the tf -factor of our weighting scheme has a
similar e�ect. Recognizing a word once is more important than correctly recognizing multiple occurrences
of the same word.

Table 4 shows that the word error rate for our recognizer is 32.4%, slightly better than the 34.6% for the
medium error transcriptions provided by NIST. This is also re
ected in the higher term recall and precision
for our recognizer. Document expansion is doing its job, though not as well as we would like it to. It does
increase the term recall by another 2% on an average but it signi�cantly reduces term precision from 81.58%
to 67.5%. But as discussed in the following results, the deterioration in term precision does not hurt retrieval
e�ectiveness. This supports our hypothesis that term recall is more important for our retrieval systems.

The results for various runs are shown in Table 5. The o�cial numbers are presented in bold in column 5,
along with various other numbers. The baseline retrieval results|dnb documents, dtn queries, no query
expansion|are shown in column 2. The average precision on human transcription is 0.4548. The retrieval
e�ectiveness falls when retrieval is done on a speech recognizer's automatic transcription of the speech. The



Code Provided By WER
Human NIST 0%

CUHTK-S1 Cambridge University 24.8%
Dragon98-S1 Dragon Systems 29.8%
ATT-S1 AT&T Labs 31.0%
NIST-B1 Carnegie Melon (CMU) 34.1%
SHEF-S1 She�eld University 36.8%
NIST-B2 Carnegie Mellon (CMU) 46.9%

DERASRU-S2 DERA 61.5%
DERASRU-S1 DERA 66.2%

Table 6: Di�erent automatic transcriptions.

base e�ectiveness for the medium-error baseline transcription (B1) is 0.4115, a loss of 9.5%. As expected,
the average precision falls further to 0.3358 for the high-error recognition (B2).

When retrieval is done on our own recognition, which has a marginally higher term recall/precision, the
retrieval e�ectiveness jumps from 0.4115 for B1 to 0.4371, a gain of 6.2%, and we are running just 3.9%
behind retrieval on human transcriptions. Document expansion removes even this di�erence and retrieval
from expanded documents is at par with retrieval from human transcriptions. This is quite encouraging,
especially when the expansion parameters were chosen without any guidance. This also shows that term
recall is indeed more important than term precision. The term precision for the expanded documents
is noticeably worse than our one-best recognition, and the term-recall is marginally better; however, the
retrieval e�ectiveness is better despite the poor term precision.

When query expansion from the target collection is done, all results improve noticeably (column 3 in
Table 5). Retrieval from our transcriptions is still better than retrieval from the medium-error baseline
transcription, and is at par with retrieval from human transcriptions. Retrieval e�ectiveness on expanded
documents gets to 0.53 average precision and it actually surpasses the retrieval from human transcriptions
(0.5083) by 4.3%. This results is very encouraging. Our conservative collection enrichment hurt us in this
environment and our o�cial runs (column 5 in Table 5) are all lower than if we had expanded just using
the target collection. However, the o�cial runs are still very competitive, both our full-SDR runs att-s1 and
att-s2 are above median for 20 out of 23 queries. The run using expanded documents att-s2 yields 7 best
results in 23 which is quite a substantial proportion.

All these results point us to the possible advantages of doing document expansion in speech retrieval
environments. These results also tend to con�rm our belief that term recall plays a more important role in
retrieval e�ectiveness for speech than term precision. We can a�ord to lose term precision for better term
recall and this should yield improved retrieval e�ectiveness for speech. A larger query set would have made
these results much more robust, but there is a clear pattern in Table 5 indicating that document expansion
consistently yields better results than not doing it.

3.3 Cross-Recognizer Analysis

After the o�cial conference, we did a more rigorous study of document expansion. We �rst discovered that
constraining document expansion to allow only terms from the word-lattices generated by our recognizer
held no additional bene�t over not doing so. I.e. we can do document expansion only from NA news and
the results were equally good or better. This also allows us to test document expansion for retrieval from
the automatic transcriptions provided by other SDR track participants, for which we don't have the word-
lattices. Secondly we found that the query expansion parameters used in our SDR runs were sub-optimal.
Using the standard set of parameters used in our ad-hoc run yields consistently better results, and has the
added advantage of uniformity of parameters.

We test document expansion on di�erent automatic transcriptions provided to NIST by various track
participants. Table 6 lists these transcriptions along with their word error rates. We cleaned some timing
mistakes in our transcripts and used the correct WER scripts to get the 31% WER reported in Table 6 (as
opposed to the 32.4% WER reported in Table 4). Here are the steps involved in document expansion:



Unexpanded Documents Expanded Documents

Transcript Baseline Query expn. from Coll. Baseline Query expn. from Coll.
dnb.dtn target NA News Enrich. dnb.dtn target NA News Enrich.

ltt 0.4595 0.5300 0.5211 0.5327 0.5108 0.5549 0.5334 0.5614
cuhtk-s1 0.4376 0.5035 0.5202 0.5285 0.5220 0.5372 0.5444 0.5549

dragon98-s1 0.4190 0.5100 0.5227 0.5147 0.5061 0.5284 0.5459 0.5483
att-s1 0.4353 0.5020 0.5128 0.5251 0.5080 0.5343 0.5505 0.5452
nist-b1 0.4104 0.4820 0.4987 0.4954 0.4862 0.5259 0.5314 0.5316
shef-s1 0.4073 0.4890 0.5042 0.5085 0.5068 0.5421 0.5355 0.5399
nist-b2 0.3352 0.3965 0.4602 0.4220 0.4377 0.4743 0.4961 0.4940

derasru-s2 0.3633 0.3962 0.4614 0.4419 0.4585 0.5065 0.5118 0.5199
derasru-s1 0.3236 0.3613 0.4604 0.4188 0.4526 0.4849 0.5045 0.4959

Table 7: Cross-recognizer analysis.

1. Find documents related to a speech document. We do this by running the automatic transcription of
the speech document as a query (raw-tf�idf weighted) on the NA News corpus and retrieving the ten
most similar documents. In other words, we use the ten nearest neighbors of the speech document in
this process. The documents are weighted by raw-tf�idf when used as a query because we found that
nearest neighbors found using raw-tf�idf weighted documents yield the best expansion results.

2. The speech transcriptions are then modi�ed using Rocchio's formula.

~Dnew = ~Dold +

P10
i=1

~Di

10

where ~Dold is the initial document vector, ~Di the the vector for the i-th related document, and ~Dnew is
the modi�ed document vector. All documents are dnb weighted (see Table 1). New words are added to
the document. For term selection, the Rocchio weights for new words are multiplied by their idf , the
terms are selected, and the idf is stripped from a selected term's �nal weight. Furthermore, to ensure
that this document expansion process doesn't change the e�ective length of the document vectors, and
change the results due to document length normalization e�ects, we force the total weight for all terms
in the new vector to be the same as the total weight of all terms in the initial document vector. We
expand documents by 100% of their original length (i.e. if the original document has 60 indexed terms,
then we add 60 new terms to the document).

The results for unexpanded as well as the expanded documents are listed in Table 7. The two main
highlights of these results are:

� document expansion yields large improvements across the board, and

� document expansion reduces the performance gap between retrieval from perfect and automatic tran-
scriptions.

These points are highlighted in Figure 1. The left plot shows the average precision on the y-axis, against
the WER on the x-axis. All number plotted in Figure 1 are for the unexpanded queries (i.e. we use the
columns marked Baseline in Table 7). This prevents e�ects of query expansion from a�ecting these graphs
and allows us to study the e�ects of document expansion in isolation. The horizontal lines are for human
transcriptions whereas the other lines are for the di�erent automatic transcriptions. As we can see in the
left graph, document expansion (solid lines) yields large improvements across the board for this task over
not doing document expansion (dashed lines).

The right graph in Figure 1 plots the %-loss from human transcriptions on the y-axis for unexpanded and
expanded documents. The baseline for the expanded documents is the expanded human transcriptions, i.e.
the solid horizontal line on the left graph. We observe that for the poorest transcriptions (DERASRU-S1)
document expansion yields an improvement of an impressive 40% (over 0.3236) and reduces the performance
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Figure 1: Raw average precision and %-loss from human transcriptions (initial user queries).

gap from human transcription to about 12% instead of the original 30% despite the very high baseline used.
The results are similar for other transcriptions.

These results indicate that document expansion is indeed a very useful tool for retrieval from this speech
corpus. We should caution that this is a very small test collection and more experimentation is needed,
possibly on a larger test collection, before the full e�ect of document expansion could be analyzed in details.

4 VLC Runs

We come to the VLC track with the belief that with time the collection sizes will outgrow our capability to
e�ciently maintain a single index for a collection. We already see this happening on the Web. A recently
published study reports that any single Web search engine covers less than 35% of the Web. However, if
the collections from various engines are somehow pooled, the coverage improves dramatically. [6] For this
reason, meta-search systems, systems that search multiple search engines and optionally merge the results
are becoming increasingly available on the Web.

Our VLC track participation is modeled like a meta-search system. We divide the 100G collection into
twenty independent collections of about 5G each. Each query is submitted in parallel to each of the twenty
collections and their retrieval results are processed in various possible ways to obtain a single �nal ranking
for the whole collection. We assume that each small collection is available through a server , and a user
submits queries on a client which passes them to the servers, gathers the results and merges them into a
single ranked list for presentation. We further assume that the client has access to some text collection for
computation of idf values needed in our merging process described below. To make things closer to reality,
we force the client to use an entirely di�erent collection (TREC disks 1{5) as its idf collection since many
clients will not have any Web collection (the target collection for the task) to gather idf s.

Four runs were submitted, each with a di�erent set of assumptions to study di�erent e�ects. Here is a
brief description of the runs. Each server returns its top 20 documents to the client and the client generates
a single ranked list for the 400 documents (20 each from 20 servers).

� att98vi: This run assumes the following:

1. Each server is running a straight vector match dnb documents and dtn queries (see Table 1). No
pseudo-feedback or query expansion is done at the servers' end.

2. Each server returns the �rst 500 bytes (mark-up removed) for each of the top 20 documents to
the client. This simulates the Web search environment where it is commonplace for engines to
return the initial portion of the documents as a summary on the results page.



3. The client indexes the 400 summaries \on-the-
y" and creates dnb documents. The client also
indexes the query using dtn weighting (idf is picked from the TREC collection).

4. The summaries are ranked by the client using a straight vector match, and the rank of a summary
de�nes the rank of the �nal document. No pseudo-feedback or query expansion is done at the
client's end.

Result: Average P@20 0.3570

� att98vf: This run is the same as att98vi except that servers return full document text instead of the
initial 500 bytes and full document text is used by the client to produce the �nal ranking.

Result: Average P@20 0.5030

� att98vie: This run has the following assumptions:

1. Each server expands the query using pseudo-feedback.

2. The client also expands the query in parallel using pseudo-feedback on its local collection (TREC).

3. Each server returns the �rst 500 bytes (summary) for documents retrieved using the expanded
query from step 1.

4. The client indexed the 400 summaries \on-the-
y".

5. The summaries are ranked by the client using the expanded query from step 2.

Result: Average P@20 0.3750

� att98vfe: This run is the same as att98vie except that the servers return full document text (instead
of the initial 500 bytes) which is used by the client to produce the �nal ranking.

Result: Average P@20 0.5870

We wanted to show that merging based on the initial 500 bytes is not much worse from merging based
on the full text of the documents. This indeed was the result in our internal studies in which we split the
TREC database into several servers and evaluated our merging methods with TREC queries. However,
we are disappointed to see that our run att98vi is noticeably worse than the corresponding full-text run
att98vf. Similarly att98vie is noticeably worse than att98vfe. We would like to investigate this discrepancy
in behavior for the TREC documents and the Web documents. On �rst thought, one is inclined to believe
that Web documents are just di�erent than more traditional TREC documents, and the initial part of a
Web document is not a very good representative of the entire document (whereas for the TREC documents
it is), but we would like to study this e�ect further.

5 Filtering Runs

We used the TREC-7 �ltering track to test an alpha version of ATTICS, our toolkit for machine learning of
classi�ers for mixed textual and non-textual information. ATTICS di�ers from most text retrieval software
in its support for numeric and other formatted data, and in its emphasis on classi�cation of streams of data
rather than retrieval froma static or slowly changing collection. It di�ers frommostmachine learning software
in its e�cient and 
exible support for textual data, particularly in mapping from structured documents to
attribute vectors.

ATTICS can be used either as a stand-alone system or as a C++ library that can be embedded in other
applications. An extensive API and careful use of the C++ class system enable new preprocessors, data
transformations, classi�er types, training methods, and output formats to easily be added to the system.
We used ATTICS in stand-alone mode for the TREC-7 �ltering task. Support in ATTICS for incremental
training of classi�ers is not yet complete, so only the batch �ltering and routing tasks were attempted. This
also meant that in the batch �ltering task we did not take advantage of training on retrieved test documents.

ATTICS uses XML internally for document mark-up. Since the SGML mark-up for TREC data obeys
XML conventions, processing of TREC data was trivial. For the quick experiment reported here we mapped



the HEAD and TEXT �elds (lower-cased) of the AP documents to a single vector of raw tf counts. Stemming
and stop-wording have not yet been implemented and so were not used.

Early runs on TREC and other large data sets showed preprocessing to be unacceptably slow. The
problem was traced to the extensive use of C++ streams for communication between preprocessor modules,
a holdover from a prototype in the Unix pipeline style. A reimplementation achieved a rate of 220MB/hr for
creation of on-disk vectors from on-disk text using one R10000 processor of an SGI Challenge XL with 8GB
of RAM. This is still well below the comparable rate (about 3GB/hr) for our latest modi�cation of SMART,
but ATTICS can process a much richer set of data types, and the version used was not yet fully optimized.

ATTICS development to date has focused almost exclusively on basic systems issues, data modeling, API
design, and so on, with little time left for implementing particular learning algorithms. To meet the TREC
deadline, we did a quick implementation in ATTICS of the original Rocchio algorithm. [8] We trained linear
models for each of the 50 TREC-7 �ltering topics using only the judged AP88 documents, with Rocchio
parameters � = 0 (topic descriptions were not used), � = 1, and 
 = 1. Negative Rocchio weights were
zeroed out, as usual. Within document weights for all training and test data were computed using SMART
Lnu style normalization with a slope parameter of 0.2. [12]

This �rst set of linear models was used to retrieve the top 5000 scoring AP88 documents. Then a second
set of linear models was trained using the union of the judged AP88 documents and the top 5000 AP88
documents, with unjudged documents in the top 5000 being treated as non-relevant, i.e. a query zoning
approach. [13] The second set of linear models were run back over the training documents to score them, and
a threshold for each model was chosen that optimized the desired e�ectiveness measure (�ltering measure F1
or F3). The models and thresholds were then applied to the test (AP89-90) documents, with the documents
exceeding the threshold constituting the submitted set for batch �ltering.

Our batch �ltering submissions showed reasonable e�ectiveness. Run att98fb5, optimizing measure F1,
was at or above median utility for 36 of 50 topics, with 16 tied for best. Run att98fb6, optimizing measure
F3, had 32 of 50 topics at or above median utility, with 11 tied for best. Statistical signi�cance tests showed
the e�ectiveness of these runs to not be signi�cantly di�erent from that of the best submitted batch �ltering
runs [3]. This was a bit of a surprise to us, given our omission of feature selection, stop lists, idf weighting,
dynamic feedback optimization, and other modern enhancements to Rocchio-style training.

On the other hand, our routing run using the scores output by the same Rocchio models (att98fr4) was
not state-of-art. Overall average precision was 0.275, and per-topic average precision was above median
for only 23 of 50 topics, with 2 bests. For comparison, we submitted a routing run (att98fr5) based on a
modern augmented Rocchio approach implemented in SMART. The algorithm was a scaled-down version of
our TREC-6 run att97rc, and did not use word cooccurrence pairs as features. [11] Overall average precision
for this run was 0.419, with per-topic average precision at or above median for 41 of 50 topics, with 5 best.
Incorporating more modern training methods into ATTICS is a priority for us, and should improve both
�ltering and routing e�ectiveness.

6 Conclusions

We are encouraged by our SDR performance, especially by the possible advantages of document expansion
in this environment. We are quite satis�ed by our �ltering performance given the initial developmental stage
of the software we are using. We would like to further study meta-searching as a model for searching very
large collections. We simpli�ed our adhoc algorithm over the complex algorithm we used last year and the
results are still very good.
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