Typical Characteristics of a "Regulatory Problem" in Engineering
Prediction for the Application Requires Extrapolation.  
Bottom-Up Validation Structure.  A validation structure involving (generally) several validation steps and, often, an accreditation step encourages the modeling of more complex physics as the process progresses.
Required Predictions, Involve the Tails of the Response Distribution. Very often requirements are to demonstrate an event has very low probability.
A Complete Specification is given for a Scenario to Demonstrate Regulatory Compliance.  This reduces the need for optimization, and/or reliability analysis to try to characterize the application through a sub-region of the test space (see the Problem Space diagram Figure #1 below).  For the challenge problems:
Thermal Problem: for a specific length and flux determine whether or not, at time 1000 sec, the surface temperature will exceed a failure temperature 900º C with probability less than 10-2.
Mechanics Problem: for a specific structure determine what can be said about the probability that the displacement in the midpoint of beam 4 will not exceed 3 mm.

Structural Dynamics Problem: for specific structure determine whether or not, the max absolute acceleration of mass 3 will exceed 18000 in/sec with probability less than 10-2.
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Figure #1   The Problem Space. The axes are symbolic, indicating a range in these two elements (inputs) of the problem space.  The axes are generally multi-dimensional and not necessarily based on a real number coordinate system.  For the mechanics problem, for example, the system characteristics axis includes a component for system structure, indicating one of several specific structures to be considered in the analysis.

Issues and Methods in Model Calibration
Selection of Model Parameters is largely a part of the model development effort, but calibration is critical to making the model address the specific concerns of an application.  Below is a list of the model parameters used in the challenge problems.  X and Y are inputs (see Figure #1) and ( specifies the model parameters.
Thermal Problem


X = {thickness, L}

Y = {flux, q: location and magnitude}
( = {heat capacity, (Cp. thermal conductivity, k}
Mechanics Problem


X = {system physical geometry: lengths; connections}

Y = {force, F: location; direction and magnitude}
( = {modulus of elasticity E and parameters of its spatial distribution}
Structural Dynamics Problem


X = {system physical geometry: lengths; connections}

Y = {input signal characterization}
( = {modal parameters: frequency (i; damping (i and shape (i, i=1, 2, 3}
Model parameters May Be Fixed or specified as functions of the inputs, or (possibly) as functions of other state variables that may include the response.  For the thermal problem it appears that thermal conductivity depends on temperature, for example, and consequently different parameterizations may be appropriate depending on the thermal range anticipated.
Model parameters should be conditioned, as much as possible, for the specific application.  In the structural dynamics problem, for example, parameter estimates are provided for accelerations resulting from excitation of low, medium and high intensity.  Some of the parameters show a significant dependence on the intensity.  When the remainder of the analysis involves only of high excitation level, than the calibration can be conditioned on these data.

Model parameters can be re-parameterized as more data become available.  Care should be taken to make sure the data sets are parameterized adequately using the same characterization.  In the structural dynamics problem, for example, model parameter estimates based on random vibration data appear to be different than the estimates based on shocked data.
Methods for Calibration of Model Parameters (Ref 1)
Model parameters may be characterized to include uncertainty and/or variability.  The methods used in calibration may depend on this issue.  The same application may have both types of parameters -- uncertain constants and variable material properties, for example.
Variability (primarily)

· “Bootstrap” using the calibration data directly (Ref 2)
· Nonparametric distribution fit to the calibration data (used for thermal and structural dynamics problems)
· Parametric distribution fit to the calibration data
Uncertainty (primarily)

· Generalized likelihood (Ref 3) (used for the mechanical problem)
· Bayesian parameter modeling

· Bayesian computational modeling or forecasting (Refs 4, 5, 6)
Model parameters may be reduced in number by using principal components analysis.  (used for structural dynamics problem).

Model parameter characterization may be determined through expert judgment 
Parameters, modeling epistemic uncertainty, may be characterized using alternative (to those based on probability theory) representations (Ref 7).
Issues and Methods in Model Validation
The validation metric is generally a statistic based on both computational and experimental data.  Ideally, it is selected to focus the comparison of these two sets of data on elements of the response that are important to the application.  For example, when applied to a regulatory problem involving demonstrating a low probability event, it is more important to focus the comparison on the tails of the computational and experimental response distributions rather than compare their mean values.
The model validation process is not generally a conservative process.  The validation metric (like most statistics) has an associated “power” function or curve indicating how likely the comparison is to identify differences between the computational and experimental responses if there are true differences.
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If one is willing to set a threshold for the validation metric above (or below) which they will take action than a power curve can be constructed (the action may be: to do further development work on the model; to perform further experimentation; to do supplemental modeling; or to make the prediction in another way).  The processes associated with the computational analysis are very often lacking in data, both experimental and computational.  Consequently, it may be the case that only large true differences will be identified with reasonably high probability.  This information should be taken into account in the decision-making process.
The power curve above is somewhat of an oversimplification of the issue in that the true difference axis is generally quite complex and must be used to address very specific differences.  Fortunately if there are specific true differences that one wishes to investigate, the power curve can usually be constructed using a numerical approach.

A General Approach to Comparing Computational and Experimental Responses
In an effort to focus the validation comparison on aspects of the response that are important to the application, the following approach was taken for all problems.  It is illustrated in detail for the structural dynamics problem.  
For a scalar response
· Step #1 – Construct a response CDF based on the model results.

· Step #2 – Mimic the experimental design, (sample size and construction) that will be used (or was used) for the experiments with samples generated using the model CDF.

· Step #3 – Compute the empirical CDF for the sample in Step #2 and evaluate the ‘metric’ M comparing this empirical CDF to the model CDF.  

Repeat Steps #2 and #3 a large number of times and calculate the empirical distribution of the metric values, say Em
· Step #4 – Perform the experiments.  Use the responses to compute the empirical experimental CDF and calculate the metric value, comparing it with the model CDF.  If the metric value falls above a specified percentile on the distribution of Em, then the model has failed this test at that ‘level’.

For a functional response, the method is only slightly more involved.  One approach consists of replacing Step #1 with

· Step # 1’ - Evaluate the principal components associated with the model responses and use these to generate the empirical CDFs.  There would be one CDF for each principal component retained

The remaining steps are similar.  M is now a metric in multi-dimensional space, perhaps weighting the different dimensions to reflect their relative contribution to differences between responses as computed in the principal component analysis.   
The idea is that we first characterized the model responses and sampled using that characterization to see how a limited number of experiments would perform if they followed that characterization exactly.  Next, the set of physical experiments is performed and their responses are compared to the model characterization.  In the case of a valid model the responses should be close.
Issues and Methods in Model-Based Prediction
Model based prediction in regulatory problems often involves a leap of faith because of the extrapolation associated with predictions made in the application space. Even in cases where the model has performed well at all other stages of the computational analysis, it is difficult to assess the additional uncertainty that accompanies extrapolation.

When problems with the model have been identified, but the analysis is to proceed, there are several alternatives available for supplementing the model predictions and adjusting the modeling uncertainty.  Two of the more common approaches are 1) to adjust the model predictions through the recalibration of model parameters and 2) to adjust the model predictions through supplemental modeling.  Each of these alternatives has pros and cons (mainly cons) listed below.
Recalibration of model parameters, to better fit the data:

· may distort the meaning of the parameter;

· can lead to "over-fitting";

· will generally distort the estimate of parameter uncertainty;

· does not lead to an estimate of additional parameter uncertainty.

Supplemental empirical modeling:

· has a difficult time modeling extrapolation when the input axes are not real variables.  [One approach around this is demonstrated with the thermal problem];

· uncertainty estimates may be available but are rough.
Alternatives that combine these approaches are available (Refs 4, 5).
 Thermal Problem
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Thermal Problem


X = {thickness, L}

Y = {flux, q: location and magnitude}
( = {heat capacity, (Cp. thermal conductivity, k}
Solution Summary:

Model parameter selection.  Model parameters were specified in the problem description.  The parameters consisted of thermal conductivity and heat capacity with 30 data provided through six calibration tests performed at each of five temperatures.  The first figure, that follows illustrates the data.  
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Model Parameters              Nonparametric Parameter Density Estimate
Model calibration.  The different symbols and the first figure above, indicate different temperatures, increasing left to right from 20° C to 1000° C. Clearly there is a dependency of the thermal conductivity values on temperature.  When these data were used to estimate the model parameter distribution, only data at 750° C. and 1000° C. were used because these values appeared most critical to later experiments and the application.  The second figure above shows the kernel density estimate to the model parameter distribution.  The nonparametric approach was taken, because the data seemed inappropriate for the parametric models considered.

To generate parameter values to be used for the validation experiments a Latin hypercube sampling (Ref 8) process was applied to these nonparametric distributions.  This was followed by a process inducing a rank correlation of zero (Ref 9) for the sampled parameters.  
Validation tests.  The means of running the model for validation experiments was provided with the problem description.  The validation space for this problem, considered four specific sets of input (configurations).  Twenty computational runs were performed to provide the validation data -- 5 at each configuration.  The responses over time are plotted in the figures below for configurations 1 and 4 followed by plots of the differences between experimental and computational responses.  The differences are computed between each pair.  
Note that there are differences for each configuration, but that the nature of the differences is different as well.  Largely for this reason, we considered it important to try to compare the entire 
response over time.  If extrapolation is necessary, the entire “trajectory” provides information that may aid in supplemental modeling.  The analysis was performed using principal components of the functional data (Ref 10).
The formal validation analysis was performed using the functional version of the general algorithm described above.  According to this validation testing, there were significant differences between computational and experimental responses.
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Computational and Experimental Responses
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Differences Between Computational and Experimental Responses

Model Based Prediction.  In order to compensate for the model discrepancy, supplementary modeling was performed on the difference trajectories as a function of length and flux.  Each principal component of this difference was modeled using a bilinear model, and the uncertainty in this model was calculated and included.  The first figure below shows predictions for the accreditation problem.  The green curve represents the prediction based on the model alone; the black curve represents the prediction based on the supplemented model.  The two blue curves represent the experimental results for the accreditation problem.  It appears (unfortunately), in this case, that the supplemented prediction is farther from the experimental results than the model based protection.  The second figure below shows the bounds associated with these predictions.  The yellow curves come from 100 simulated results.  The black curve is the prediction of the supplemented model and the blue curves indicate 90% bounds.  The green bounds show the modeling uncertainty, based on the un-supplemented model.  Note that the upper bound is below one of the experimental curves.
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Accreditation Test Responses, Predictions and Bounds
The curves that follow provide similar information for the application scenario.  The first figure shows predictions by both the supplemented and un-supplemented model.  Bounds are provided in the second figure below.
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Application Predictions and Bounds

The results suggest that the regulatory requirements cannot be assured based on the present analysis.  Uncertainty added the model prediction to accommodate the extrapolation and to accommodate the model supplement term inflate the bounds leaving substantial probability that responses will exceed 900° C.

Mechanics Problem

[image: image14.jpg]Calibration
Exps

\D

20,4

Length,

Area

Validation_—T""

Exps

80,4

Application Space

I~ Accreditation
Exp(s)

(|
single Connected
beam beam

system




Mechanics Problem


X = {system physical geometry: lengths; connections}

Y = {force, F: location; direction and magnitude}
( = {modulus of elasticity E and parameters of its spatial distribution}
Solution summary:

Model parameter selection.  The parameters needed to accommodate this problem were those necessary to characterize the material properties of the beam.  The problem description, indicated that the beam did not have constant modulus of elasticity and consequently parameters were required to describe a stochastic process.  In the present approach, we used a Gaussian process with correlation function: 
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for any x  and x’ points along the length of the beam.  This leaves the two parameters (and λ  to be estimated.
Model calibration.  The parameters that determine the Gaussian process are unknown constants in the present analysis,  so the calibration effort was focused on evaluating parameters that led to responses similar to those in the calibration data set.  Approximately 50 model runs were required to find combinations of the above parameters (and a third parameter) that appeared to match the calibration data reasonably well.  We were unable to find values of (and λ  that produced both the distribution of midpoint values and the distribution of elongation values found in the calibration data set.  The third parameter added was a “tie down” parameter that conditioned the modulus of elasticity values found in the calibration data.  The figures below give examples of the two processes that were retained.  It is likely that if more model runs were performed alternative processes that matched the calibration data could be obtained.
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(To be Continued)

Structural Dynamics Problem
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Structural Dynamics Problem


X = {system physical geometry: lengths; connections}

Y = {input signal characterization}
( = {modal parameters: frequency (i; damping (i and shape (i, i=1, 2, 3}
Solution Summary:

Model parameter selection.  Model parameters were suggested in the problem description.  The parameters consisted of three sets of modal parameters, consisting of a frequency and damping parameter and a shape factor; a total of 15 parameters. In order to simplify the calibration process principal components analysis was used to reduce the number of parameters.  The first figure that follow shows the variability in the 15 parameters after standardization.  The second figure illustrates the six principal components that account for almost all (99%) of their variability.
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Model Parameters



Principal Components
Model calibration.  The parameters were calibrated using only high-level excitation calibration data provided.  Only the ‘high’ subset of the data was used, because as the first figure below illustrates, there can be quite substantial differences in the parameter is depending on the excitation level.  Since the excitation levels of the accreditation and application scenarios are high, only the high values were used for calibration.  Nonparametric distributions were constructed for coefficients of the principal components.  
To generate parameter values to be used with the forces provided for the validation experiments a Latin hypercube sampling (Ref 1) process was applied to these nonparametric distributions.  This was followed by a process inducing a rank correlation of zero (Ref 1) for the sampled parameters.  The resulting parameter vectors are illustrated together with the experimental vectors, after standardization, in the second figure below.
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Calibration Data

 Generated, Experimental Parameter Values
Validation tests.  The means of running the model for validation experiments was provided with the problem description.  The force vectors used in the experiments were used for the simulations as well.  Twenty computational runs were performed to provide the validation data.  Nonparametric density estimates for the maximum absolute accelerations are shown in the first figure below (green - computational; blue - experimental).  A formal validation analysis, following the algorithm described above is described next.
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Nonparametric Density Estimates
       CDF Of Metric Values
· Step #1 – the CDF is computed from the model parameter density estimate above (shown as the green CDF in the second figure above).

· Step #2 – sets of 20 (the number of the random experiments) sample accelerations (500 sets) were generated at random using the model CDF above. 
· Step #3 – the empirical CDF for the generated computations in step #2 was computed (no model runs are made at this step; values are just taken from the CDF at random) and evaluated using the metric: [average absolute discrepancy with the model CDF across the last fifth of the CDF range].  The choice of metric here is somewhat arbitrary, but the intent is to focus the comparison on the upper tail of the distribution.
· Step #4 – the experimental CDF is shown as the blue curve in the second figure above.  According to the metric described in step #3, experimental CDF sits near the middle (p-value = .42).  We conclude that the data do not provide evidence that the model is invalid.
Recalibration.  The model appeared to perform as well as can be expected in the validation step above.  Because more data or are now available.  It makes sense to recalibrate the model parameters to accommodate this additional information.  The figure below shows the parameter estimates for this recalibration.  The dark curves are from the random vibration testing of a light curves are from the shot tests.
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Parameter Values For the Recalibration
Accreditation.  The model appeared to perform as well as can be expected in the validation step.  The figures below provide similar information for the accreditation tests and computations.  The first figure, gives a histogram a computational results and shows the experimental responses indicated by the red stars.  The results again, look quite good.  Because there are several data available is possible to perform a validation test.  The second figure below shows the CDFs for the computations and the model.  The formal validation procedure, gave a p-value of .43.
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      Histogram of Responses            Computational and Experimental CDFs
Model Based Prediction.  Aside from the disturbing segregation of parameter values shown above resulting from the two different types of excitation, both the validation and the accreditation step indicate that the model is performing well.  For this reason, the model alone was used to make the application predictions; the results are shown in the figures below.  The first figure gets a histogram of the application results.  The second figure gives the CDF associated with the kernel density estimate of the max-absolute-acceleration distribution
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      Histogram of Responses                    Application Response CDF

The results suggest that the regulatory requirements are not met for this system.  The modeling effort passed through the validation hurdles quite well.  One must keep in mind, the limitations illustrated through the power curve (not shown here) of inferring model validity with so few data.  
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