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• Aeronautical Research Mission Directorate:  Aviation 
Safety Program

• NASA Engineering and Safety Center

• Exploration Systems Mission Directorate - Exploration 
Technology Development Program, ISHM Project

• Shuttle Program - Wing Leading Edge Impact 
Detection

• Science Mission Directorate - AISRP

Key Programs

All schematic diagrams and pictures in this presentation 
are publicly available on the Internet.
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NASA Data Systems

• Earth and Space Science
– Earth Observing System generates ~21 TB of 

data per week.
– Ames simulations generating 1-5 TB per day

• Aeronautical Systems
– Distributed archive growing at 100K flights per 

month with 1M flights already.

• Exploration Systems
– Space Shuttle and International Space station 

downlinks about 1.5GB per day.
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Characterizing the Large Scale 
Structure of the Universe

There are between 125 and 500 billion
galaxies in the universe.

Obtaining a good estimate of their 3-D
position in the sky would help determine
the filamentary structure of the universe
to constrain cosmological models.

We are building machine learning methods
to estimate the redshift of galaxies using
broad-band photometry.

If these estimates are of high enough 
accuracy, it would enable a better 
understanding of how the universe evolved after the Big Bang.
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Each dot (including blue) 
is a galaxy
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Prediction Accuracy

• Our ensemble 
models produce the 
best redshift 
estimates published 
to date.

• We are developing 
Gaussian Process 
Regression methods 
to scale to 106

galaxies and beyond.
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Outline of Talk
Categorizing and 
detecting anomalies 
described in safety 
documents

Detecting anomalies 
in cockpit switching 
sequences

Detecting Shuttle 
wing heating 
anomalies
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vs.…

The Forensic (Historic) Approach to 
Accident Prevention
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… a More Prognostic Approach

Diagnose
causation 

Quantify
frequency

Assess
severity

Consider change

Assess safety risk

Estimate  
benefits & costs

Implement
locally

Refine
Implement
full scale

Monitor and compare
with expectations

Uncover potential
hazards

Proactive risk management leads to 
decisions before an accident occurs

A Strategy 
for Safety 

Improvement

A Strategy A Strategy 
for Safety for Safety 

ImprovementImprovement

Implement

Formulate

Evaluate

Identify
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… a More Prognostic Approach

Diagnose
causation 

Quantify
frequency

Assess
severity
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Assess safety risk

Estimate  
benefits & costs

Implement
locally

Refine
Implement
full scale

Monitor and compare
with expectations

Uncover potential
hazards

• Identify
– Monitor and compare 

with expectations.
– Uncover potential 

hazards

• Evaluate
– Diagnose causation
– Quantify frequency
– Assess severity

• Formulate
– Consider change
– Cost-benefit estimate
– Assess safety risk

• Implement
– Implement locally
– Evaluate intervention
– Refine
– Implement full scale

Proactive risk management leads to 
decisions before an accident occurs
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Distributed National Archives
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ASRS Report Excerpt

JUST PRIOR TO TOUCHDOWN, LAX TWR TOLD 
US TO GO AROUND BECAUSE OF THE ACFT IN 
FRONT OF US. BOTH THE COPLT AND I, 
HOWEVER, UNDERSTOOD TWR TO SAY, 
'CLRED TO LAND, ACFT ON THE RWY.' SINCE 
THE ACFT IN FRONT OF US WAS CLR OF THE 
RWY AND WE BOTH MISUNDERSTOOD TWR'S
RADIO CALL AND CONSIDERED IT AN 
ADVISORY, WE LANDED... 
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Automatic Categorization of 
ASRS Reports

...

Ground Encounter, Less Severe

Altitude Deviation Undershoot

Fumes

Altitude Deviation Overshoot

Air Space Violation

Landing without a Clearance

Runway Incursion

Critical Equipment Problem

Non Adherence to ATC ClearanceJUST PRIOR TO 
TOUCHDOWN, LAX TWR TOLD 
US TO GO AROUND BECAUSE 
OF THE ACFT IN FRONT OF 
US. BOTH THE COPLT AND I, 
HOWEVER, UNDERSTOOD 
TWR TO SAY, 'CLRED TO 
LAND, ACFT ON THE RWY.' 
SINCE THE ACFT IN FRONT 
OF US WAS CLR OF THE RWY
AND WE BOTH 
MISUNDERSTOOD TWR'S
RADIO CALL AND 
CONSIDERED IT AN 
ADVISORY, WE LANDED…

ASRS Report Extract
Sample of 60 ASRS 
Anomaly Categories

?

?
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ASRS Report Excerpt
Sample of 60 ASRS 
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Classification Task

• Automatically map safety reports into 
Distributed National ASAP Archive (DNAA) 
anomaly categories.

• New reports entering the DNAA can then be 
automatically categorized by the classifier.

• Comparison among Natural Language 
Processing (NLP), statistical methods, and 
Mariana, which is based on advanced data 
mining techniques.
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Data Mining Approach

• Convert documents into a vector space 
representation “Bag of Words” matrix.

• Learn the mappings from documents to 
categories.

• Typical matrix:
– 30,000 rows
– 40,000 dimensions

Term 1 Term 2 Term 3 …

Document 
1 0 1 0 4

Document 
2 0 3 0 0

… 2 8 1 0

Frequency 
of term in 
document



18

The Support Vector Machine
• Given a set of p-dimensional data 
• Use a possibly infinite dimensional operator 

to map the data into a feature space.
• Perform linear operations in the feature space.
• Map result back to the original space.
• Can do this operation without explicitly computing 

)( ixΦ

N
iix 1}{ =

)( ixΦ

X-space
High-dimensional
feature space

Linear
Decision 
Boundary

)( ixΦ
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Text Mining with SVMs

• We built 23 instances of a Support Vector Machine, each 
tuned to classify ASAP documents into DNAA anomaly 
categories with advanced noise reduction methods.

• We developed Mariana, an advanced Markov Chain 
Monte Carlo (MCMC) algorithm to find the best SVM 
hyperparameters.

• Kernel induces an infinite dimensional feature space.
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Hyperparameters in SVMs
min{ K(x,xi) + CwΣi εi }, where εi = soft margin, and

where C = error penalty parameter

K(x, xi) = exp{-γ||x-xi ||2}, where γ = scale parameter

w1 yi = 1 (in the class)
1 yi = -1 (out of the class), w, class penalty parameter =

w, C, γ are model inputs



Mariana Statistical
Optimization Methods

Start xo

x1

xi

Accepted step
Accepted, but at lower value
Rejected step

Current Approach: Simulated Annealing

Less likely to be optimal (maximum) solution
More likely to be optimal, i.e., global max, solution

Possible Future Approach: Particle Filter
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Natural Language Processing 

• NLP extracts and represents concepts in 
text documents.

• Potentially thousands of hand-crafted 
rules to extract meaning.

• Example:  Identify reports describing 
“pilot fatigue”
– Search for: ‘fatigue’, ‘tired’, ‘last leg of an X 

day trip’, ‘sleepy’, …
– If a document has any of these phrases, tag 

it as a ‘fatigue’ document.



24

Comparing NLP to Data Mining

• Very precise
representation of 
concepts.

• Large hand-crafted 
rule bases.

• Very expensive due 
manual rule building.

• Very imprecise
representation of 
concepts.

• Word frequencies.

• Inexpensive in terms 
of manual work.

NLP Data Mining

The output of NLP systems can be fed into data mining 
algorithms to improve accuracy.  
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Comparing un-optimized SVM and 
Standard Methods using NLP inputs 
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Decision Tree 
w/NLP

Random
Forest w/ NLP

Logistic 
Regression
w/NLP

Linear 
Discriminant
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SVM beats other methods 43 out of 51 times.
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Comparison of Mariana with Raw Text 
and SVM with Raw Text + NLP

Mariana:
Optimized SVM
w/ raw text only

Support Vector 
Machine w/NLP
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Comparison of NLP and 
Mariana
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Mariana’s performance with raw text matches the performance with text and NLP.
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Mariana to be deployed at Air 
Carriers
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Our Innovations

• Mariana searches for the best SVM 
hyperparameters using Markov Chain Monte 
Carlo techniques.

• Mariana performs as well as or better than 
the SVM built using NLP techniques without 
the overhead.  

• Our methods for term selection and noise 
reduction reduce false positive rates by as 
much as 30%.



Searching for Recurring Anomalies

Enabling discovery of 
anomalous trends in 
complex aerospace 

systems

Research sponsored by:
NASA Engineering and

Safety Center
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Searching for Recurring Anomalies

• These reports do not have an anomaly category 
associated with them.

• Potentially several hundred thousand reports.

• Some systems have been around for decades.

• Enables analysis of trends of anomalies (trending).

• Can’t be addressed using standard clustering techniques.

• Our systems use content-based similarity as well as 
statistical similarity.
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NESC Definition of 
Recurring Anomalies

• Recurrent failures described 
in text reports.

• Problems that cross 
traditional system 
boundaries.

• Problems that have been 
accepted by repeated 
waivers.

• Discrepant conditions 
repeatedly accepted by 
routine analysis.

• Events with unknown 
causes.
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Detecting Recurring Anomalies

1. Calculate cosine similarity between all 
document vectors.

…

Doc b

Doc a
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Detecting Recurring Anomalies
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Detecting Recurring Anomalies

3. Identify referenced documents.

d1d1

d2d2

d3d3 d6d6

d5d5d4d4

If d1 refers to d2 and d4, and d4 refers to d6, then 
d1, d2, d4, & d6 are considered a recurring anomaly.
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Detecting Recurring Anomalies

4. Identify & visualize possible recurring anomalies.
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Testing the Recurring Anomaly 
Detection System (ReADS)

• Experts reviewed a subset of the Shuttle Orbiter 
Corrective Action Records (CARs) to identify 
recurring anomalies.

• We extracted 333 reports to test the 
performance of our system called REcurring 
Anomaly Detection System (ReADS).

• Of those 333 reports, the experts identified 20 
recurring anomalies and ReADS identified 39 
recurring anomalies.
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Performance of ReADs

12 exact matches between RAs discovered by experts and RAs 
discovered by ReADS. 

6 previously unidentified RAs discovered by ReADS which were 
confirmed by experts.

1 record was identified by experts as being part of an RA and was 
missed by ReADS.

On a subset (333) of the Shuttle Orbiter Records:
58% of the records were eliminated as non-recurring anomalies (RAs) by 

ReADS.

5% of the expert RAs were separated by ReADS into more than one RA.

8% of the ReADS RAs combined two expert RAs into a single RA.
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Our Innovations

• Enable analysis of anomaly trends using a 
combination of content and statistical search 
methods.

• ReADS is a novel tool designed especially for 
identifying recurring anomalies across multiple 
databases. 

• Development of robust platform to analyze 
and visualize recurring anomalies.



Detecting Anomalies in Cockpit 
Switch Sequences

Enabling 
discovery of 
anomalous 

switching events

Research 
sponsored by:

NASA ARMD
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Background

• sequenceMiner analyzes large repositories of 
discrete sequences and identifies operationally 
significant anomalies.

• Learns the typically observed switching patterns 
directly from discrete data streams.

• This method outperforms others in terms of 
speed, comprehensibility, and stability, and 
does not require knowledge of Standard 
Operating Procedures.



42

Example Sequence Anomaly 
Detection Problem

A  B  C  D  A  D  D  A  G  F  Q …

A  B  G  F  Q C  D  A  D  D  A …

Typically Observed Switching Patterns

Example Observed Switching Sequence

Problems:  (1) Discover Typically Observed Switching
patterns given thousands of flights.

(2) Discover outlying sequences.
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Outline of Approach
• sequenceMiner discovers typically observed switching 

patterns using Multiple Sequence Alignment.
– Normalized Longest Common Subsequence as a similarity 

measure
– Optimized for speed.  Analyzes 7400 flights in 6 minutes.

• sequenceMiner discovers:
– Switches absent in an expected sequence position.
– Switches inserted in an unexpected sequence position.
– Switches that are out of order from what is expected.

• sequenceMiner describes why flights are called 
anomalous and provides a degree of anomalousness.
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Multiple Sequence Alignment (MSA)

• Used in bioinformatics to compare DNA 
sequences of organisms descended from a 
common ancestor.

• Can identify mutation inside a sequence by 
comparing it to other sequences.

• In the context of flights, these mutations are 
the points where a flight deviated from the 
norm.
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Incorporating Operational 
Information

• Weighting of Switches
– Measures its importance to flight.
– Used during clustering and anomaly detection.
– Sequences are identified that have more highly 

weighted switches out of sequence, instead of 
simply the number of switches out of sequence.

• Ignore order of switches within a one-minute 
time interval.
– This step reduces alarms by around 30%.
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Data and Methodology
• Initial Dataset

– 7400 flights from a single fleet and airline.
– Recordings of 1038 primary and secondary binary 

switches. 
– 111 primary switches were selected from a subset of 

2225 flights.
– Landing phase to a specific destination airport.

• The 13 most anomalous flights identified by 
sequenceMiner were analyzed by a 747 pilot who 
was our expert.
– 5 were judged to be bad data.
– 3 were judged to be normal.
– 5 were judged to be operationally significant 

anomalies.
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sequenceMiner Discovered Anomalous 
Presses of the Igniter Switch (Red Bars)

Expert: “Pilot switched igniter on and off at 
atypical times. Possible engine malfunction.”
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sequenceMiner Discovered Anomalous 
Engagement of the Autopilot (Red Bars)

Expert: “Auto-pilot used too many times. 
Possible case of mode confusion.”
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sequenceMiner Discovered Anomalous 
Usage of Speed Brakes (Red Bars)

Expert: “Overuse of speed brakes. Possibly a high 
energy approach.”
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Our Innovations
• sequenceMiner is a fast and reliable system to 

learn typically observed switching patterns 
from large volumes of discrete data.

• This system outperforms other algorithms in 
terms of speed and reliability.

• Discovers operationally significant events such 
as mode-confusion and high-energy 
approaches.



Detecting Anomalies in 
Shuttle Systems

Enabling discovery of 
anomalies in continuous 

data streams

Research sponsored by:
NASA ESMD ETDP -

ISHM Program
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Inductive Monitoring System

IMS real-time monitor & display informs users of degree of deviation from nominal performance.  
Trend analysis can detect conditions that may indicate incipient failure or required system maintenance.

IMS learns nominal system behavior from archived or simulated system data, 
automatically builds a “model” of nominal operations, and stores it in a knowledge base.

SYSTEM TO 
MONITOR

DATA
VECTORS

NOMINAL
OPERATING

REGIONS

IMS
KB

MONITORING
KNOWLEDGE 

BASE

IMS 
MONITORING
ALGORITHM

HEALTH
PRESENTATION

Real-time data

or other data
to be analyzed

LEARNING / MODELING

MONITORING

Archive
or Sim.

Nominal
data

SYSTEM TO 
MONITOR

IMS
KB
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STS-107 Launch Analysis

• The IMS method can help identify subtle but 
meaningful changes in system behavior.

• A comparison of STS-107 ascent telemetry 
data to data from previous Columbia flights 
indicates that there may have been enough 
information to detect a wing-heating 
anomaly.
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STS-107 Ascent - IMS Analysis
Upper Wing Skin Temp

MLG Outbd Wheel Temp

Lower Wing Skin Temp

Inbd Elevon Actuator Tempsensor

• Data vectors formed from
4 temperature sensors 
inside the wing

• Data covered first 8 minutes
of each flight (Launch to 
Main Engine Cut Off)

• Trained on telemetered data
from 10 previous
Columbia flights

Normalization:
• Data expressed as value

relative to a reference  
sensor
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STS-93 Launch IMS Analysis
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STS-107 Launch IMS Analysis
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Our Innovations

• The IMS system automatically learns a model 
for nominal behavior to detect system 
anomalies.

• Orca provides a flexible platform to detect 
anomalies in massive data sets.

• IMS is used to detect wing impacts in support 
of STS-121 and STS-115.

• IMS will be deployed on Console at Mission 
Operations Directorate, JSC.
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Conclusions

• Demonstrated transparent mining of discrete, 
continuous, and textual information to uncover 
safety anomalies.

• Enabling automated analysis of the Distributed 
National ASAP and FOQA Archives.

• The methods we discuss provide a 
comprehensive capability to monitor, detect, 
and analyze system anomalies.
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Future Directions

• Advanced methods to analyze heterogeneous data sets.
• Prognostic and diagnostic methods for aircraft and space 

systems.
• Potential new book on text mining (Srivastava and 

Sahami):  A collaboration between NASA and Google.
• SIAM Text Mining Competition:  Classification of ASRS 

reports, sponsored by NASA .
• Data Mining in Science, Aeronautics, and Exploration 

Systems Conference 2007
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