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Numerical simulation is used to study a single polymer chain in a flashing ratchet potential to determine how
the mechanism of this Brownian motor system is affected by the presence of internal degrees of freedom. The
polymer is modeled by a freely jointed chain with N monomers in which the monomers interact via a repulsive
Lennard-Jones potential and neighboring monomers on the chain are connected by finite extensible nonlinear
elastic bonds. Each monomer is acted upon by a 1D asymmetric, piecewise linear potential of spatial period L
comparable to the radius of gyration of the polymer. This potential is also characterized by a localization time,
ton, and by a free diffusion time, toff. We characterize the average motor velocity as a function of L, toff, and N
to determine optimal parameter ranges, and we evaluate motor performance in terms of finite dispersion, Peclet
number, rectification efficiency, stall force, and transportation of a load against a viscous drag. We find that the
polymer motor performs qualitatively better than a single particle in a flashing ratchet: with increasing N, the
polymer loses velocity much more slowly than expected in the absence of internal degrees of freedom, and the
motor stall force increases linearly with N. To understand these cooperative aspects of motor operation, we
analyze relevant Rouse modes. The experimental feasibility is analyzed and the parameters of the model are
scaled to those of �-DNA. Finally, in the context of experimental realization, we present initial modeling
results for a 2D flashing ratchet constructed using an electrode array, and find good agreement with the results
of 1D simulations although the polymer in the 2D potential sometimes briefly “detaches” from the electrode
surface.
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I. INTRODUCTION

Molecular motors are individual molecules or molecular
assemblies that convert some form of energy �for example
chemical energy� into mechanical work. In living systems,
protein motors operating through hydrolysis of nucleotide
triphosphates such as ATP �1–4� are instrumental in biologi-
cal functions including intracellular transport, ion pumping,
cell motion, mitosis, protein synthesis, and DNA replication
�5,6�. Inspired by biological motors and enabled by nano-
technology, a number of efforts are underway to construct
artificial molecular motors. One approach is the use of syn-
thetic chemistry: machine parts that have been synthesized
successfully include shuttles consisting of a mobile molecu-
lar ring on the axis of a molecule as well as “propellers,”
“gears,” “turn stiles,” and “rotors” �7–9�. Alternatively, DNA
itself has been used as a versatile building block, and DNA
tweezers �10,11� as well as DNA-based linear motors ca-
pable of moving along a track �12,13� have been demon-
strated.

Molecular motors operate at energies that are comparable
to the thermal fluctuations of the surrounding environment.
They must therefore function fundamentally differently from
macroscopic machines, for which fluctuations are unimpor-
tant. From a physics point of view, it is of interest to under-
stand how molecular machines utilize the interplay of non-
mechanical energy input, structural changes, and random
thermal fluctuations to perform mechanical tasks efficiently
and effectively. One approach to answering these questions
is to consider systems that explicitly incorporate diffusive
steps �thermal fluctuations� as an integral part of the genera-
tion of force and motion �Brownian motors �14–19�� and that

are simple enough for detailed theoretical and experimental
investigation.

One well-studied type of Brownian motor is the “flashing
ratchet,” in which particles undergoing free diffusion are pe-
riodically or randomly subjected to an asymmetric, periodic
potential �see Fig. 1�. The sequence of free diffusion fol-
lowed by asymmetric localization leads to a net particle cur-
rent �20,21�. When used to model a molecular motor, for
example, the transporter protein kinesin, the time-dependent,
asymmetric potential �the details of which can be made more
complex and realistic than those shown in Fig. 1� represents
the binding potential along a microtubule. The potential’s
time dependence reflects the changes in the effective binding
potential during the cycle of ATP hydrolysis catalyzed by
kinesin �16�.

FIG. 1. Schematic diagram of the applied ratchet potential char-
acterized by an asymmetry parameter, �, height, V, and period, L.
The potential acts on each monomer of a freely jointed polymer
with N monomers, each monomer having approximate dimension,
�.
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So far, studies of flashing ratchets in the over-damped
limit have focused on the center-of-mass motion of indi-
vidual point particles �for example, �20–23��, rigid objects
made up of two or more coupled particles �1,24� and pairs of
harmonically coupled particles �25–27�. These studies dem-
onstrate that the magnitude and direction of current in a
flashing ratchet depend critically on the size and shape of the
objects being transported.

A topic that has received little attention is the role of the
very large numbers of thermally activated internal degrees of
freedom that can exist in a molecular motor. Here we extend
the flashing ratchet to incorporate explicitly the internal de-
grees of freedom of a biomolecule into the transport mecha-
nism �see Fig. 1�. Specifically, we analyze the case of a poly-
mer in a time-dependent ratchet potential that acts on each of
its monomers �for instance, electrostatically� and that has a
spatial period, L, which is comparable to the polymer’s ra-
dius of gyration. Directed polymer motion is then achieved
through the interplay of conformational changes imposed on
the polymer by the ratchet potential and random, thermally
activated conformational changes.

The motivation for this study is twofold. First, we are
interested in how the inclusion of internal degrees of free-
dom into the flashing ratchet will affect the efficiency, veloc-
ity, coherence, and force of this system. Addressing these
questions is interesting from a fundamental point of view and
may also help us to develop an understanding of how the
presence of internal degrees of freedom in biological or arti-
ficial molecular motors affects their performance in general.
Second, we undertake this study with a specific experimental
system in mind. We are interested in the feasibility of con-
structing an artificial single polymer motor based on a large
DNA molecule in solution exposed to a time-dependent, spa-
tially periodic, asymmetric, electrostatic potential with a spa-
tial period comparable to the molecule size. If successfully
realized, such a system would be capable of carrying a load
such as a bead attached to one end of the DNA �similar to a
transporter molecule in a living cell� and would allow de-
tailed experimental studies of the performance of an artificial
molecular motor. This concept builds on a previous realiza-
tion of an electrostatic ratchet system for short DNA seg-
ments, which was based on the center-of-mass motion of the
segments and did not consider the DNA’s internal degrees of
freedom �28,29�.

In this paper, we first describe our numerical model in
Sec. II and then discuss its motor performance in Sec. III.
Specifically, we identify the model parameters that lead to
high motor velocity and analyze the conformational changes
that correlate with effective polymer motion. We then char-
acterize the motor velocity, coherence, efficiency, and power
both in absolute terms and in comparison to flashing-ratchet
motors without internal degrees of freedom. Finally, in Sec.
IV A we discuss a specific experimental system that is under
construction to realize such a motor and comment on its
feasibility.

II. MODEL

A. Model details

The polymer is modeled as a freely jointed chain of
monomers using a standard simulation force field consisting

of a repulsive Lennard-Jones potential of the form

Vij�rij� = �4��� �

rij
�12

− � �

rij
�6	 + � , rij � 21/6� ,

0, rij � 21/6� ,

 �1�

acting between all monomers and finite extensible nonlinear
elastic �FENE� bonds between neighboring monomers

U�rij� = −
1

2
kFR0

2 ln�1 −
rij

2

R0
2� . �2�

Here rij is the monomer-monomer separation. The mass m of
each monomer is set to unity and we use �, �, and
�=�m�2 /� to set the length, energy, and time scales. The
values kF and R0 were chosen to be 30� /�2 and 1.5�, respec-
tively. This model of a polymer is well studied and has been
used previously to model polymer melts �30�.

The equations of motion of individual monomers are
given by

mr̈i = − 	ṙi + �i�t� − �iVp�ri� − �iVext�t,ri� , �3�

where �i is a random force representing the surrounding sol-
vent and heat bath ���i=0; ��i�t� ·� j�t��=6	kT
ij
�t− t���
with kT=�, 	 is the friction coefficient of one monomer,
−�iVp=−�(�iVij�rij�+�iU�rij�) represents the internal poly-
mer forces acting on the monomer as given in Eqs. �1� and
�2�. The polymer’s free diffusion coefficient is given by
D=kT /N	. Vext�t ,r� represents the flashing ratchet potential
described below.

Each temporal cycle of the flashing ratchet is set by the
localization time, ton, and the free diffusion time, toff, and we
use periodic cycling with temporal period T= �ton+ toff�. Dur-
ing toff the ratchet potential is switched off and Vext=0. Dur-
ing ton we use the well-known one-dimensional sawtooth po-
tential shown in Fig. 1. This potential is periodic in the x
direction with spatial period L and an asymmetry parameter
0���1 defined as in Fig. 1. In addition to the traditional
1D ratchet potential described above, towards the end of the
paper we will use a more realistic 2D potential in order to
explore the experimental feasibility of our single polymer
motor concept �Sec. IV B�.

B. Scaling to experiment

A key motivation for the study of the polymer motor de-
veloped here is to provide information about suitable param-
eters and about the expected performance of the planned ex-
perimental realization of such a motor. In order to translate
the model’s scaled, dimensionless quantities into absolute
numbers, we consider an experiment that will use a periodic
array of electrodes to generate an electrostatic ratchet poten-
tial that can be switched on and off �28,29� �for more details,
see Sec. IV B�. For the polymer, we consider lambda-phage
DNA ��-DNA�, which in aqueous solution has a net negative
charge, forming a polyelectrolyte, such that it can be ma-
nipulated by an electrostatic potential.

Our approach is to relate the physical properties of the
persistence length of double-stranded �ds� DNA to those of a
persistence length of the model polymer in the simulation.
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Baumann et al. �31� used stretching experiments and worm-
like polymer chain �WLC� models to determine that �-DNA
�48.5 kbp� has a persistence length lp�90±10 nm under
relatively low-salt conditions �1.8 mM NaCl�, while the per-
sistence length is shorter for higher ionic strength. This value
was found for both weakly and strongly extended DNA, in
agreement with other findings that the persistence length of
�-DNA is independent of stretching force �32�. The model
used in our simulations is based on a Rouse-like polymer
chain with excluded volume interactions equivalent to a self-
avoiding walk. Slater et al. �33� point out that such chains
become Gaussian chains in the strong stretching limit with a
persistence length equal to the bond length, b=0.97�. In ad-
dition, we find in Brownian dynamics simulations that the
bond angle correlation function �ti · t j for our Rouse-like
polymer decays by a factor of 1 /e as a function of displace-
ment within about one �, again suggesting that lp�� in our
model. A reasonable estimate for the scaling relationship for
�-DNA is therefore lp�� where lp�90 nm. Note, however,
that the established value for the persistence length under
low-salt conditions for much shorter segments of dsDNA
�less than 1 kbp�300 nm� is approximately 50 nm. In the
following, we will therefore use �=90 nm and �=50 nm as
the upper and lower bounds of our unit of length and estab-
lish separate scaling relationships for energy, force, and time
based on each of these two values.

The model unit of energy is �=kT=1, and the unit of
force is kT /�. Units of electric potential and electric field
can be defined as kT /q and kT /q�, respectively, where each
monomer interacts with the applied ratchet potential through
a charge q=1. The charge per base pair of dsDNA is quoted
as −0.1e �34� under normal salt conditions, with 0.3 nm per
base pair. Consequently we take the linear charge density as
−17e /� and −30e /�, corresponding to lp=50 nm and
lp=90 nm, respectively. Using kT=25.9 meV=4.14 pNnm at
room temperature, the resulting units for force, potential, and
electric field based on the two values for the persistence
length are summarized in Table I.

The model time unit is set by �=�m�2 /�. However, in
order to match the unit time to experiment we prefer a rela-
tionship based on measurable quantities that are independent
of mass. We choose to write the unit time as �=�2 /D where
D is the translational diffusion constant of a monomer of unit
length �. Using the Einstein relation D	=kT and �=kT=1, it

can be shown that the above two definitions of � are equiva-
lent to a third, namely the momentum relaxation time
�=m /	.

We can match the unit time, �=�2 /D, to experiment using
�= lp as found above, and D=Dp, where Dp is the linear
diffusion constant of a segment of dsDNA of length lp.
A table of experimental values of the linear diffusion
constant of dsDNA was compiled by Liu and Giddings �35�
for a wide range of dsDNA segment sizes. By interpolating
between data points in the appropriate size range, we
estimate Dp�3.3�10−11 m2/s for lp=50 nm and
Dp�2.2�10−11 m2/s for lp=90 nm. Based on these
values, the unit of time is �=�2 /D�7.6�10−5 s and
��3.7�10−4 s, for lp=50 and 90 nm, respectively �see
Table I�.

III. RESULTS

A. General characteristics

Before beginning our characterization of the polymer mo-
tor, we justify our choice of parameters. The potential
strength, V, in a flashing ratchet should be at least several kT
in order to localize particles successfully during ton and, un-
less specified otherwise, we will use V=4kT=4� throughout
this paper. As we will show below, the motor velocity in-
creases for larger choices of V, but VkT is not realistic for
most experimental systems of interest. For the asymmetry
parameter � of the ratchet potential, we choose �=0.1
throughout the paper �see Fig. 1�. The overall contour length
of the polymer used is determined by the total number of
monomers, N, and as an initial value we use N=50. The
spatial ratchet period, L, should be larger than a monomer
length, �, and we are most interested in values of L compa-
rable to the polymer’s radius of gyration, which we find to be
Rg=4.7� for N=50.

The next step in characterizing the polymer motor is to
establish suitable switching times, ton and toff, for the “flash-
ing” of the ratchet potential, which we choose to do periodi-
cally. Beginning with ton, we wish to expose the polymer to a
ratchet potential for a time that is sufficient to localize fully
a polymer that is initially in a random configuration �note
that this is not necessarily the optimal choice for maximum
motor velocity�. In Fig. 2, we show the velocity of the poly-
mer center of mass, averaged over many time cycles, as a

TABLE I. Scaling relationships between the Brownian dynamics simulation model and double stranded
DNA.

Parameter BD model dsDNA �lp=50 nm� dsDNA �lp=90 nm�

Length �=1 �=50 nm �=90 nm

Energy �=kT=1 �=kT=25.9 meV=4.14 pN nm �=kT=25.9 meV=4.14 pN nm

Force � /� kT /�=0.083 pN kT /�=0.046 pN

Charge q=1 q=−17e q=−30e

Potential � /q=1 kT /q=1.5 mV kT /q=0.86 mV

Diffusion coefficient D=kT /	=1 D=3.3�10−11 m2 s−1 D=2.2�10−11 m2 s−1

Drag coefficient 	=1 	=kT /D=1.3�10−10 kg s−1 	=kT /D=1.9�10−10 kg s−1

Time �=�2 /D=1 �=�2 /D=7.6�10−5 s �=�2 /D=3.7�10−4 s
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function of time t after the ratchet potential is switched on
for three values of the spatial period, L, and for three differ-
ent barrier heights. Increasing the strength of the localizing
potential, V, generally decreases the time needed to confine
the polymer, while confinement slows with increasing L at
fixed V, because the localizing force becomes smaller. It can
also be seen that the relaxation processes have finished for all
L and V by ton=20�. This value is chosen throughout the rest
of this study.

In order to make a good choice for the free diffusion time,
toff, we show in Fig. 3 the time-averaged polymer velocity
�N=50� as a function of ratchet period, L, for a range of
different choices of toff. Within the parameter range investi-
gated, we observe the highest velocities for toff�20±10�,
and, unless specified otherwise, we will use toff=20�
throughout this paper.

To obtain a general idea about the influence of the poten-
tial strength, we show in Fig. 4 the time-averaged polymer

velocity for several different values of V, as a function of L.
The inset shows the absolute velocities in units of �� /��,
while the main figure shows the velocities in units of
L / �ton+ toff� which gives the number of ratchet periods the
polymer moves per time cycle. We find that the average ve-
locity increases with stronger confinement as expected from
a single particle picture because, for weak confinement, the
particle distribution will be skewed towards the shallow side
of the potential. This reduces the effective potential asymme-
try and lowers the particle current. Increasing the height of
the potential barrier increases the effective asymmetry to-
wards the actual value, �. In the case of a polymer straddling
several periods, there is the additional effect that short seg-
ments of the polymer �such as the trailing end of a polymer�
can be pulled over the potential barrier by larger segments in
the adjacent potential well. To put the absolute velocities into
context, we show in Fig. 4 the velocity expected for a single
particle with drag coefficient 50	 �the same as the overall
drag coefficient of the polymer�, calculated analytically as-
suming perfect confinement �VkT� during ton as described
by Ajdari and Prost �20�. We note that in the ideal case
��=0, L2�2Dtoff, where D is the single particle diffusion
constant, and V→�� a flashing ratchet displaces a particle on
average by 0.5L during each cycle. As one would expect, the
partially confined polymer is slower than the perfectly con-
fined single particle across the entire range, except in the
limit of very small L. In this range, however, the polymer
simulations are at the edge of reasonable physical limits,
because the ratchet period becomes comparable to the mono-
mer length, and a more realistic polymer model, such as the
wormlike chain, is required for conclusive results. A more
detailed comparison of polymers and single particles will be
presented below �Sec. III C�.

B. Mode of operation

The dependence of polymer velocity on the number, N, of
monomers is shown in Fig. 5. Strikingly, over more than an

FIG. 2. Velocity of the polymer center of mass as a function of
time after the ratchet potential is switched on, averaged over re-
peated cycles of the potential �N=50; from left to right:
L=2.5� ,5.5� ,12��.

FIG. 3. Polymer center-of-mass velocity averaged over many
cycles as a function of L for toff=2.5�, 5�, 10�, 20�, 30�, 40�, 80�
�ton=20�; N=50�.

FIG. 4. Average velocity of polymers of contour length, 50�,
and total drag coefficient, 	=50, for different values of V against L
in units of ratchet periods per time cycle �main figure� and in abso-
lute units �inset�. ton= toff=20�. Thick solid line: analytical calcula-
tions for a single particle with drag coefficient 	=50 assuming per-
fect confinement during ton.
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order of magnitude variation in polymer contour length and
its center-of-mass diffusion coefficient, there is very little
variation in polymer velocity. In fact, all polymers exhibit
almost the same dependence on spatial ratchet period, L,
with a velocity peak at L�5�. This consistent behavior and
the independence of velocity from the number, N, of mono-
mers indicate that the mode of transport is not the same as in
the traditional flashing ratchet �which relies on center-of-
mass diffusion� but rather that the polymer’s internal degrees
of freedom are important �49�.

In order to analyze the changes in internal polymer con-
figuration that are involved in polymer motion, we expand
the polymer conformation in Rouse modes �36� which, for a
polymer of N monomers with center of mass rcm, have the
following form:

Xp =
1

N
�
i=1

N

cos� p��i − 1�
N − 1

��ri − rcm� . �4�

For an isolated ideal polymer in solution, each of these nor-
mal modes, Xp, executes an independent random walk. Ex-
cluded volume effects will lead to correlations between
modes, although these can be expected to be small for long
wavelengths. Here we will consider the x components of the
lowest amplitudes, Xx1 and Xx2, which give information on
the projection of shape and orientation of the polymer onto
the x axis. Specifically, Xx1 represents extension of the ends
of the polymer away from its center of mass, and Xx2 is large
for configurations which have a single loop around the center
of mass.

We first apply the Rouse mode analysis to the case of a
relatively large spatial ratchet period, namely L=12�, which
is to the right of the velocity peak in Fig. 5. In Fig. 6�a�, we
show an example for a displacement trace over 2000 time
cycles, each of 40� duration. Overall, progress is rather slow
�the polymer takes a total of only six well-defined steps of
length L=12�� and between steps the polymer center-of-
mass is well localized at the potential minima. In Figs. 6�b�

and 6�c�, we show the corresponding time traces of the poly-
mer’s Rouse modes, Xx1 and Xx2, respectively. Note that
there is a very clear correlation between stepping events in
Fig. 6�a� and high amplitudes in the x components of the
lowest Rouse modes. Closer analysis of stepping events,
which gradually take place over several time cycles, indi-
cates that translation is characterized by long-lasting confor-
mations in which the polymer extends across two ratchet
periods �as indicated by the marked increase in Xx1�. Be-
tween stepping events, the polymer is localized, without ex-
tension in the x direction �an illustrative animation is avail-
able �50��.

As shown previously in Fig. 5, we observe the highest
average polymer velocities for all N at L=5� and in Fig. 7
we show an analysis of the mode of operation in this case.
Compared to the case of long ratchet periods, the polymer’s
translational progress is much faster, and the stepping behav-
ior is much less pronounced as a close examination of the
data reveals that there are no resolved steps. In addition, we
almost continuously observe high amplitudes of the two low-
est Rouse modes, indicating that the polymer tends to be

FIG. 5. Average velocity of the polymer for ton= toff=20� for
values of N varying by more than one order of magnitude. Although
the velocity decreases slightly with increasing N, the position of the
peak remains at approximately L=5�.

FIG. 6. �a�–�c� Trace of the polymer position with time along
with corresponding information on the polymer conformation
�L=12�; ton= toff=20��.

FIG. 7. �a� Trace of the polymer position with time and the
corresponding values of the first and second Rouse modes ��b� and
�c�� �L=5�; ton= toff=20��.

SINGLE-POLYMER BROWNIAN MOTOR: A… PHYSICAL REVIEW E 73, 011909 �2006�

011909-5



stretched out most of the time and only rarely collapses into
individual wells.

In Fig. 8, we compare the correlation of Rouse modes Xx1
and Xx2 at the end of the localization periods. In both of the
cases considered so far �L=5� and L=12��, some correla-
tions between the two Rouse modes are visible, indicating
that the presence of the ratchet has a strong influence on the
polymer conformation. In the case L=12�, most polymers
have amplitude zero in both lowest Rouse modes at the end
of ton, indicating that the polymer is collapsed into one well.
During stepping events, however, half-stretched loops ex-
hibit an asymmetry with respect to Xx2=0; projected onto the
x axis, polymer loops form in the forward direction but not
backwards into the previous well. The rich correlations for
L=5� show that the polymer spends a lot of time stretched
out over several periods, facilitating transport, with specific
configurations appearing frequently. In the case of the small-
est ratchet period �L=2��, we find that transport is basically
a noisy, biased random walk with frequent back-stepping. No
specific conformations appear.

C. Polymer motor versus single-particle ratchet

Brownian motors in general require diffusion of the motor
as part of the operating principle. Because the diffusion con-
stant decreases with motor size, there are limits on the size of
single-particle Brownian motors that can operate effectively.
One important motivation for the study of a polymer ratchet
is the notion that the characteristic time for thermally acti-
vated reconfiguration of the polymer’s internal degrees of
freedom does not necessarily change with the overall size of
the polymer. In other words, a Brownian motor that makes
use of internal degrees of freedom may be sustainable for
large polymers.

In Fig. 9, we quantitatively compare the velocities of a
polymer of contour length, N�, and with total drag coeffi-
cient, N	, to point particles with the same drag coefficient as
a function of N. As expected, for all L the velocity of the
point particle decays quickly with increasing N, as the point
particle loses its ability to diffuse during toff. In contrast, the
polymer is found to maintain its ability to move. Interest-
ingly, even in the case of small N, where both the polymer
and the single particle make use of center-of-mass diffusion,
internal degrees of freedom and finite size are an advantage.
In the case L=12�, the polymer velocity peaks for N=3 at a
velocity twice that of a point particle with the same drag
coefficient.

D. Performance

In this section we discuss the polymer motor’s perfor-
mance characteristics in terms of coherence, stall force, mo-
tor power, and efficiency.

1. Coherence

As shown previously in Fig. 3, the average motor veloc-
ity, �vx, is determined by the choice of toff, which sets the
time during which free diffusion takes place. The central role
of diffusion, and the related absence of tight coupling be-
tween ratchet cycling and stepping events, lead to a finite
dispersion

Deff = ��x2�t� − �x�t�2�/2t , �5�

characteristic of Brownian motors �16,18,37�. In order to
quantify the dispersion �diffusion� relative to the ensemble-
averaged drift, a dimensionless quantity called the Peclet
number �38� may be calculated, which represents the “coher-
ence” of motor transport. The Peclet number is

Pe �
��vx�l
Deff

, �6�

where l is a relevant length scale chosen to determine if
dispersion or motor action dominate for transport over this
distance and �vx is the average velocity in the x direction.

We now use these tools to examine the polymer motor’s
ability to perform transport reliably. We previously noted
�see Fig. 3� that the average velocity, �vx, as a function of L
peaks for larger values of L as toff is increased, and that the
peak velocity is highest around toff�20�. For comparison,
we show in Fig. 10�a� the dispersion Deff for N=50. For
small toff, Deff peaks as a function of L at roughly the same
value of L as �vx �see Fig. 3� and, as one might expect, Deff

increases with toff �see Fig. 10�. Interestingly, for toff�20�,
Deff is smaller than the polymer’s free diffusion constant,
D=0.02�2 /�, as there is only a little time for diffusion be-
tween localization periods. For high toff, however, the disper-
sion is enhanced to values much higher than the bulk values

FIG. 8. Second Rouse mode versus absolute value of the first
Rouse mode at the end of the localization period of the external
ratchet potential for different values of L.

FIG. 9. Average velocity of polymers with drag coefficient, N	,
as a function of N for different ratchet periods, compared to a point
particle with the same drag coefficient �ton= toff=20�, V=4��.
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as the diffusion is amplified by the action of the ratchet.
To determine the relative strengths of motor velocity and

motor dispersion, we calculate Pe according to Eq. �6� using
l=1000� �Fig. 10�b��. Devices of this length could conceiv-
ably be fabricated. Based on the scaling scheme for dsDNA
given in Sec. II B and Table I, the length, l, corresponds to
translation by the motor of 50–100 �m. The chosen value of
l is independent of L, allowing different devices to be com-
pared and it depends on the only well-defined length scale,
�, in the polymer motor. Due to the relatively weak depen-
dence of Deff on L �Fig. 10�a��, the Peclet number peaks for
each toff roughly at the same L as �vx �Fig. 3�. However, the
strong dependence of Deff on toff means that a substantial
improvement of Pe can be attained at a relatively small cost
in terms of reduction in motor velocity when small values of
toff are chosen.

Note that a similar trade-off exists between the Peclet
number and the motor efficiency, ��see Sec. III D 3�; � is
higher for toff=20�, where Pe is relatively small, than for
toff=10�, where Pe is relatively large, indicating that the en-
ergy cost of reliable transport is high. For details, see Fig.
13�a� and Sec. III D 3.

2. Load force

We now characterize the single-polymer motor in terms of
the most important task of a motor in the strictest sense, its

ability to perform work on an external agent, and examine
two ways of performing work. First, in the present section,
we consider motion against an external force, F, that acts on
the motor itself, that is, work output in the thermodynamic
sense. Second, in Sec. III D 4, we study the motor’s ability to
move an object �such as a bead with finite drag coefficient�
through a viscous medium, similar to the work performed by
a tug boat or by a biological transporter protein.

To evaluate the motor’s ability to do work against an ex-
ternal load force, we apply a force of magnitude F /N to each
monomer in the negative x direction and determine �vx as a
function of the total applied force F. The resulting force-
velocity curve is shown in Fig. 11 for different values of L.
As expected, increasing F reduces �vx until the polymer
stalls at a critical value, Fst. For low values of L, the response
to the external field is linear, indicating that the motor’s ca-
pability to push forward does not depend on velocity. In this
regime, the force-response curves for different values of L
are parallel, that is, the mobility does not depend on L.

With increasing L the response becomes nonlinear for
forces close to Fst and the force-velocity curve is asymmetric
around the �vx=0 axis. In the data given in Fig. 11, there is
a large region where the velocity is negative and the mobility
of the molecule in response to the external field is substan-
tially smaller than elsewhere.

The inset to Fig. 11 shows the polymer’s stall force as a
function of L, as well as that of a single particle with the
same drag coefficient, 50	, in the same flashing ratchet po-
tential. For the single particle, one expects a stall force of
order Fst=kT /�L, because diffusion over the distance �L
becomes unlikely if work of more than kT must be per-
formed. Consequently, one expects the stall force to decrease
roughly as 1/L, as observed. In contrast, the stall force for
the polymer increases for small L up to about L=5�, in line

FIG. 10. Dispersion and Peclet number for toff=2.5, 5, 10, 20,
30, 40, and 80� for N=50 and ton=20�. �a� Dispersion, Deff, as a
function of L. The diffusion constant D=0.02�2 /� of a free polymer
is indicated as a horizontal line. �b� Pe, calculated for transport over
a distance l=1000�.

FIG. 11. Force-velocity response curves for a flashing ratchet
motor in an external field for different ratchet lengths �ton=20�;
toff=10�; N=50�. Inset: Stall force of the polymer as a function of L
�circles� and single particle with drag coefficient, 50	 �squares�.

SINGLE-POLYMER BROWNIAN MOTOR: A… PHYSICAL REVIEW E 73, 011909 �2006�

011909-7



with the increase of the motor’s zero-force velocity for these
values of L �see Fig. 5�. For L in the range 5� to 10� the
stall force levels out about one order of magnitude higher
than the stall force for point particles at the same value of L.
This may be understood by remembering that in this range of
L the diffusion of part of the polymer against the external
force over the distance �L is sufficient to induce a stepping
event �see Sec. III B�. One therefore expects the stall force
for a polymer in this range to exceed the single-particle stall
force, as observed. In the limit of large L, the polymer should
increasingly behave like a single particle, and we expect the
stall force to decrease as 1/L �51�.

An alternative method for calculating the force-velocity
response of the polymer is to apply to each monomer a spa-
tially dependent force of the type f =−�xcm, where xcm is the
center of mass, such that the total force on the polymer is of
magnitude F=N�xcm. This method has been used both theo-
retically �39,40� and experimentally �41�. The key advantage
from a simulation perspective is that it is not necessary to
estimate the value of Fst prior to the simulation run; the
polymer will translate in the x direction until the average
“force” generated by the ratchet balances the external field.
This is computationally significantly faster than scanning
through each value of F in turn. In Fig. 12�a� we compare the
stall forces calculated by the two methods. The harmonic
method agrees well with the stall forces obtained from the
load-velocity curves for shorter ratchet lengths, but tends to
underestimate fst with increasing L. In this limit, the dynam-
ics in the harmonic potential slow down considerably, with
the polymer taking increasingly longer times to reach a po-
sition where the opposing forces are balanced, making esti-
mation of the stall force difficult.

A study of the stall force of a polymer motor as a function
of N calculated using the harmonic-potential method is
shown in Fig. 12�b�. The stall force increases linearly as a
function of N, that is, a longer polymer can move against
larger forces. This is again in contrast to the behavior of
single particles in a flashing ratchet which lose their ability
to diffuse with increasing size.

3. Efficiency

Of key interest to the performance of molecular motors is
the efficiency with which they perform work. A number of
definitions for the efficiency of Brownian motors have been
put forward �37,42–46�. Here we use the “rectification” effi-
ciency �45� of a Brownian motor, defined as the ratio �43,45�

� =
F�vx + 	�vx2

��E/�toff + ton�
, �7�

where �E is the absolute value of the change in the poly-
mer’s �ratchet� potential energy during ton such that the de-
nominator of Eq. �7� is the power input. The numerator has
been proposed by Derényi, Bier, and Astumian �43� based on
the minimum power required for a motor with total drag
coefficient 	 to move at average velocity �v against a load
force F, and has been derived by Suzuki and Munakata �45�
by considering an energy balance for separate terms of the
Langevin equation.

In Fig. 13�a�, we show the rectification efficiency for the
case of zero load force �F=0 in Eq. �7�� as a function of L.
As expected, the efficiency peaks at the same value of L as
the velocity �see Fig. 3�. Interestingly, the maximum effi-
ciency for toff=20� is higher than for toff=10�, even though

FIG. 12. �a� Comparison of the stall forces calculated from load
velocity curves using a constant force �dots� and using a harmonic
potential �squares�. For the harmonic potential method the value is
found by averaging over ten independent simulations of polymers
translating against a spring with constant �=0.01� /�2. �b� Stall
force as a function of N calculated using the harmonic-potential
method �ton=20�; toff=10�; L=5��.

FIG. 13. �a� Rectification efficiency calculated using Eq. �7� for
zero external force. �b� Efficiency as a function of force �N=50;
ton=20��.
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the maximum velocity is similar for the two cases. This dif-
ference can be interpreted as follows: if roughly equal work
is performed by the ratchet on the polymer in both cases to
localize the polymer, this is a higher proportion of the total
ratchet cycle for the shorter toff. Overall, the rectification
efficiency is small �fractions of a percent� compared to single
particles in a flashing ratchet, where � is approximately
5%–10% �44,45,47�, indicating that extra work is being per-
formed by the ratchet potential on the polymer internal de-
grees of freedom, leading to a reduction in efficiency �37�.

In Fig. 13�b�, the rectification efficiency is shown as a
function of a finite load force F /N applied to each monomer.
Overall, the efficiency decreases as a function of L for
L�5�, as is expected since the velocity decreases as a func-
tion of L in this range. For small L, where the load-velocity
curves shown in Fig. 11 are linear, the rectification efficiency
is approximately parabolic as a function of the force, peaking
typically for F�0.5 and falling continuously to zero at the
stall force. For larger L, where the velocity response in Fig.
11�a� is not linear, the efficiency falls off more slowly than
quadratically with increasing F.

4. Transporting a load against viscous drag

One task of an experimental artificial molecular motor
might be to transport a cargo along a track. The model de-
scribed in Sec. II can be modified in a simple way by adding
a drag bead at one end that is passive to the ratchet potential.
Hydrodynamic considerations are important in this situation,
especially if the attached bead is much larger than the poly-
mer’s persistence length, but are neglected at present.

The polymer velocity versus ratchet length for polymers
attached to beads of three different drag coefficients, 	b, is
given in Fig. 14. Simulations were also performed with
beads which were much larger than the diameter of the poly-
mer monomers, but no significant changes of �v due to the
excluded volume were observed. Overall, the dynamics of

the polymer is relatively unaffected by the addition of a load
to transport and it is worth noting that, although adding a
bead with friction coefficient 	b=40	 decreases the diffusion
coefficient of the polymer by a factor of 1.8, the overall
velocity decreases by only 1.25, showing that the polymer is
able to transport a load effectively.

IV. EXPERIMENTAL FEASIBILITY

In this section, we discuss the feasibility and expected
performance of an experimental realization of a single-
polymer motor. We consider an electrostatic ratchet potential
created by a two-dimensional array of asymmetrically
spaced, interdigitated electrodes on a substrate such as sili-
con. This system was used previously by Bader and co-
workers �28,29,48�, who suspended short pieces �10 to 50
base pairs long� of single-stranded �ss� fluorescently marked
DNA in water. The solution containing the electrically
charged ssDNA was confined to a micro-chamber on top of
the electrode array, which was used to create a time-
dependent, asymmetric electrostatic potential. Net transport
was observed using fluorescence microscopy. In this experi-
ment, the ratchet period was of the order of L�10 �m,
which is several orders of magnitude larger than the ssDNA
contour length ��10 nm�.

In contrast, we examine the case of a polymer ratchet
where the contour length, N�, exceeds L and where L�Rg,
as considered in the model above. We quantitatively discuss
the expected performance of a dsDNA-based single polymer
motor �Sec. IV A� and confirm whether key results obtained
using our 1D model potential are valid also for a more real-
istic 2D electrostatic potential.

A. Quantitative discussion

Our numerical studies indicate that the velocity of a poly-
mer motor reaches a maximum at L�5−7� for ton= toff
=20–40� �see Fig. 3�. The maximum velocity is predicted to
depend little on N �Fig. 9�, and we consider using N�100,
corresponding to a 9 �m long section of �-DNA �approxi-
mately 30 kbp� with a persistence length of 90 nm �see Sec.
II B and Table I�. A ratchet potential with L�5–7� then
corresponds to a ratchet period �pitch� of L�500–600 nm
and a center-to-center distance between the closest spaced
electrodes of �L=0.1L�50–60 nm. These dimensions can
realistically be achieved by electron-beam lithography.
Based on the dynamics of the model polymer, a suitable
cycle time for the ratchet potential is �ton+ toff��40–80�
�15–30 ms, corresponding to a cycling frequency of
30–60 Hz. The potential strength used in the model
�V=4kT� corresponds to an effective electrode potential of
about 4kT /q�3 mV, and to electric fields of order
3 mV/50 nm=0.6 V/�m.

The estimated velocity under these conditions is about
0.01 � /� �Fig. 9�, corresponding to 2 �m/s, comparable to
the velocity of biological linear motors such as myosins or
kinesins �4�. For the polymer motor, this velocity corre-
sponds to about three ratchet periods per second and, given a
radius of gyration of order Rg�1 �m, the polymer would

FIG. 14. Average velocity of the polymer for different drag co-
efficients, 	b, of a bead attached to one end of the polymer
�ton= toff=20�; N=50�.
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translocate by a distance comparable to its own size about
every second. Motion of this order of magnitude should be
observable by fluorescence microscopy.

The polymer motor’s stall force is predicted to be ap-
proximately 2 kT /� �Fig. 11� or about 0.1 pN, an order of
magnitude smaller than that observed for linear, biological
motors �1.5 pN for myosin II, 3 pN for conventional kinesin
�4��. Note, however, that the stall force for the polymer mo-
tor can be increased by increasing N and it scales with 1/�,
indicating that a polymer with a shorter persistence length
�and using a ratchet potential with correspondingly shorter L�
would have a proportionally larger stall force. In this context,
it is interesting to note that the work done by the polymer per
step �per ratchet period, L� close to stall conditions is about
LFst�5��2kT /��=10kT, similar to biological motors that
have a typical step size of several nanometers and that also
do work of the order of several kT per step �4�, albeit with
much higher efficiency �on the order of 20%–30%� com-
pared to the polymer motor.

Figure 14 further predicts that a polymer motor is capable
of transporting a bead or vesicle with a drag coefficient of
about 20	, corresponding to a bead of 0.4 �m diameter, with
almost unreduced velocity. This prediction can be tested by
using, for example, biotin-strepdavidin binding to attach a
correspondingly functionalized polystyrene bead to one end
of the DNA.

In conclusion, based on our model, we predict that a poly-
mer motor as described above can conceivably be experi-
mentally realized and observed. Note, however, that our
model does not include hydrodynamic interactions, which
are likely to slow the polymer dynamics, presumably reduc-
ing the predicted velocity of the polymer as well as the stall
force. On the other hand, the choice of ton in the present
model was based on complete polymer localization, and a
shorter ton might be a better choice for maximum velocity or
maximum stall force. Also, the potential strength used in the
model was relatively small and, in an experiment, electro-
osmotic effects may well be stronger than electrophoretic
forces on the polymer �34�, possibly making the potential
actually experienced by the polymer more effective. Hence,
even though a fully realistic model should include a worm-
like chain model, electrostatic screening effects, Coulomb
interactions, and hydrodynamic interactions including
electro-osmotic flow, we conclude from our simulation re-
sults that an experiment appears feasible.

Below we confirm whether our basic conclusions, ob-
tained using a 1D potential, hold also for a more realistic 2D
potential qualitatively similar to that created by an interdigi-
tated electrode array.

B. Two-dimensional potential

As a 2D model for the potential created by an experimen-
tal device, we consider a periodic array of pairs of oppositely
charged, infinitely thin electrodes perpendicular to the x axis
in the plane z=0. The electrodes in a pair are separated by
�L and the periodic spacing between pairs is L. They are
alternately charged during ton and uncharged during toff. Two
surfaces are introduced into the system to place bounds on

the diffusion of the polymer along the z axis. These are of the
same form as Eq. �1�, with the monomer-surface distance
replacing the interparticle separation. The surfaces are placed
at the positions z1=−0.5� and z2=100�. If the upper surface,
z2, corresponds to a cover slip, then the experimental system
would consist of a micro-chamber with a realistic height of
approximately 10 �m.

Screening effects due to solvent counter-ions are ignored.
As shown in Fig. 15�a�, both the absolute value and the
effective asymmetry of the electrostatic potential produced
by the electrode array fall off within a distance L from the
surface. Because of the short-range nature of the potential, it
is necessary to use stronger fields than previously in order to
achieve processive motion. The potential is scaled such that
the difference between maxima and minima is 20kT for
z=0.5�.

The polymer velocity as a function of L has similar be-
havior to the simpler potential, exhibiting a peak at L�5�
for toff=20� and at L�7� for toff=40� �Fig. 16�a��. The av-
erage velocities achieved in the 1D and 2D cases are of the
same order of magnitude.

In Fig. 16�b�, the trace of the polymer position with time
is shown for L=5� and toff=20�. Regions can be seen where
the polymer diffuses beyond the attractive region of the po-
tential in the z direction and undergoes a free random walk.
The duration of this random walk is characterized by an av-
erage return time, which depends on the position of the wall
at z2. If the polymer is confined to a smaller space by reduc-
ing the separation z2−z1, the return time will be lower and
the velocity as measured by the total displacement in x over
a given fixed time will be higher. The ability of the polymer
to “detach” from the surface is strongly dependent on the
ratchet period and, consequently, ratcheting is poor for

FIG. 15. Characteristics of the potential formed by an electrode
array. Solid line; left axis: Decrease in the potential strength with
distance from the surface; V0 is an arbitrary scaling factor. Dashed
line; right axis: Effective asymmetry measured by the separation of
the maxima and minima of the potential as a fraction of L. Inset:
The x dependence of the potential at a distance 0.5� from the sur-
face �L=5��.
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shorter periods, as shown by the rapid drop in velocity for
short values of L in Fig. 16�a�.

V. CONCLUSIONS

We have performed Brownian dynamics simulations of a
single molecule motor based on a polymer in a flashing
ratchet. In contrast to single particles in a flashing ratchet,
the polymer motor does not rely on center-of-mass diffusion,
but on thermally activated conformational changes. This cen-
tral role of the molecule’s internal degrees of freedom is
reflected in key aspects of motor performance: First, the mo-
tor velocity decreases with polymer size much more slowly
than for single particles in a flashing ratchet. Second,
whereas for single particles in a ratchet the stall force de-
creases with particle size, the stall force for the polymer

motor increases with N. The physical reason is that only part
of the polymer needs to diffuse against an external force to
induce stepping of the entire polymer during ton, which ef-
fectively constitutes a power stroke. On a fundamental level,
this feature is akin to dimeric biomolecular motors, which
also make use of internal degrees of freedom to increase their
stall force beyond that possible for a monomeric motor. In
contrast to biomolecular motors, however, we find that the
very large number of degrees of freedom in our polymer
leads to a very small motor efficiency. Future work will con-
sider the internal energetics of the polymer and the role that
fluctuations and flexibility have on performance and effi-
ciency. It is likely that a finite, but small, number of func-
tionally well-chosen internal degrees of freedom �as selected
by biological evolution� yields the best performance. Most
importantly, however, it appears that our motor can be real-
ized experimentally. This study, therefore, points the way not
only to the real-time study of the performance of an artificial,
single-molecule motor, but perhaps also to the first experi-
mental realization of a microscopic, coupled Brownian mo-
tor system that draws on cooperative effects to increase per-
formance.

In the present calculations, we have ignored both hydro-
dynamic interactions and electrostatic screening. While
screening can be incorporated quite easily, hydrodynamic in-
teractions present considerably greater difficulties. It is
known �36� that the dependence of the diffusion coefficient
of a polymer scales as 1 /Rg rather than as 1/N in an explicit
solvent and, therefore, we expect that some quantitative dif-
ferences from our results will be found experimentally. How-
ever, we believe that our conclusions are qualitatively robust.
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