

Studying Space Effects on GeneSat 1 Microorganisms Autonomously: GeneSat, PharmaSat and the Future of **Bio-nanosatellites**

Macarena Parra, Michael R. **McGinnis, Antonio J. Ricco, Bruce** Yost, John W. Hines

Overview

- GeneSat
 - Purpose
 - Hardware Design and Features
 - Tech Demo Experiment
 - Experiment Results
 - Summary
- PharmaSat
 - PI driven experiment
 - Hardware upgrades

GeneSat Tech Demo

Purpose of GeneSat:

Make a platform that can be used for gene expression studies in microorganisms using GFP promoter reporter constructs

- For Tech Demo, we chose
 - -E. coli strain
 - -Expresses GFP
 - -Survive long-term storage

SCENARIO

- Prepare cells in storage buffer at a known cell density
 - Cells are in stasis
- Load cells into fluidics card and transfer to flight hardware
- Launch
- Attain stable orbit
- Activate cell culture by replacing the storage buffer with growth medium and adjusting temperature to 34 °C
- Monitor growth and fluorescence (take readings every 12 minutes)

SmallSat Limitations

- Expendable vehicle No sample return
- Secondary payload
 - Late load not likely
 - Re-loads due to launch slips not likely
- All operations must occur autonomously
 - Experiment start
 - Data collection
- Communications with satellite not continuous
 - Data download not instantaneous
 - 3-5 contacts/day, each lasting 5-12 min
 - Primary Communication: 18-m SRI Station, Palo Alto CA
 - Secondary Communication : Ham Radio Beacon
- Size

GeneSat Capabilities

- Fully autonomous operations
 - Experiment start
 - Increase temperature to experiment set point
 - Feed cells (add media)
 - OD and Fluorescence readings
- Sensors in satellites
 - Temperature
 - Pressure
 - Relative humidity
 - Acceleration (g-forces)
 - Radiation
- Fine temperature control
 - Reached experiment set point in one hour (34 °C)
 - Temperature kept to within 0.5 °C of set point throughout experiment

GeneSat Fluidic Card

- 12-well culture-and-analysis plate
 - 10 biology wells, 2 control/standard wells
 - − 110 μ L/well \Rightarrow 1.1 mL total on-card volume
- Membrane filter at each well inlet and outlet
- Loaded pre-launch with *E. coli* in stasis medium
- Infused upon stable (**g**, T) orbit with glucose solution to initiate growth

Fluidic System

- Fluidic system consists of two bags under pressure from springs
 - One contains growth media, the other contains stasis media (saline)
- Reservoir capacity ~ 15 ml
- Growth media cannot enter the card until valve is opened
- Slight pressure on saline bag allows for replenishing of fluid loss from card due to evaporation

Optics System

- Optics system consists of 12 separate units, each is capable of measuring both Fluorescence and Optical Density
- Fluorescence measurement
 - Blue LED used for excitation

(460-490 nm)

- Detector reads green fluorescence (505-530 nm)
- Optical Density measurement
 - Indirect measurement
 - Green LED on opposite side of fluidic card
 - Scatter is measured by same detector
- Readings optimized by lenses and filters

Ground Testing

- Strain selection
 - Good GFP expression
 - Good long term survival
- Viability
 - Long term storage at ambient temperatures
- Biocompatibility
 - Cell growth in hardware is comparable to standard laboratory methods
 - Long term storage in contact with materials
- Long term stability of all reagents
 - Stasis buffer
 - Growth media
 - Additives

"Experiment" – Strains

Two strains were chosen

- pGREEN in MM294 from Carolina Biological Supply Company
 - Green Gene Colony Transformation Kit
 - BUT the constitutive promoter was unknown
- AcGFP in DH5 α from Arizona State University
 - Clontech AcGFP plasmid under constitutive promoter (CMV)
- Slightly different GFP expression characteristics
 - pGREEN: more steady but not as bright
 - AcGFP: very bright but GFP expression may be lost under stress (i.e. nonbiocompatible material)
 - Slightly different survival characteristics
 - Stasis prep
 - Biocompatibility

"Experiment" - Loading

- Card loaded with:
 - 5 wells with the pGREEN construct
 - 4 wells with the AcGFP construct
 - One control well (no cells)

- Two non-biology wells loaded with fluorescence standards
- Loaded two satellites at Ames
- Both were hand-carried to Wallops Field
 - Run final functional checkouts on both systems
 - One was selected for integration
 - Other system was hand-carried back to Ames and served as ground control

Payload System Assembly

Mission Overview

- GeneSat Launch: 12-16-06
- Communications established: 12-17-06
- Experiment Initiated: 12-18-06
- Due to launch slip and lack of late access, the cells were in stasis for a total of **48 days** before experiment initiation

Results

FLIGHT OD - Zero'd

Results (continued)

Flight OD

Ground OD

DOUBLING TIMES (minutes) from semi-log PLOTS of OD vs. time

pGREEN	pGREEN		
	Well No.	Flight	Ground
	0	59	44
	2	54	44
	4	47	45
	6	51	28
	8	46	29
	Average:	51	38
	SD:	5	8
	<i>p</i> =0.018		

AcGFP -

ACGFP				
Well No.	Flight	Ground		
1	44	34		
3	41	36		
5	48	30		
7	47	33		
Average:	45	33		
SD:	3	2		
	p=0.000	9		

Results (continued)

FLIGHT Fluorescence - Zero'd & Scaled

GeneSat – Summary

Successful Mission

- Evidence of cell growth and fluorescence in all nine bio-wells
- All parameters within requirements
 - Temperature controlled to within set point limits (34 +/- 0.5 C)
 - Fluidic system operated successfully
 - All optical detectors operated nominally
 - Sensors for relative humidity, pressure, acceleration, and radiation all returned data showing nominal operation & conditions
 - Sufficient power throughout experiment to power heaters, sensors, etc.
 - Data collection and storage throughout experiment was successful
 - Data download from satellite to Ames was successful
- GeneSat system is capable of:
 - Fully autonomous operations
 - Temperature control
 - OD measurement to track growth
 - Fluorescence measurements to track GFP production (gene expression)

PharmaSat

- PI driven experiment:
 - Effect of Microgravity upon Yeast Susceptibility to Antifungal Drugs for Countermeasure Development Principal Investigator: Michael R. McGinnis, Ph.D. University of Texas Medical Branch (UTMB)
- Grow yeast cells in fluidics card
 - Use one antifungal agent
 - 3 different concentrations of antifungal
 - Control
- Measure cell health two different ways
 - Absorbance (OD)
 - Alamar Blue reduction
 - Colorimetric assay: blue-oxidized, pink-reduced
 - Normal metabolic products of living cells will reduce Alamar Blue

PharmaSat Experiment

PharmaSat Technology

GeneSat technology as starting point

- Larger *n* from 12 wells to 60 wells in ~ same fluidics card footprint
 - 4 independent sets of 12 wells
 - 10 12 reference wells

PharmaSat Technology - 2

GeneSat technology as starting point

- Greater fluidic processing complexity
- System must allow for two fluid exchanges
 - Feed cells and allow them to recover from stasis
 - Add fresh media with 3 conc. of antifungal (or none for control)
- Dilutions of antifungal required
- Circulation of liquids for dilutions and anti-freeze purposes required
- Many more pumps, valves, and connections

PharmaSat Technology - 3

GeneSat technology as starting point

- **3 color** optics: 1 for OD, 2 for viability assay (GeneSat: fluorescence and scatter)
 - One, 3-color LED (GeneSat was 2 separate 1-color LEDs)
 - True optical density (OD): absorbance
 - While each optics "unit" is simpler, the larger number of wells requires more units that are more closely spaced: denser LED & detector layouts

PharmaSat Card and Optics

heater layer

What's next?

Accommodate higher complexity

- Higher sample number $10 \rightarrow 48 \rightarrow 96 \rightarrow 384?$
- Larger variety organisms
 - More complex model organisms (*C. elegans*, *Drosophila*, etc.)
 - Mammalian cells
- Greater variety of measurements
 - Luminescence
 - Imaging fluorescence
- Increasingly complex analytical technologies
 - Cytometry
 - Microarrays

knowledgements

Wenschel Lan Simon Lee **Ricky Leung** Ed Luzzi **Diana** Ly Dana Lynch Nghia Mai Ignacio Mas **Mike McIntyre** Mike Miller **Carsten Mundt David Oswell** Matthew Piccini Jordi Puig-Suari Mike Rasay

Bob Ricks Karolyn Ronzano Jason Samson Stevan Spremo Dave Squires Chris Storment George Swaiss Linda Timucin John Tucker Usen Udoh Roy Vogler Phelps Williams Ken Zander

BACKUP SLIDES

Hypothesis:

"Yeasts growing in microgravity have an altered resistance to azole antifungal agents".

- 1. Measure the influence of microgravity upon yeast resistance to the azole antifungal agent voriconazole.
- 2. Microgravity and modeled microgravity data suggest that resistance to azoles is increased.
- 3. Experimental design is based upon an internationally recognized *in vitro* laboratory testing method.
- 4. Statistical analysis of the data will be based upon the methods used to analyze longitudinal data. This analysis methodology is more robust than the traditional end-point- based analysis.
- 5. Important implications for the prevention and management of fungal infections that may occur during space exploration.

Fungal Wall and Cell Membrane

Standardized Susceptibility Testing Method

- Determine medium for experiment.
- Determine voriconazole drug concentrations for experiment based upon MIC_{90} of $0.5\mu g/ml$.
- Determine inoculum concentration for experiment (0.5-2.5 x 10³ CFU/mL).