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Summary

Annular dark-field (ADF) imaging in a scanning trans-
mission electron microscope results in direct structure
images of the atomic configuration of the specimen. Since
such images are almost perfectly incoherent they can be
treated as a convolution between a point-spread function,
which is simply the intensity of the illuminating electron
probe, and a sharply peaked object function that represents
the projected structure of the specimen. Knowledge of the
object function for an image region of perfect crystal allows
the point-spread function to be directly determined for that
image. We examine how the object function for an image
can then be reconstructed using a Wiener filter, the CLEAN
algorithm and a maximum entropy reconstruction. Prior
information is required to perform a reconstruction, and we
discuss what nature of prior information is suitable for ADF
imaging.

1. Introduction

The straightforward way that structural information is
codified in atomic-resolution annular dark-field (ADF)
images formed in a scanning transmission electron micro-
scope (STEM) means that there are many opportunities for
image processing in order to perform quantitative image
analysis. ADF imaging is close to being perfect incoherent
imaging, the principles of which as applied to light optics
were first discussed more than 100 years ago by Lord
Rayleigh (1896). He noted that incoherent imaging gave a
doubling in resolving power over the coherent case for the
same imaging lens configuration. More importantly, how-
ever, he discussed how interference effects from spatially
separated parts of the specimen were suppressed, which is
very important in transmission electron microscopy (TEM)

because it suppresses the complicated effects that dynamical
scattering can have on the image.

Conventional high-resolution TEM (HRTEM) can be
regarded as an almost perfectly coherent mode of imaging,
where the specimen is illuminated by a nearly plane-wave
source. Interference effects between multiply scattered
beams as the electron wavefront propagates through the
specimen, described by dynamical diffraction theory, mean
that in general the images cannot be directly interpreted in
terms of the structure of the specimen. At certain thickness
and focus combinations, structure images of perfect crystals
can be formed (for example, see Spence et al., 1977), but it
is not clear whether the maxima or minima of intensity
should be associated with the atomic-columns, and at
defects such stationary points can be significantly displaced
from the atomic columns (Saxton & Smith, 1985; Bourret et
al., 1988). In spite of this, there has been a growing interest
in quantitative image analysis in HRTEM. Accurate
structure determinations can be performed by iteratively
matching trial models of the structure to the experimental
image by simulating the imaging process (for example
Möbus, 1996; Möbus & Dehm, 1996). These procedures
require a dynamical diffraction calculation for each
iteration and are therefore relatively expensive in computer
time. Quantitative chemical mapping techniques have also
been developed (Baumann et al., 1995), but are limited to
perfect crystals of known structure. In general, these
techniques rely on having a reasonably high degree of
prior knowledge about the specimen before the refinement
procedure starts.

Since ADF imaging does not codify the specimen
information in such a complicated way, it lends itself to
direct structure determination and does not require such a
high degree of prior knowledge. Structure determinations
have been performed on a variety of specimens (for example,
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see McGibbon et al., 1994, 1995; Chisholm et al., 1994),
often leading to hitherto unpredicted structures. The
relatively high angles of scatter used to form an ADF
image also lead to a strong dependence of the image
intensities on the atomic number of the atoms being
imaged (for example Nellist & Pennycook, 1996), hence
the name Z-contrast.

Here we make use of the important attribute of
incoherent imaging that there is no phase problem because
the image intensity is a convolution between the intensity of
the illuminating STEM probe and an object function that is
directly related to the projected structure of the specimen.
From an image region of a specimen of known structure,
the probe intensity profile can be directly determined. Using
this we examine various approaches to how accurate
atomic-column positions may be determined. Because of
the resolution limit of the microscope, information is lost
and an unambiguous reconstruction is impossible without
prior knowledge. We examine to what extent the various
approaches used depend on such prior knowledge of the
specimen.

2. The principles of incoherent imaging using an ADF
detector in an STEM

The concept of incoherent imaging does not mean that
the partial waves propagating through the image-forming
lens are incoherent with respect to each other, since in
this case no image contrast would be formed, rather that
there is no interference between waves emitted from
spatially separated parts of the specimen. This is obviously
the case for an extended self-luminous object, but Lord
Rayleigh (1896) also discussed that illuminating the
specimen with a large, incoherent radiation source could
achieve the same effect, and he also suggested that this was
an important function of the condenser lens in the
illumination system.

In practical terms it is found that incoherent imaging is
more easily attained in the STEM than in the conventional
transmission electron microscope (CTEM). Imaging in the
STEM is intimately related to imaging in the CTEM by the
principle of reciprocity (Cowley, 1969; Zeitler & Thomson,
1970) which essentially states that source and detector
points in an optical system can be interchanged and the
same intensity will be measured. Thus STEM imaging can
be thought of as a source in the image plane that can be
effectively scanned over the image plane by means of scan
coils, followed by the image-forming lens, which physically
acts to focus an image of the source to form a small electron
probe at the specimen. Detectors are now placed in the far-
field beyond the specimen, and the detected intensity
recorded as a function of the scanned probe position to
form an image. By reciprocity we can see that the detector
in an STEM is equivalent to the illuminating electron source

in a CTEM; for example, a small axial detector in an STEM is
equivalent to almost plane-wave illumination in the CTEM,
and in principle gives an identical image. It is now clear that
if we wish to achieve the STEM equivalent of a large
incoherent source in CTEM, all we need to do is use a large
detector that integrates the intensity scattered over a large
range of angles.

To analyse in detail the properties of an image formed
using a large detector in an STEM, we start by considering
the incident cone of partial plane-waves that are focused
by the objective lens to form the illuminating probe (Fig.
1). Each partial plane-wave has a complex amplitude given
by the function A(Ki), where Ki is the transverse
component of the partial plane-wave’s wavevector. The
phase of A(Ki) is controlled by the lens aberration terms,
such as defocus and spherical aberration, and the
magnitude of A(Ki) is a circular top-hat function defined
by the position and size of the objective aperture present.
The complex amplitude of the probe is given by integrating
over all the partial plane-waves,

PðRÞ ¼

�
AðK iÞ exp½¹i2pK i?Rÿ dK i; ð1Þ

which is simply the Fourier transform of A(Ki). It is also
clear that multiplying A(Ki) by a phase factor exp[i2pKi.R0]
in Eq. (1) gives P(R ¹ R0), which is simply a shift of the
probe to the position R0.

Let us now consider that there is an elastic scattering
process that scatters the incident partial plane-wave, Ki,
into a final plane-wave, Kf, changing the amplitude and

Ki

g h

ADF detector

specimen

objective aperture Ki+ρρρρ

Ki+g

BF detector

Fig. 1. The scattering geometry for ADF imaging in the STEM. The
wavevectors indicate possible incident and scattered partial plane
waves that can contribute to the r image spatial frequency.
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phase of the wave by the complex multiplier W(Kf,Ki). In the
far-field that is the STEM detector plane, Kf defines a
position, at which the measured intensity is

IðK f ;R0Þ ¼

���� � AðK iÞ exp½i2pK i?R0ÿWðK f ;K iÞ dK i

����2 ð2Þ

where we have integrated over the partial plane waves
forming the probe. Expanding the modulus squared gives a
double integral,

IðK f ;R0Þ ¼

� �
AðK iÞA

¬ðK 0
iÞ exp½i2pðK ¹ K 0

iÞ?R0ÿ

×WðK f ;K iÞW
¬ðK f ;K

0
iÞ dK i dK 0

i: ð3Þ

However, this expression can be reduced to a single integral
by taking the Fourier transform of Eq. (3) with respect to R0

to give an entirely reciprocal-space expression as a function
of image spatial frequency, r,

iðK f ; rÞ ¼

�
AðK iÞA

¬ðK i þ rÞWðK f ;K iÞW
¬ðK f ;K i þ rÞ dK i:

ð4Þ

Thus the contribution to an image at the spatial
frequency, r, comes from interference between pairs of
partial plane-waves in the illuminating convergent beam
with wavevectors, Ki, separated by r (Fig. 1). In the case
of only Bragg scattering by a crystal, the detector plane
will contain a coherent convergent-beam electron diffrac-
tion pattern, and the image contrast arises from over-
lapping discs (Spence & Cowley, 1978) separated by the
reciprocal space vector, r.

The Fourier transform of the ADF image, iADF(r), is then
found by integrating Eq. (4) over some detector function,
DADF(Kf), with respect to Kf. For the moment we will make
the assumption that the specimen is thin and neglect three-
dimensional propagation effects within the crystal. The
scattering factor, W, can then be written as a function of
Kf – Ki, so the Fourier transform of the ADF image is

iADFðrÞ ¼

� �
DADFðK fÞAðK iÞA

¬ðK i þ rÞWðK f ¹ K iÞ

×W¬ðK f ¹ K i ¹ rÞ dK i dK f ; ð5Þ

which may be rewritten

iADFðrÞ ¼

� �
AðK iÞA

¬ðK i þ rÞDADFðK
0
f þ K iÞ

×WðK 0
f ÞW

¬ðK 0
f ¹ rÞ dK i dK 0

f ; ð6Þ

where we have substituted Kf
0 for Kf – Ki. The range of

integration over Ki is limited by the product of the aperture
functions, A, to a shape given by the overlap of two discs
with the same radius as the objective aperture, separated by
r. If the detector function, DADF, is much larger than the
objective aperture, we can neglect Ki in its argument and

separate the integrals in Eq. (6), thus

iADFðrÞ ¼

�
AðK iÞA

¬ðK i þ rÞ dK i

×
�

DADFðK
0
fÞWðK 0

f ÞW
¬ðK 0

f ¹ rÞ dK 0
f

¼ tðrÞoðrÞ ð7Þ

where t(r) is the function representing the integral over Ki

and o(r) is represents the integral over Kf
0. Physically, this

approximation neglects any overlap regions that are
intersected by the inner edge of the ADF detector, and
assumes that the whole overlaps detected by the large area of
the detector dominate. For the case of Fig. 1 this approxi-
mation is exact since no overlaps are intersected by the inner
radius of the detector. Finally, we note that t(r) is the
autocorrelation of A, and since the Fourier transform of the
modulus squared of a function is the autocorrelation of
the Fourier transform of that function, Eq. (7) can be written
in real space as a convolution,

IADFðR0Þ ¼ jPð¹R0Þj2 ⊗ OðR0Þ

¼

�
jPðR ¹ R0Þj2OðRÞ dR ð8Þ

where O(R0) is the inverse Fourier transform of o(r).
Equation (8) is an extremely important equation; it is the
definition of incoherent imaging when points in the specimen
separated with a component transverse to the electron
beam are almost perfectly incoherent and do not interfere,
and therefore whose contributions to the image are added in
intensity. An STEM image can be written in this form only
when all the partial plane-waves in the illuminating cone
can contribute with a similar weight to the image-forming
process. Here this is seen to occur for a thin specimen that
can be expressed by a complex transmission function and a
large detector. If we now consider the electron wave
propagation within the specimen, we have to use dynamical
diffraction theory. It is found (Pennycook & Jesson, 1990)
that the scattering to a high-angle ADF detector is mostly
from the 1s-type states that are tightly bound to the atomic
columns. Since these states are highly nondispersive, the
approximation of W(Kf – Ki) for W(Kf,Ki) can still be made,
and incoherent imaging applies.

To compare Eq. (8) with bright-field (BF) imaging in a
CTEM we must examine what happens to Eq. (5) when we
assume that we are using a small axial detector in an STEM.
Assuming a CTEM with perfect coherence, we can substitute
d(Kf) for the DADF(Kf) function. Equation (5) is no longer
separable as the product of two integrals, rather it shows
that the BF image can be written

IBFðR0Þ ¼ jPð¹R0Þ ⊗ wðR0Þj2

¼

���� � PðR ¹ R0ÞwðRÞ dR

����2 ð9Þ
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where w(R0) is the inverse Fourier transform of W assuming
still a multiplicative object. This equation assumes that
all spatially separated points in the specimen remain
coherent. The first point to make comparing the last two
equations is that Eq. (8) transfers spatial frequencies from
the specimen going up to twice the maximum found for
Eq. (9) for the same P(R0). The convolution with P(R0) in
Eq. (9) limits the transfer at the spatial frequency corre-
sponding to the objective aperture radius, whereas |P(R0)|2

contains spatial frequencies up to twice this limit. Figure 2
demonstrates this effect by comparing the incoherent
transfer function, t(r), with the conventional coherent
phase-contrast transfer function for the same imaging para-
meters, which are those for a VG Microscopes HB603U
300-kV STEM (CS ¼ 1 mm). Similarly, for the Bragg
scattering shown in Fig. 1, the conventional BF image will
not show any contrast because the lattice spacing is beyond
the resolution limit so there is no overlap and interference
between the diffracted discs at the detector on the optical axis.
An ADF detector will detect the disc-overlap interference at
higher angles and will therefore resolve these lattice planes.
It must be conceded that the presence of noise combined
with the smoothly decaying form of the transfer function
will impose a practical resolution limit slightly worse than
twice the aperture radius; nevertheless spacings of
0·13 nm are routinely resolved in a microscope with a
conventional weak-phase point resolution of 0·19 nm.

The important attribute of Eq. (8), which is the basis of
this paper, is that the ADF image intensity is itself a
convolution between an object function and a real, positive
point spread function (PSF) that is simply the intensity of the
illuminating STEM probe. If we know, or can determine, the

profile of the probe then we can simply deconvolve it from
Eq. (8) resulting in the restoration of the object function. In
contrast, Eq. (9) shows how the phase of the convolution
between the probe’s complex amplitude and the specimen
function is lost in conventional HRTEM by taking the
modulus squared. To deconvolve the transfer function, the
phase problem must first be solved using, for example,
holography (Orchowski et al., 1995) or focal-series recon-
struction (Coene et al., 1992).

In this paper we do not wish to consider in detail the
derivation of the ADF object function, O(R0). We have already
mentioned that it can also be shown that there is negligible
interference between neighbouring columns (see also Jesson &
Pennycook, 1993). However, the detector geometry alone is
not effective at breaking the coherence between atoms within
the same atomic column that is aligned with the beam. Since
the scattering is relatively high-angle, most of the electrons
detected have also undergone phonon scattering. Although
this has little effect on the transverse coherence, which has
already been broken by the detector geometry, it is effective at
reducing coherent effects within a single column ( Jesson &
Pennycook, 1995). The crucial point for the analysis used
later in this paper is that the object function consists of highly
localized sources at the positions of the atomic columns, with
a strength that approximates to the square of the atomic
number of the atomic species present in that column at the
limit of high inner radius.

3. Probe intensity profile reconstruction

One of the major strengths of atomic-resolution micro-
scopy is that it can image the structure of defects, such as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ADF transfer

phase contrast
transfer

Spatial frequency / Å
-1

objective aperture
radius

Fig. 2. A comparison of the weak-phase
contrast transfer function for CTEM ima-
ging with the incoherent transfer function
for ADF STEM imaging. The accelerating
voltage is 300 kV, Cs ¼ 1 mm, and the defo-
cus was set to – 40 nm. The ADF transfer
assumes the presence of an objective aper-
ture with a radius as marked at the first
zero of the weak-phase contrast transfer
function.
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a dislocation core or an interface, within a crystalline
matrix. Often the defect area of interest in the image is
surrounded by large regions of image of the perfectly
crystalline matrix which is usually of a known structure.
For such an image, there exists the opportunity of using the
image region of the known crystalline structure to
determine something about the microscope function, which
can then be used to analyse in greater detail the defect area
of interest.

For incoherent imaging, Eq. (7) suggests that if the object
function is known for a region of the image, then it can be
deconvolved resulting in a direct determination of the PSF.
In practice, the PSF cannot be uniquely determined from an
image of a crystal, but this is most easily illustrated by
considering an example. Figure 3(a) shows a region of an
image of GaAs<110> in the VG HB603U STEM and can be
seen to be a direct structure image of the material, resolving
the 0·14-nm dumbbell spacing and showing clear chemical
or Z-contrast (Fig. 3b). Taking the Fourier transform of this
image (Fig. 3c) gives spots in reciprocal space, the
magnitude of which is given by the product of the
magnitude of the Fourier transform of the object function

at that spot and the strength of the transfer function t(r) at
that spatial frequency. Thus to determine t(r) we need an
estimate of the object function. Let us assume that the
object function consists of d-functions at the column sites
weighted by Z2 of the atomic species of that column, we can
now estimate t(r) for the spatial frequencies present (Fig. 4).
The fact that t(r) calculated from the (002) spot, which is
present purely from the asymmetry in the dumbbell pair, fits
nicely with the rest of the data suggests that our Z2

approximation is reasonable. Although we now have values
for t(r) at six different spatial frequencies going out as far as
the {331} components, nothing is known about the
transfer function between these points, illustrating how
the PSF is not uniquely determined from a periodic image.
We need to introduce a priori knowledge, which in HRTEM
is usually done by parameterizing the microscope function
and performing some kind of best-fit search (see for example
Möbus & Dehm, 1996). However, Fig. 2 shows that the
incoherent imaging transfer function is usually a smooth,
monotonically decaying, real, positive function, and there-
fore we can reasonably approximate the transfer function by
smoothly joining the data points in Fig. 4. Linear
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Fig. 3. (a) An ADF image of GaAs<110>. The 0·14-nm dumbbell spacing is resolved. (b) An intensity profile plot of the marked region of the
image. Note the obvious polarity of the lattice. (c) The magnitude of the Fourier transform of the image showing spots out as far as weak
{311}-type spots, demonstrating a 0·128-nm resolution.
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interpolation between the points is sufficient, as illustrated
by Fig. 5 which shows the reconstructed probe intensity
profile, which is simply the inverse Hankel transform of Fig.
4. The reconstructed probe intensity profile plotted in Fig. 5,
which has a full width at half-maximum of 0·14 nm, is
remarkably close to the optimum diffraction-limited probe
for the machine used. The slight broadening of the probe is
probably due to residual instabilities in the microscope, the
finite size of the electron source or a slight overfocus. Two
other approximations have also been made in this
approach. We have assumed that the PSF has circular
symmetry so that the transfer function is a one-dimensional
function of |r|, and where there are different spots in Fig.
3(c) with the same |r| we have used the mean transfer
function determined from these spots. The scatter in the
experimental transfer values for the same |r| was in the
range 10–20%, and in a more complex analysis this scatter
could be used to estimate the two-dimensional profile of the
probe, thus taking account of noncircularly symmetric
aberrations such as astigmatism. Finally, there is often an
unknown constant background present in the images
which prevents determination of the transfer function for
|r| ¼ 0. In practice this is found not to be important for the
fine detail of the PSF, and we fit t(0) by assuming that the
first minimum of the PSF just reaches zero.

4. Object function reconstruction

4.1. The problem

To illustrate the possibilities and associated problems for the
object function reconstruction we first pose a simulated
problem. An image of Si<110> is simulated by assuming
that the object function consists of d-functions placed in an

arrangement corresponding to the classic dumbbell struc-
ture of Si when projected along <110>, with the columns
forming the dumbbell pairs being separated by 0·136 nm.
In practice, any blurring of the d-functions by thermal
lattice vibration or mechanical vibration of the whole
specimen will be taken account of in the probe reconstruc-
tion by a slight probe broadening since d-function sources
are assumed for that reconstruction. Convolving the object
function with a simulated probe function using the
parameters for the VG HB603U microscope, but with a
relatively large underfocus of – 60 nm, results in Fig. 6. In
practice we find that human operators can achieve a much
more accurate focus condition than the one simulated here,
focusing being a relatively straightforward procedure in
incoherent imaging. However, this focus condition is of
interest because the distance between the peak pixel
positions in one dumbbell pair is 36 pixels which is 12%
higher than the 32-pixel dumbbell spacing in the object
function. Even in this extreme case the absolute error in the
peak positions is only 0·017 nm, which experimentally will
be close to the accuracy limits imposed by the blurring of
the object because of the vibration of the specimen, but this
is still an illustration of how a resolution-limited system can
move peak intensities from the exact column positions, as is
also observed in conventional HRTEM imaging (Saxton &
Smith, 1985). The aim of an object function reconstruction
method should be to restore the object function to allow
accurate structure determination.

4.2. Multiplicative deconvolution

The obvious next step is to divide out the reconstructed
transfer function from Eq. (7), resulting in a reconstructed
object function. Care must be taken to avoid divide by zero
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{113}
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Fig. 4. The reconstructed transfer function
using the experimental data at the frequen-
cies shown, compared with the theoreti-
cally optimum transfer function copied
from Fig. 2. The reduction in the experi-
mental transfer at higher spatial frequen-
cies compared to the optimum transfer
function is a result of a slight broadening
of the probe, due to the finite size of the
electron source, microscope instabilities or
a slight overfocusing of the probe.
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problems when the transfer function goes to zero, which
can by implemented using a Wiener filter (for a discussion of
Wiener filters see for example Bates & McDonnell, 1986),
thus

õðrÞ ¼
t¬ðrÞiADFðrÞ

jtðrÞj2 þ e
ð10Þ

where õ(r) is an estimate of o(r) and e is a small constant.
The effect of performing this on the simulated Si data is
shown in Fig. 7. Although the peak intensity positions for
the dumbbells are now separated by 34 pixels, only 6%
larger than the actual spacing, the object function is far
from being a dumbbell array of d-functions. The atomic sites
are indicated by a large diffuse region of intensity, but there
are also weaker, artefactual regions of intensity in the
‘tunnels’ between the dumbbells. However, this recon-
structed object function, when convolved with the PSF,
will still give an image very similar to the original, and thus
is a valid object function for these data.

The important conclusion to draw therefore is that the
object function is not uniquely defined by the image data.
This is obvious when we consider the transfer function of
the microscope in reciprocal space (Fig. 4) which falls to
zero at the incoherent resolution limit of the microscope.
Information in the object function at frequencies beyond
this limit cannot be transferred by the microscope, and
therefore any object function with the correct Fourier
spectrum within the resolution limit can be convolved with
the PSF to give the correct image data. The Wiener filter sets
the object function to zero for spatial frequencies above the
resolution limit, resulting in an effective transfer function
that is quite sharply truncated. In real-space it is now clear
that the Wiener deconvolved object function is actually a

convolution between the original array of d-functions and a
new PSF which is the Fourier transform of the truncated
effective transfer function which has relatively large side
lobes giving rise to the artefacts in the object function. A
general point is thus raised that if we want accurate atomic
column locations, which is equivalent to reconstructing an
object function with d-function like peaks, then we need a
further constraint than just the experimental data.

4.3. The CLEAN algorithm

It is striking that incoherent imaging in TEM has many
similarities to imaging in astronomy, albeit at a different
length scale. Images in both modes often consist of a
uniform background with discrete localized sources forming
the detail in the object, which are for example stars in
astronomy and atomic columns in TEM, but then convolved
by a PSF that is restricted in Fourier space. It therefore
seems sensible to try techniques that have been successfully
applied in astronomy. One such technique is called the
CLEAN algorithm, and was initially proposed by Högbom
(1974). It is a subtractive deconvolution technique that, in
the implementation used here, follows the iterative loop:
1 locate the pixel in raw data that has the maximum
intensity;
2 transfer a fraction, g, known as the loop gain, of the
maximum intensity to the CLEANed reconstructed object
function at that pixel location;
3 subtract a PSF from the raw data, centred at the peak
pixel position and with a height of g times that intensity;
4 test the raw data to see if the contrast, measured here
simply by the variance of the intensity data, has fallen below
some previously specified criterion.
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Fig. 5. The reconstructed probe intensity
profile from the experimental data com-
pared with the theoretical profile calculated
assuming the optimum lens parameters for
the microscope used. Also shown is a pro-
file (labelled Reconstructed theory) recon-
structed in a similar way to the
experimentally determined one, but using
the theoretically optimum transfer values
at the spatial frequencies available in an
image of GaAs<110> to check the effect
of a linear interpolation in reconstructing
the transfer function.
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This algorithm has been run on the simulated image data
described in Section 4.1, using g¼ 0·1 and allowing the
variance to fall to 1/100 of its original value, resulting in
the reconstructed object function shown in Fig. 8. Although
this simulation did not include the effects of noise in the
original image, it is still instructive to examine its effect. The
reconstructed object function is now much more localized,
indicating that it has been reconstructed to spatial
frequencies higher than the resolution limit. However, the
peak pixels of the dumbbell pair are still spaced at 36 pixels,
as per the peaks in the raw data, which is perhaps not
surprising since the largest single contribution to the
CLEANed object for an iteration will be from the peak
pixels in the raw data. As the algorithm proceeds, pixels
with a closer spacing are excited to compensate, leading to a
streaked object function with some excited pixels only 26
pixels apart.

Thus it can be seen that the CLEAN algorithm has
reconstructed much more localized sources in the object
function, which are consistent with the raw image, but it
has not reconstructed the initial object function exactly.
Högbom (1974) suggested that the CLEAN algorithm was
suitable for reconstructing well-separated point sources, but
the question remains as to how it chooses which object
function to reconstruct from the range of possible solutions.
The analysis by Tan (1986) shows that the choice is rather
arbitrary, and depends on the nature of the object function
and the loop gain in a complicated way.

4.4. Maximum entropy reconstruction

Since the experimental data cannot uniquely identify the
correct object function, the best we can hope to do is to try
and determine a probability distribution for reconstructed
object functions based on the experimental data. It has been
discussed many times (see for example Sivia et al., 1993)
how Bayes’ theorem can be used, which for this problem
can be written

pðobject function jimage dataÞ

¼
pðimage data j object functionÞpðobject functionÞ

pðimage dataÞ
ð11Þ

where p(A|B) means the probability of A given B. Given the
PSF we can compute p(image data | object function), which is
the likelihood of getting the measured data for the trial
object function, and p(image data) is independent of the
object function. However, we do need to assign a so-called
prior probability distribution, p(object function), to the range
of object functions. A prior that was originally applied to
radio astronomy (Gull & Daniell, 1978), but has since found
many applications (see for examples Buck & Macaulay,
1991) is that of entropy

pðobject functionÞ ~ expðaSÞ ð12Þ

where
S ¼ ¹

X
i

fi log fi; ð13Þ

is the entropy, fi are the pixel values for the object function
and a is a constant. A maximum entropy prior biases the

Fig. 6. A simulated image of Si<110> using an underfocused probe
(shown in the inset). Each pixel is 0·00425 nm wide.

Fig. 7. An object function formed by deconvolving the PSF from the
simulated image using a Wiener filter.
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reconstructed object function towards smoothness; the
object function with the highest entropy is a uniform
image. In this way an object function is reconstructed with
the minimum structure that is consistent with the
experimental image data.

Using the VG Microscopes MaxEnt software routine on a
PC equipped with an accelerator card, which is an
implementation of the Skilling & Bryan (1984) algorithm,
we performed a reconstruction on the simulated experi-
mental data described in Section 4.1 which resulted in the
object function in Fig. 9(a). In this case the atom sites are
indicated by only two neighbouring pixels being excited
with one of them dominant, so once again the high-
frequency part of the object function that was not
transferred by the microscope has been reconstructed.

However, the distance between the dumbbell peaks in this
object function is 36 pixels, as in the original data. The
explanation for this effect is that our simulated data are
artificially noise-free. The algorithm used assumes a
Gaussian error in the experimental values from the
counting statistics and therefore uses the value of x2 to
compute p(image data | object function). As noted by Gull &
Daniell (1978), the algorithm does not attempt to fit the
data exactly, rather it attempts to let x2 approach a value
based on an assumed noise scaling that can be automati-
cally estimated from the experimental data, thereby avoid-
ing the introduction of artefacts by the over-fitting of the
data. Although this simulated noise-free data could be fitted
exactly, the algorithm has assumed that it has been noise
corrupted, avoided the perfect fit and failed to converge
properly. To test this hypothesis, Gaussian distributed noise
was added to the simulated data to give a signal-to-noise
ratio of < 3. Although the reconstructed object function
(Fig. 9b) is now not nearly as localized, the clusters of points
are now centred on the correctly spaced column positions
demonstrating that the algorithm is now making an
estimate much closer to the true object function. In
practice, ADF image data are relatively noisy and the
maximum entropy algorithm is found to be an extremely
powerful technique for ADF image analysis (McGibbon et al.,
1994, 1995). Some recent analysis (Dickey et al., 1997) has
suggested that the degree of relaxation at an interface can
be determined to an accuracy approaching 6 0·01 nm
using an ADF image combined with a maximum entropy
reconstruction using the PSF reconstructed from the
experimental data.

4.5. Parameterization

In Section 4.4 we assumed that there was no further
information available apart from the experimental image
and the PSF, but in practice we know that the object
function consists of discrete, localized sources that can be
assumed to be d-function-like in the object function.
Often the projected structure of the specimen can be
determined intuitively from the raw image data (Chisholm
et al., 1994) since a focused probe gives minimal artefacts
and the 0·13-nm resolution of the VG HB603U in ADF
imaging resolves all the projected spacings for many
specimens. If this is the case then all that is required is a
simple procedure to match accurately the atomic-column
positions to the experimental data using, for instance, a
least-squares fit.

The process of starting with a model for the structure and
then refining it to fit the experimental data is simply
reducing the number of unknowns to a few parameters. In
the case described above, we have reduced our problem to a
few parameters of atomic-column location coordinates. The
danger in this approach is of over-parameterization, in
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Fig. 8. (a) A reconstructed object function formed by applying the
CLEAN algorithm to the simulated data. (b) A profile plot of pixel
intensities across the central dumbbell pair.
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which the constraints imposed by the parameterization
exclude the reconstruction of the correct object function
which may be an unexpected structure. For example, we
may try to fit one source to a region of intensity in an
image, where in reality it was two sources that were
unresolved by the microscope, for instance where a single
atomic column has become split into two, half occupied,
closely spaced columns. It has been shown once again (Sivia
et al., 1993) that Bayes’ theorem offers a way of finding a
probability distribution for the number of sources that are
unresolved in a peak of intensity, and this approach may
well be of use for ADF imaging.

5. Conclusions

Although we have been discussing quantitative approaches
to image analysis in ADF imaging in this paper, one of the
main strengths of incoherent imaging is that the structural
information of the specimen is codified in the image in a
much more straightforward way than it is for coherent
HRTEM imaging, peaks of intensity in the image being
directly related to the presence of an atomic column. In
many cases, these structure images are all that is required
to solve for the structure of the specimen. However, as in
any resolution-limited system, there are ambiguities

a

c

b

36 pixels

32 pixels

noise free

noise added

Fig. 9. Reconstructed object functions formed by a maximum entropy reconstruction of the object function: (a) with no noise added to the
image, (b) with Gaussian noise added to the image data to give a signal-to-noise ratio of < 3. (c) Profile plots across the central dumbbell pair
for both cases, the intensities having been summed perpendicular to the plot axis.
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remaining as to the correct object function, and peaks in
the image intensity may well be displaced from the exact
atomic-column locations, though in practice such
displacements are of the order of 0·01 nm for ADF
imaging.

A second important strength of incoherent imaging is
that there is no phase problem, the image intensity being a
convolution between the probe intensity and an object
function consisting of very localized peaks. We have shown
how the probe intensity profile can be directly determined
from an image region of a specimen of known structure,
and found that the VG HB603U at Oak Ridge is operating
close to its theoretical diffraction-limited optimum perfor-
mance, and resolving spacings as small as 0·128 nm. Even
though the probe function can be determined, a simple
deconvolution of it from the image data does not
dramatically improve our ability to interpret the data
because it does not attempt to reconstruct the information
that was lost by the limited resolution. Bayes’ theorem
shows how some prior probability distribution of object
functions is required to perform this reconstruction. The
CLEAN algorithm and a maximum entropy reconstruction
are both found to reconstruct object functions with highly
localized sources, but the CLEAN algorithm is subject to the
criticism in that the prior basis to the reconstruction cannot
be adequately characterized.

The extreme case is to take the approach used in
accurate atomic-column location in HRTEM: to use a
starting model and then allow the columns to move to fit
the experimental data in some iterative fitting routine. In
ADF imaging this is a lot simpler than for HRTEM since a
full dynamical calculation would not be required for each
iteration. In this way we have parameterized the object
function to a few numbers describing the coordinates of
the columns. The constraints that this approach imposes
may be dangerous because they preclude the determina-
tion of an unexpected structure. Perhaps the best
compromise approach is to include the prior information
that the sources are discrete and localized to single pixels,
but to use a Bayesian approach to determine a probability
distribution for their number and position in the object
function.
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