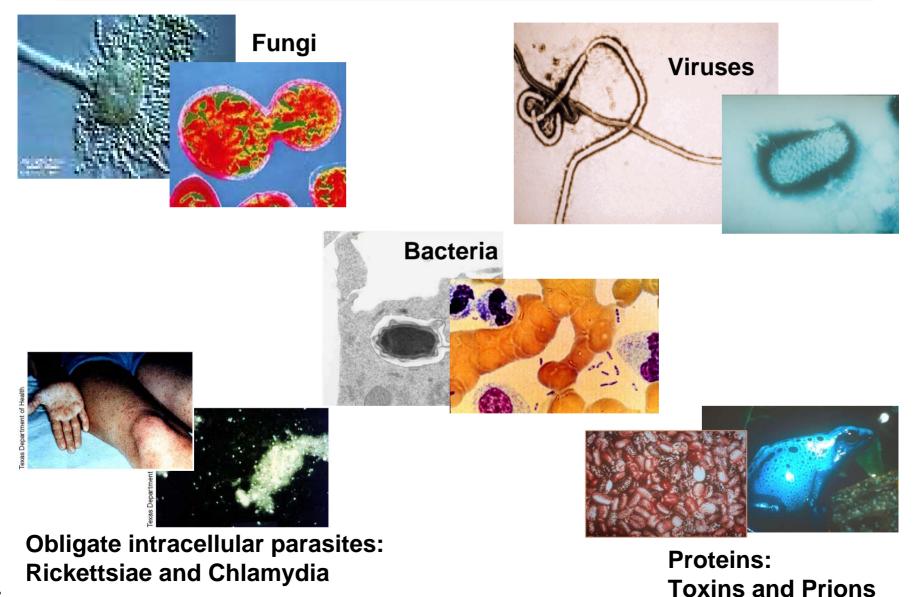


Biological Agents: An Overview

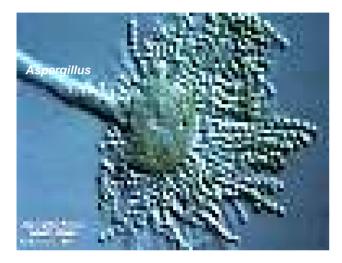
Training Seminar on Laboratory Biosecurity and Biosafety

Manila, Philippines 13 July 2006 And Cebu, Philippines 18 July 2006

www.biosecurity.sandia.gov



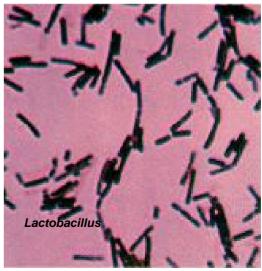
SAND No. 2006-1995C Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



Types of Biological Agents

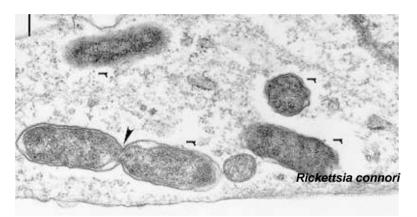
Fungi - Mycelial

- size: highly variable
- complexity: moderate
- chemical: DNA/RNA, complex metabolic, structural & enzymatic chemistry
- toxins: often important wide range of mycotoxins
- risk: mainly RG2; Coccidioides, Histoplasma are RG3
- pathol: inflammation, vesic-ulation, granuloma formation, necrosis, hypersensitivity



Bacteria

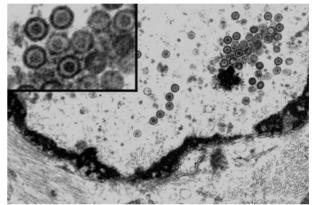
- size: 0.2 μm 500 μm
- complexity: moderate
- chemical: DNA/RNA, simple structural & metabolic compo-nents, limited enzyme systems
- toxins: many important
 - exo: tetanospasmin, diphtheria, botulinum, TSST-I, cholera
 - endo: lipopolysaccharide (LPS) of many pathogenic G- bacteria
- risk: RG2, few RG3 (e.g., anthrax, brucellosis, tularemia)
- pathol: many factors influence transmissibility, invasiveness, pathogenicity, virulence

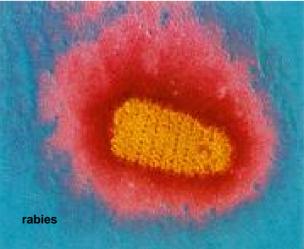


Rickettsiae and Chlamydia

size:

- 0.3 μm 0.6 μm (Rickettsia)
- 0.3 μm 1.0 μm (Chlamydia)
- complexity: similar to Gramnegative bacteria
- chemical: DNA/RNA, similar to Gram negative bacteria but can't metabolize energy
- toxins: one (a Chlaymdia) but not important in pathogenesis
- risk: RG3 (Rickettsia) and RG2 (Chlamydia)
- pathol: obligate intracellular parasites
 vasculitis, cell death, inflammation, etc.

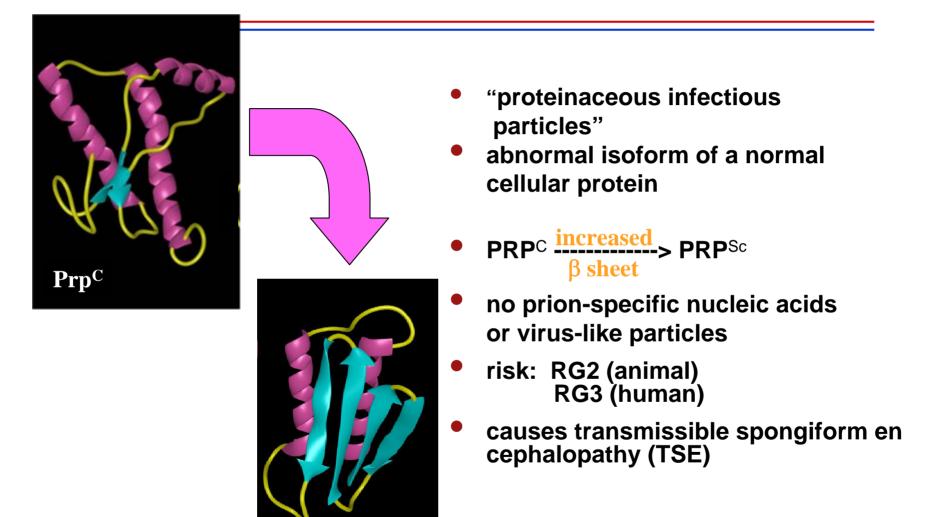




Viruses

- size: 20 nm 400 nm
- complexity: simple
- chemical: DNA or RNA; protein capsid; lipids, viral carbohydrates in membrane envelope; few other chemicals
- toxins: no, but genes may code for toxic products
- risk: most RG2, several RG3, a few RG4
- pathol: obligate intracellular parasites
 cell death or hyperplasia (cancer);
 disease relates to target sites

Herpes simplex



Prions

Prp^{Sc}

Koch's Postulates

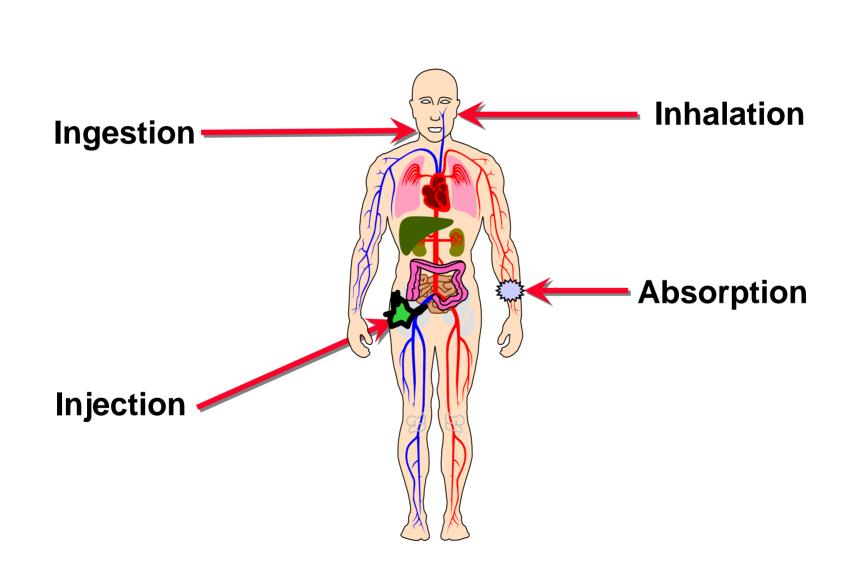

- Robert Koch applied these four precepts in 1884 to establish the etiology of tuberculosis.
- The only way to conclusively demonstrate microbial etiology of a disease:
 - The organism must be found in all animals suffering from the disease, but not in healthy animals;
 - The organism must be isolated from a diseased animal and grown in pure culture;
 - The cultured organism should cause disease when introduced into a healthy animal;
 - The organism must be re-isolated from the experimentally infected animal.

The Dividing Line

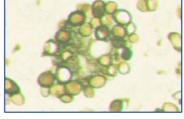
Based on pathogenicity for humans

Sources of Pathogens and Toxins

- Natural environment
 - Endemic
 - Outbreaks
- Legitimate facilities
 - Culture collections
 - More than 400
 - 67 countries
 - Laboratories
 - Pharmaceutical companies
 - Biotechnology companies
 - Clinical and diagnostic laboratories
- Synthetic biology
 - De-novo synthesis
 - Polio virus
 - Ebola virus
 - Modifying less virulent pathogens



Routes of Entry

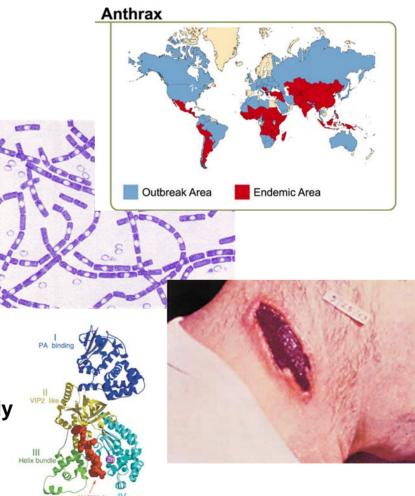

Overview of Selected Agents

- Fungi
 - Coccidioides immitis
- Bacteria
 - Bacillus anthracis
 - Yersinia pestis
 - Francisella tularensis
 - Brucella spp.
- Rickettsiae and Chlamydia
 - Rickettsia rickettsii

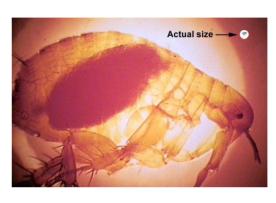
- Viruses
 - Hemorrhagic Fever viruses
 - Variola major virus
 - Avian influenza virus, H5N1
 - Foot-and-mouth Disease virus
 - Rinderpest virus
- Proteins
 - Botulinum toxin
 - Bovine Spongiform Encephalopathy

Fungi: Coccidioides immitis

- Coccidioidomycosis ("Valley fever" or "desert fever")
- Zoonotic
- Endemic to arid and semi-arid regions of the Western Hemisphere
- Highly stable easy to produce spores
- Usually asymptomatic, 30-40% of infected become ill
- Not contagious
- 5-10 out of every 1000 infected develop lifethreatening infection
- 10th most common laboratory-acquired infection
- In US: BSL3 recommended


Coccidioides immitis

Bacteria: Bacillus anthracis

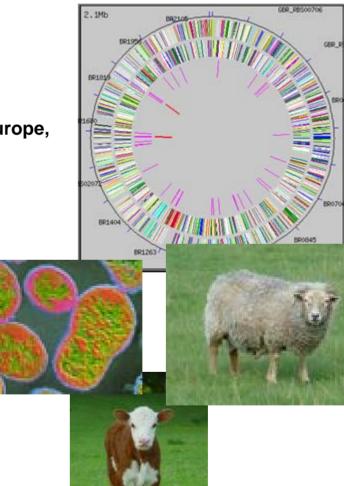

- Anthrax
 - Cutaneous
 - Gastrointestinal
 - Pulmonary
- Zoonotic
- Global distribution
 - Especially Middle East, Africa, Asia, US
 - Many less virulent strains
- Very stable spore former
- ID₅₀: 8000-50,000 spores
- Mortality rate: 90 100% (pulmonary)
- Vaccine available
- Antibiotics effective if administered shortly after exposure
- In US: often used in BSL2 laboratories

Bacteria: Yersinia pestis

- Plague
 - Bubonic
 - Septicemic
 - Pneumonic
- Zoonotic
- Global distribution
 - Except Australia and Antarctica
 - Virulence highly variable
- Less stable easily degraded by drying and sunlight
- ID₅₀: 100 20,000 organisms
- Mortality rate: ~100% for pneumonic if treatment not started within 24 hours of exposure
- No licensed vaccine in US; vaccine available in FSU and Mongolia
- In US: BSL2 for samples; BSL3 for large amounts

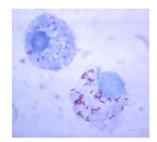
Bacteria: Francisella tularensis

- Tularemia ("rabbit fever")
 - Glandular
 - Gastrointestinal
 - Pulmonary
- Zoonotic
- Distribution
 - North America, Europe, Middle East, Russia, and Japan
 - Rare in UK, Africa, Central and South America
- Persists in water but sensitive to UV radiation and oxidation
- ID₅₀: 10 25 organisms by respiratory routes
- Mortality rate: most forms rarely fatal but untreated pulmonary is 30 – 60% fatal
- Antibiotics
- In US: BSL3 most common



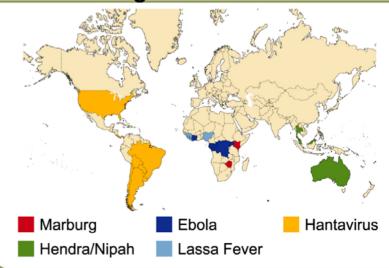
- Brucellosis
- Zoonotic

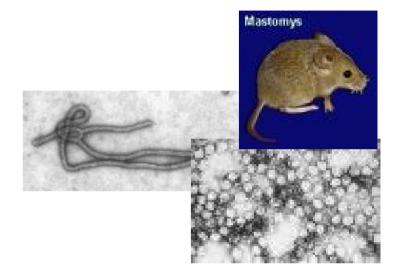
International


- Wide distribution
 - South America, Central America, Eastern Europe, Asia, Africa, Middle East
- Stable
- 6 species; 4 cause disease in humans
- ID₅₀: 10 100 organisms
- Low mortality
- Treatment with antibiotics
- In US: BSL 3 most common

Rickettsiae: Rickettsia rickettsii

- Rocky Mountain Spotted Fever
- Zoonotic
- Distribution
 - US, Mexico, Central and South America
- Stable in tick blood at ambient T; 1 year survival
- ID₅₀: 1-10 organisms
- Mortality 15-20% if untreated
- Antibiotics: doxycycline; delayed diagnosis contributes to increase in fatalities
- In US: BSL3


Viruses: Hemorrhagic Fever viruses


- Viral Hemorrhagic Fevers
 - Filoviruses: Ebola and Marburg
 - Arenaviruses: Lassa, Junin, Machupo, Guanarito, Sabia
 - Hantaviruses
 - Dengue
 - Yellow fever
- Zoonotic

International

- Distribution varies by species
- Relatively unstable (enveloped viruses)
- ID₅₀: 1 10 virions
- Mortality varies
 - Ebola is highest: 50 90%
 - Lassa: 15 20%
- Generally only supportive treatment
 - Ribavirin somewhat effective for arenaviruses
 - Yellow fever vaccine
- In US: Most are BSL4

Viral Hemorraghic Fevers

Viruses: Variola major virus

- Smallpox
- Human only
- Eradicated; officially available in only 2 laboratories
 - CDC (USA)
 - Vector (Russia)
- Very stable
- ID₅₀: 10 100 virions
- Mortality rate: ~30% (unvaccinated)
- Vaccine available
- Other treatments limited
 - Post-exposure vaccination (within 4 d
 - Supportive care
 - Cidofovir has shown promise
- BSL4

Viruses: Avian Influenza H5N1 virus

- Highly Pathogenic Avian Influenza (HPAI)
- Zoonotic
- Distribution
 - Spreading rapidly in environment
- Relatively unstable
 - But stable in water
- Highly infectious in poultry; apparently limited infectivity currently in humans
- Vaccine for animals available; human vaccine under development
- Treatment for humans:
 - Oseltamivir
 - Zanamavir
- In US: BSL3

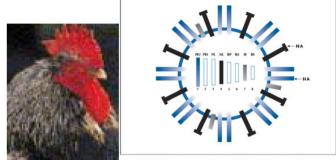
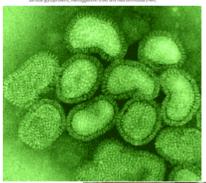
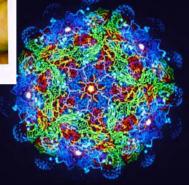



Figure 3. Model of the influenza virus showing the segmented nature of the viral genome and the two major surface divoproteins, hemagdutinin (HA) and neuraminidase (NA).



Viruses: Foot-and-Mouth Disease virus

- Foot-and-mouth disease
- Animals only
- Wide distribution
 - South America, Europe, Asia, and Africa
- Very stable
- Highly infectious for cattle
 - ID₅₀ < 10 virions
- High morbidity; low mortality for adult animals (< 5%)
- Vaccine
- In US: BSL3-Ag

Ruptured vesicle on bovine tongue.

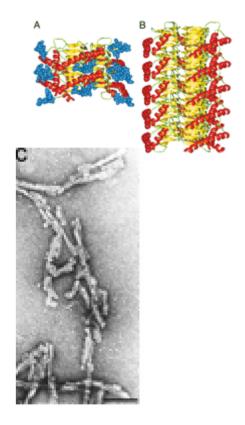
Foot and Mouth Disease

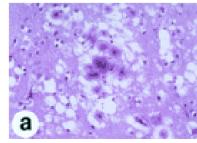
Viruses: Rinderpest virus

- Rinderpest disease
- Animals only
- Distribution:
 - Eastern Africa, Middle East, South Asia
- Susceptible to pH, heat and sunlight
- Mortality can reach 100%
- Distinguished from FMD by diarrhea

Proteins: Botulinum toxin

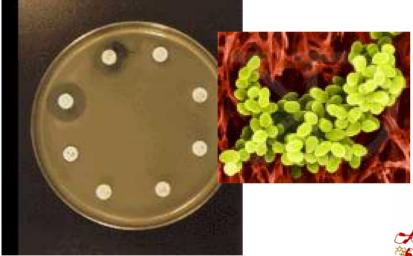
- Botulism
- Produced by Clostridium botulinu, C. baratii, and C. butyricum
 - Multiple types of toxin: A, B, C, D, E,
 F, G
 - Only A, B, E, and F produce human disease
- Zoonotic
- Degraded by heat and humidity relatively stable for a protein
- LD₅₀: 0.001µg/kg
- Treatment
 - Antitoxin (limited supplies)
 - Supportive care

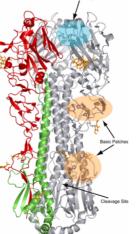


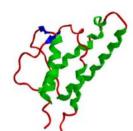


Proteins: Bovine Spongiform Encephalopathy Prion

- Mad cow disease
- Causative agent of BSE causes variant Creutzfeldt Jakob disease (vCJD)
- Diagnosed in cattle in:
 - Europe, Canada, US, Japan
- Long incubation period
- Extremely stable not inactivated by conventional fumigants, very heat resistant
- Laboratory recommendations:
 - In US: BSL2 or BSL3
 - In UK: modified BSL3 (room need not be sealable, HEPA filters not required)
 - OIE: BSL3

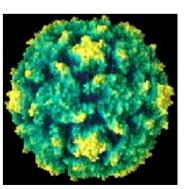






Biological Threats are Evolving

- Drug resistant agents
- Genetically-engineered agents


formul of Vinoton, Feb. 2001, p. 1205-1210 0023530240:504:00+0 DOE 10.1128394375.3.1205-1210-2001 Copyright © 2001, American Society for Manufology. All Rights Reserved. Vol. 25, No. 1

Expression of Mouse Interleukin-4 by a Recombinant Ectromelia Virus Suppresses Cytolytic Lymphocyte Responses and Overcomes Genetic Resistance to Mousepox Ronald J. JACKSON¹³⁺ ALISTAIR J. RAMSAY²/¹ CARINA D. CHRISTENSEN² SANDRA BEATON² DUNA F. HALL²/1 son IAN A. RAMSHAW³ Post Animal Control Corporation Research Courter Collor Statistical Control Cont

Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus

Terrence M. Tumpey,^{1*} Christopher F. Basler,² Patricia V. Aguilar,² Hui Zeng,¹ Alicia Solórzano,² David E. Swayne,⁴ Nancy J. Cox,¹ Jacqueline M. Katz,¹ Jeffery K. Taubenberger,³ Peter Palese,² Adolfo García-Sas1

SCIENCE VOL 310 7 OCTOBER 2005

Summary

- Types of agents
 - Fungi
 - Bacteria (including mycoplasma, rickettsae, chlamydia)
 - Viruses
 - Proteins
 - Prions
 - Toxins
 - Produced by many sources
- Almost all biological agents available in nature
- Many factors to consider when evaluating biological hazards
- Delayed onset of symptoms many cause flu-like illness

