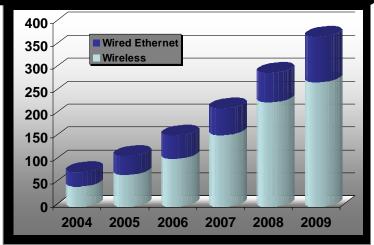
Clock synchronization over 802.11 for AV applications

Kevin Stanton, Intel Corporation

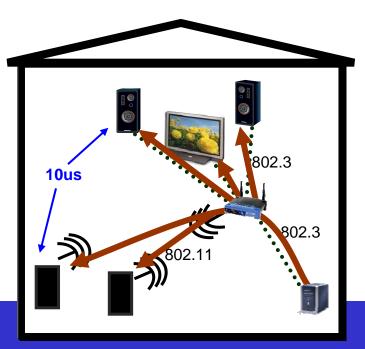
Acknowledgements: Dirceu Cavendish; NEC George Claseman; Micrel Geoff Garner; Samsung (consultant)

IEEE 1588 Conference, 10/2006

Agenda


- Motivation for Ethernet/WiFi (802.3/802.11) time synchronization
- Relevant wireless characteristics/protocols
- Wireless synchronization protocols/model

Motivation


- Wireless speakers have strong customer demand
 - Diffusion Group: 53% want
- 802.11 is important for home
- Multi-speakers/displays requires Time Synchronization
 - Both for simultaneous "Start" and to counteract long-term drift
 - 11us accuracy for tightly coupled stereo
 - 15-45ms for lip sync
- Clock synchronization required for "media push" and multicast
 - See Geoff Garner's presentation at this conference for details

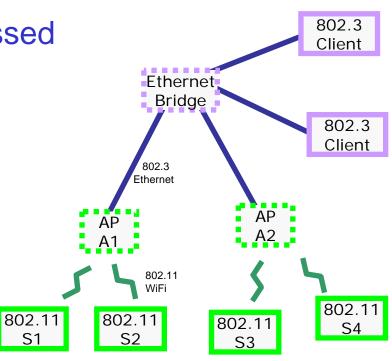
Time synchronization standard needed over 802.3 and 802.11 LANs

Homes have mix of Ethernet and WiFi

Source: Home Networking Nodes (IDC Aug'05)

Standards from the 802.1 "AV Bridging" Task Group

- 802.1AS Time Synchronization
 - Based on emerging IEEE 1588 version 2
- Stream Reservation Protocol
 - Used to reserve bandwidth for streams
 - Admission Control
- Traffic Shaping
 - Bounded latency through bridges
 - Guaranteed bandwidth for fixed-bandwidth links
- Recommended Practice
 - Specifies network parameters
 - Defines a "defended network"


This effort is now comprehending both wired and wireless LANs

Relevant 802.11 characteristics

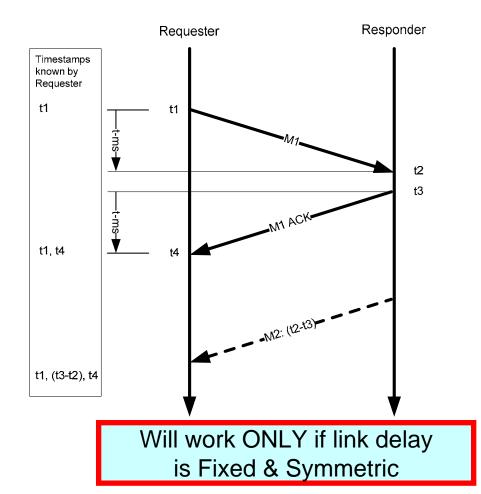
 Wireless station "associated" with ONLY one Access Point (AP)

 Unicast frame processed by addressed station and ACK'd

- Migration between APs is explicitly signaled
- APs communicate via Ethernet (typically) for handoff
- High frame error rate
- Multicast very unreliable
- Lower throughput (than Ethernet)
- Link delay changes over time

Location estimation protocol (802.11 TGv)

Goal: Measure distance between 802.11 stations (in ns)


- Requester schedules M1 for Tx
- As it passes through the PHY, t1 captured
 - Using requester clock
- 3. Time t2 captured in PHY on Rx
 - Using slave clock
- 4. Responder MAC automatically sends M1 ACK very quickly (a control frame)
- 5. t3, t4 captured as above
- 6. M2 carries (t3-t2) to requester

If link delay is fixed & symmetric:

Link delay =
$$[(t4-t1) - (t3-t2)]/2$$

Clock offset between master and slave = [(t2-t1) - (t4-t3)]/2

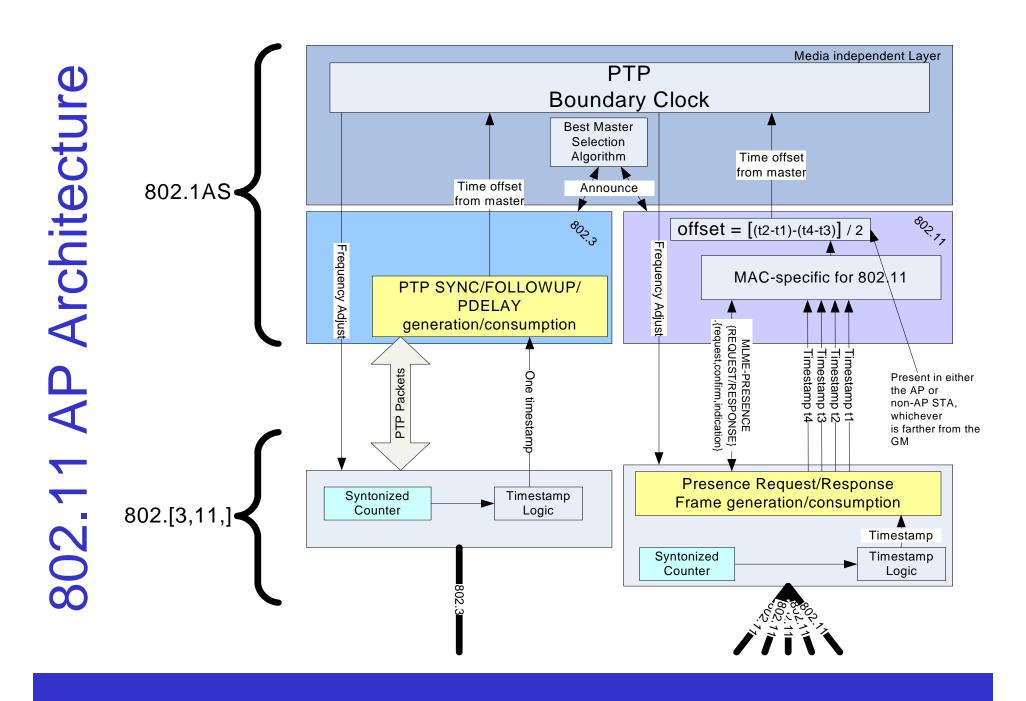
BUT requester doesn't know t3 and t2...

Protocol options for 802.11

- 1. Apply 1588 messages directly to 802.11
 - The brute force method
- 2. Use Announce plus modified TGv location estimation and either:
 - A. Send t3 and t2 instead of (t3-t2)
 - Define timestamp point
 - Permit Presence Response to go either direction
 - B. Supplement link delay measurement with 1588-like SYNC message timestamp in HW
 - C. Ignore link delay only send t2 back, don't measure t3,t4
- 3. Use TSF time to communicate time to stations
 - Accuracy may be too low
 - Requires separate message to communicate time offset

2A is most appropriate for 802.11 and delivers the best accuracy/scalability

Time synchronization for 802.11


The approach:

- Use 802.11v to take the measurements
- Place a Boundary Clock in every AP
- Use standard ANNOUNCE messages
- Configure 802.11 stations to be selected LAST as Grand Master

Remaining issues:

- Accuracy, bandwidth, power requirements
- Protocol stability with unreliable multicast
- Requires 802.11v modifications
 - "Requester" also sends "response"

p1588 already provides the framework for wireless time synchronization

Summary

- Time synchronization needed for 802.3 and 802.11
- Wireless protocol already under definition
- 802.1AS working toward joint 802.3/802.11 synchronization architecture