DEMONSTRATION OF INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS

Plant Yates

Environmental Monitoring Program Report: Fourth Quarter and Annual 1994

(Final)

DOE DE-FC22-90PC89650 SCS C-90-00284

Prepared for:

Southern Company Services, Inc. P.O. Box 2625 600 North 18th Street Birmingham, Alabama 35291-1195

Prepared by:

Radian International LLC 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

Cleared by DOE Patent Counsel on September 19, 1995.

Legal Notice

This report was prepared by Radian International LLC for Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc., nor any of its subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either:

- 1. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the process disclosed in this report may not infringe privately-owned rights; or
- 2. Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

Executive Summary

This progress report summarizes activities associated with the environmental monitoring program (EMP) during the fourth calendar quarter and year of 1994 for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia.

This document discusses progress made in EMP activities during the fourth calendar quarter and year of 1994. With the exception of certain compliance data, results are not presented in detail; instead, results will be reported in more comprehensive periodic reports that focus on discrete test periods.

The remainder of the low-fly ash auxiliary test block was completed during the first three months of 1994, including some of the alternate limestone tests and the alternate (high sulfur) coal tests. The high-fly ash test period began in March and continued through the remainder of the year. A parametric test block, long-term test block, and auxiliary test block were included in this period.

Tests performed during the fourth quarter included the alternate limestone test block, using limestone from Florida Rock's Rome, Georgia, quarry and the plant's Phase I compliance coal (nominally 1.2% sulfur). Most of these tests were conducted at low-ash loading (i.e., with the ESP completely energized) because of the desire to complete the testing program with the scrubber relatively free of ash solids. Following the completion of these tests, the scrubber was transferred to Georgia Power Company (Plant Yates).

Operational-phase groundwater monitoring continued during the year. Also, compliance monitoring was conducted and compliance reports were submitted by Georgia Power Company to the Environmental Protection Division of the Georgia Department of Natural Resources.

iii

Table of Contents

.

1.0	Introd	uction
2.0	Projec	t Summary
	2.1 2.2	Plant and Process Description 1 Project Description 2
3.0	Projec	t Status
4.0	Comp	liance Monitoring And Reporting
5.0	Supple	emental Monitoring
	5.1 5.2	Groundwater Monitoring
6.0	Qualit	y Assurance/Quality Control Activities14
Арре	endix A:	Quarterly Air Emission Report For The Fourth Quarter of 1994 A-1
Арре	endix B:	Quarterly Operational Monitoring Report for the Fourth Quarter of 1994
Appe	endix C:	Groundwater Monitoring Results For The Third Quarter of 1994C-1

•

List of Figures

1 Y	Yates 100 MW CT-121	Process Flow Diagram		3
-----	---------------------	----------------------	--	---

List of Tables

1	Summary of Groundwater Samples Collected at Plant Yates on December 20-21, 1994
2	EMP Groundwater Monitoring Parameters
3	Gaseous Streams: Integrated Monitoring Schedule
4	Aqueous Stream Monitoring Schedule9
5	Solid Stream Monitoring Schedule
6	Gaseous Streams: Number of Samples Collected in 1994
7	Aqueous Streams: Number of Samples Collected in 1994
8	Solid Streams: Number of Samples Collected in 1994

.

1.0 Introduction

This progress report summarizes activities associated with the environmental monitoring program (EMP) during the fourth calendar quarter and year of 1994 for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia. The Cooperative Agreement for this project was signed by DOE on April 2, 1990.

The EMP was developed to fulfill the following specific objectives:

- To provide monitoring data to fulfill environmental compliance requirements of local, state, and federal regulatory agencies;
- To define and describe additional supplemental monitoring activities, if needed; and
- To ensure that emissions and environmental impacts are consistent with projections provided in NEPA documents.

This document discusses progress made in EMP activities during the fourth calendar quarter and year of 1994. Results are presented for groundwater monitoring and compliance (air emissions and wastewater) monitoring, but the results of FGD process monitoring will be presented in more comprehensive periodic reports that focus on discrete test phases.

2.0 Project Summary

This section provides a brief description of the plant and process in addition to the demonstration project.

2.1 Plant and Process Description

Plant Yates consists of seven steam turbine electric generating units providing a total nameplate capacity of 1,250,000 kW. Units 1 through 5 (operational since the 1950s) are operated as intermediate load units and are located in one building that features a common 825-foot stack for venting emissions from all five units. Units 6 and 7, operational since 1974, are operated as base load units. A common 800-foot stack is used to vent emissions from Units 6 and

7, which are housed in a separate building. All of Plant Yates' units are equipped with electrostatic precipitators for particulate control.

Plant Yates typically uses coal that is a 50-50 blend of Arch Mineral and Old Ben coals from the Illinois Basin. The target coal sulfur content for the demonstration project is 2.5 percent. Raw water for process needs is drawn from the Chattahoochee River. Solid waste, in the form of bottom ash and fly ash, is sluiced to a series of wet ash disposal ponds.

2.2 Project Description

The CT-121 flue gas desulfurization project was constructed and is operated to treat the entire flue gas stream from Unit 1 (100 MW), which is approximately 12% of the total flue gas generated at Plant Yates. A 258-foot stack was constructed to vent emissions from the CT-121 process.

A simplified process flow diagram of the flue gas desulfurization process is shown in Figure 1. Major process sampling locations are shown in that diagram.

3.0 Project Status

The CT-121 demonstration project at Plant Yates consists of four distinct environmental test periods, including:

- Period 0: Site Preparation, Construction, and Startup of the Demonstration Project;
- Period 1: Testing at Low-Fly Ash Loading—With ESP In Service;
- Period 2: Testing at High-Fly Ash Loading-ESP Detuned or Out of Service; and
- Period 3: Post-Demonstration Groundwater Testing.

Monitoring during Period 0 consisted solely of background (i.e., prior to project operation) groundwater monitoring. Samples were obtained during seven periods between September 6, 1990 and October 14, 1992.

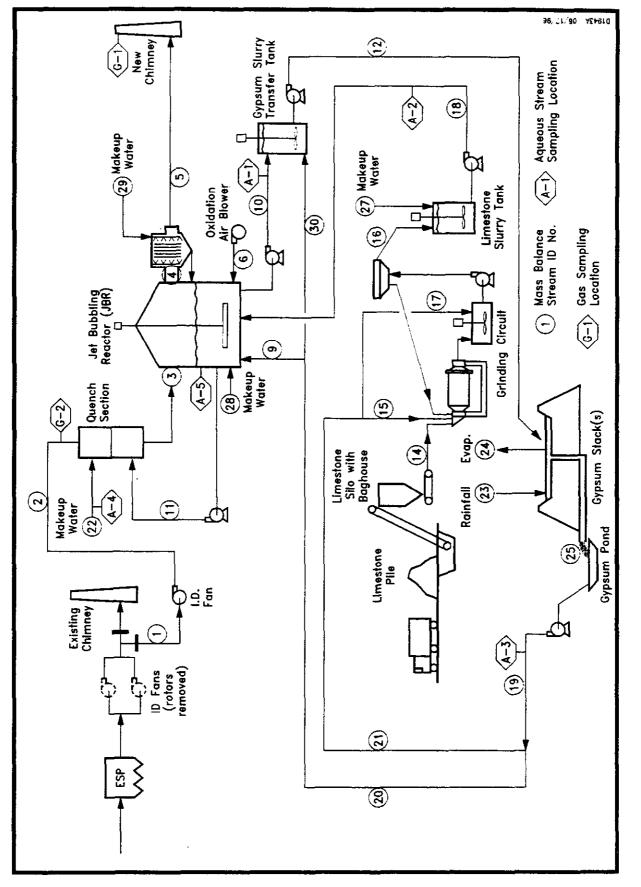


Figure 1. Yates 100 MW CT-121 Process Flow Diagram

On October 26, 1992, the CT-121 wet scrubber became operational for the first time. During the remainder of 1992, shakedown of the process equipment and data collection procedures was conducted.

The majority of the Period 1 (low-fly ash) tests were performed in 1993. These consisted of a parametric test block, long-term test block, and most of the auxiliary test block (i.e., high- SO_2 removal, and most of the alternate limestone tests).

The remainder of the Period 1 auxiliary test block was completed during the first three months of 1994. Additional alternate limestone tests were conducted with the unit in load-following operation to gather additional data on the scrubber's performance and gypsum byproduct dewatering characteristics while operating with Dravo limestone. Following these tests, the Period 1 alternate coal tests were conducted using high-sulfur coal (about 4.3%) to judge the flexibility and performance of the scrubber while operating with higher-than-design inlet SO_2 concentrations. These tests required a number of modifications to the scrubber's limestone feed system and the JBR.

The Period 2 (high-fly ash) test period began in March, 1994, with a parametric test block. Particulate sampling of the JBR inlet flue gas and stack gas streams was conducted during the first nine parametric tests conducted at several different JBR inlet flue gas particulate loadings. The loadings were adjusted by varying upstream ESP operation. Based on the results of these tests, the decision was made not to conduct Period 2 testing with the ESP completely deenergized. Instead, it was decided to partially detune the ESP for these tests to simulate operation with a marginally performing upstream particulate collection device. The parametric test block was completed by the latter part of May.

Following completion of the parametric test block, the long-term test block was conducted during the months of June, July, and August. Because of inhibited limestone dissolution, it was necessary to operate at a lower pH than originally planned for these tests (pH 4.0 instead of 4.5).

The JBR and other process components were cleaned in early September, and the scrubber was then returned to service for the Period 2 high-SO₂ removal test block. Several short tests at fixed loads from 50 to 100 MWe were conducted, followed by load-following operation during the remainder of this test block.

Period 2 alternate coal testing was performed in October. Although 4.3% sulfur coal was requested (the same concentration as was used in the Period 1 alternate coal tests), the actual coal sulfur content, as determined by a daily proximate analysis, was 3.4 percent.

The annual boiler outage for Unit 1 began in late October and continued during most of November. During this outage, the scrubber process equipment was inspected and cleaned, and several process modifications were made.

December was the last month of scheduled Period 2 testing for the Yates CT-121 demonstration project. The tests performed during the month of December were the high-particulate alternate limestone tests. All of the tests were conducted using limestone from Florida Rock's Rome, Georgia, quarry and the plant's Phase I compliance coal (nominally containing 1.2% sulfur). Because it was scheduled after the 1994 annual boiler outage, and because of the desire to complete the testing with the scrubber relatively free of ash solids, most of these tests were actually conducted at low-ash loading (i.e., with the ESP completely energized). Following the completion of the Period 2 tests, operation of the scrubber was transferred to Georgia Power Company (Plant Yates).

Period 3 testing will include only monitoring of the groundwater around the gypsum stacking area and is scheduled to continue through 1996.

4.0 Compliance Monitoring And Reporting

Wastewater samples collected throughout the year for compliance purposes were as follows:

Stream/Parameter	Ash Transport Water	Final Plant Discharge
Total Suspended Solids	/	
Oil and Grease	✓	
рН		1

During each quarter, compliance reports were submitted by Georgia Power Company, as required, to the Environmental Protection Division of the Georgia Department of Natural Resources. The reports for the fourth quarter of 1994 are reproduced as Appendices A and B. Appendix A contains excess emission and monitoring system performance reports. Appendix B contains wastewater data. The compliance reports for the first through third quarters of 1994 have been attached to previously-submitted EMP reports.

During the first quarter of 1995, a semiannual progress report was submitted by GPC to the DNR, in accordance with an amendment (effective December 28, 1990) to the air operating permit for Source 1 (comprising Units 1, 2, and 3) (No. 4911-038-4838-0). This report covered the testing performed during the second semester of 1994.

5.0 Supplemental Monitoring

5.1 Groundwater Monitoring

Operational-phase groundwater monitoring was conducted during each quarter of 1994. Monitoring for the fourth quarter was conducted on December 20-21, 1994. The samples collected, shown in Table 1, were analyzed for the parameters shown in Table 2. Results for these samples will be available in the next quarterly EMP progress report.

A report containing the results of groundwater monitoring conducted during the third quarter of 1994 is provided as Appendix C. The results from previous quarters have been attached to previously-submitted EMP reports.

5.2 FGD Process Monitoring

The monitoring schedules for gaseous, aqueous, and solid streams are shown in Tables 3, 4, and 5, respectively. Tables 6, 7, and 8 are summaries of the EMP monitoring conducted during the quarter.

Well ID	Sample ID	Analyses	
GWA-1	None	Well dry; no samples collected	
GWC-1	GWC-1-16-1	Anions, TOC, TOX, and Metals	
GWC-2	GWC-2-16-1	Anions, TOC, TOX, and Metals	
GWC-3	GWC-3-16-1 GWC-3-16-2	Anions, TOC, TOX, and Metals Anions, TOC, TOX, and Metals	
GWC-4	GWC-4-16-1	Anions, TOC, TOX, and Metals	
GWC-5	GWC-5-16-1	Anions, TOC, TOX, and Metals	
GWC-6	None	Well dry; no samples collected	

Table 1. Summary of Groundwater Samples Collectedat Plant Yates on December 20-21, 1994

Table 2. EMP Groundwater Monitoring Parameters

pH	Conductivity	Temperature		
Eh	Alkalinity	Total Dissolved Solids		
Bromide	Chloride	Total Organic Carbon		
Fluoride	Nitrate-Nitrite	Sulfate		
Trace Elements (Disso	lved)			
Silver	Aluminum	Arsenic		
Boron	Barium	Beryllium		
Bismuth	Calcium	Cadmium		
Cobalt	Copper	Chromium		
Mercury	Iron	Potassium		
Lithium	Magnesium	Manganese		
Molybdenum	Sodium	Nickel		
Phosphorus	Lead	Sulfur		
Antimony	Selenium	Silicon		
Tin	Strontium	Tellurium		
Titanium Thallium		Uranium		
Vanadium Tungsten		Zinc		
Other				
ТОХ		<u> </u>		

Parameter	Stack Gas Stream	Flue Gas Inlet to JBR
Opacity	None	Continuous
SO ₂	Continuous	Continuous
0 ₂	Continuous	Continuous
Moisture Content	9/Parametric Test Period	9/Parametric Test Period
SO_3 , H_2SO_4 Mist (contingent upon funding availability)	36/Parametric Test Period	36/Parametric Test Period
Particulate Matter		
Loading	9/Parametric Test Period and Annually	9/Parametric Test Period
Particle Size Distribution (contingent upon funding availability)	9/Parametric Test Period	9/Parametric Test Period

Table 3. Gaseous Streams: Integrated Monitoring Schedule

	JBR O	JBR Overflow	JBR Un	JBR Underflow
Parameter	Ρ	L	Ρ	L
Liquid Phase				
pH	W/L	4/M	7/M	4/M
Chloride	W/L	4/M		
Sulfite	W/L	4/M		
Sulfate	W/L	4/M		
Carbonate	T/M	4/M		
Trace Elements		1/M		
Solid Phase				
Solids Content	W/L	4/M	M/T	4/M
Inert Content	W/L	4/M	M/L	4/M
Calcium	W/L	4/M	W/L	4/M
Magnesium			W/L	4/M
Sulfite			W/L	4/M
Sulfate	W/L	4/M	W/L	4/M
Carbonate	W/L	4/M	W/L	4/M
Trace Elements				1/M
TCLP				1/P

Table 4. Aqueous Stream Monitoring Schedule

	Limestone SI	Slurry Feed	Gypsum Stack Return	ack Return	Makeup Water	Water
Parameter	Ρ	<u>ب</u>	Ρ	L	Ъ	L
Liquid Phase						
Hd			W/L	4/M	1/M	1/M
Chloride			M/T	4/M	1/M	1/M
Sulfite					I/W	1/M
Sulfate			7/M	4/M	1/M	1/M
Carbonate			W/L	4/M	1/M	1/M
Trace Elements			1/M	1/M		
Solid Phase						
Solids Content	7/M	4/M				
Inert Content	7/M	4/M				
Calcium	7/M	4/M				
Magnesium	7/M	4/M				
Carbonate	W/L	4/M				

_
Ø
ne
nu
ġ,
Ē
ုပ္ပ
2
4
0
able
Та

Table 4 (continued)

Abbreviations:

.

Trace elements are the following:

Phosphorus Lead	Sulfur	Antimony	Selenium	Silicon	Títaníum	Uranium	Vanadium
Copper	Potassium	Magnesium	Manganese	Mercury	Molybdenum	Sodium	Nickel
Aluminum Arsenic	Boron	Barium	Beryllium	Calcium	Cadmíum	Cobalt	Chromium

Table 5. Solid Stream Monitoring Schedule

Parameter	Coal Feed
Proximate Analysis	Daily
Ultimate Analysis, Cl, and F	Twice Yearly
Trace Elements	Twice Yearly

Note: In addition to the monitoring shown, analysis of coal feed for sulfur, moisture, heating value, and ash content once per week is a regulatory compliance requirement.

Table 6. Gaseous Streams: Numbers of Samples Collected in 1994

Parameter	Stack Gas Stream	Flue Gas Inlet to JBR
Opacity	NA	Continuous
SO ₂	Continuous	Continuous
0 ₂	Continuous	Continuous
Moisture Content	36	34
SO ₃ , H ₂ SO ₄ Mist	36	36
PM Loading	27	27
PM Size Distribution	9	9

Parameters	JBR Overflow and Underflow	Limestone Slurry Feed	Gypsum Stack Return	Makeup Water
рН	Twice daily when operating	NA	Daily when operating	Monthly
Anions (liquid and solid phases) and solids/inerts/Ca/Mg (solid phase)	47	49	48	11
Metals (liquid and solid phases)	12	NA	10	NA

Table 7. Aqueous Streams: Numbers of Samples Collected in 1994

•

Table 8. Solid Streams: Number of Samples Collected in 1994

Parameters	Coal Feed
Proximate Analysis	Daily when operating
Ultimate Analysis, Cl, and F	7
Trace Elements	6

6.0 Quality Assurance/quality Control Activities

QA/QC activities for process data consist of calibrations, calibration checks, and related maintenance activities, all of which are recorded in log books. Six log books are used:

- 1. CEM flow rates and gas concentrations;
- 2. pH calibrations;
- 3. ΔP cells;
- 4. Density measurements;
- 5. Flow meters; and
- 6. Level meters.

Radian Corporation personnel were on site on June 14-15, 1994, to perform a quality assurance audit of the Plant Yates laboratory. The audit indicated that all of the quality control procedures established for the laboratory had been implemented and are being complied with, and that an appropriate level of quality control is being practiced. A report presenting the results of this audit was included as an appendix to the EMP quarterly progress report for the third quarter of 1994.

Appendix A

Quarterly Air Emission Report for the Fourth Quarter of 1994

P.O. Number Sample Class Daily	Sample	Receiving Plant Unit Train No.	Yates Unit
Date Shipped 12/03 Date Received 12/07	94	Number of Cars Tonnage	0 1021.00
Air Dry Loss	Weights .	Resul	lts =======
Pan Pan, Wet Coal & Bag Pan, Dry Coal & Bag Pan & Dry Coal	807.2 g 1986.5 g 1916.5 g 1900.2 g	Air Dry Loss Total Moisture	6.02% 7.54%
MAC-400 Instrum	ent Data	Resul	lts
Dry Sample Wt. Moisture Volatile 35.79% Ash 10.39% F. Carbon 53.82%	As Det. 1.1590g 1.62% 35.21% 10.22% 52.95%	Volatile as Rec. Ash as Rec. F. Carbon as Rec	9.61%
Sulfur Instru	ment Data	Resu	lts
As Determined	1.21%	Dry Basis As Received	1.23% 1.14%
	BTU Content		
Instrument Data	Bomb # = 10	Results	
Capsule Weight Capsule & Coal Wt. Initial Temperature Final Temperature Acid Correction Wire Correction Water Equivalent	11.2491 g 12.2493 g 29.656 deg C 41.638 deg C 38.00 Btu/lb 97.20 Btu/lb 1122	As Determined Dry Basis As Received Moist & Ash Free Sulfur MM SO2 MM	Btu/lb 13283 13501 12483 15067 0.91% 1.73%
CHN-1000	Results		
Carbon Hydrogen	Dry As Det. 76.02% 74.79% 4.98% 5.08% 1.45% 1.43% 5.92% 7.27%	As Rec. 70.29% 4.61% 1.34%	

• •

PLANT: YATES UNIT: 1-3 CURRENT DATE: 10/06/1994 CURRENT TIME: 08:33:49

.

.

•

•

DEMAND FOR DAILY EMISSIONS REPORT FOR DATE : 10/05/1994

.

				l	UPAC1	ΥY			(PAC11Y	INDEX	
EIMIE	#	UF	6	MIN	AL_M	AVG%	#	ΩF	EXCESSES	AVIS	INDEX
0000-0100											
0100-0200											
0200-0300											
<u> </u>											
0400-0500											
<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>											
0600-0700											
0700-0800				4		61.76					
<u> </u>				Ŧ		73.82					
0900-1000			•								
1000-1100											
1100-1200											
1200-1300											
1300-1400											
1400-1500											
1500-1600											
1600-1700											
1700-1800											
1800-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				5		67.79					
LIMITS						44.00					34.00

PLANT: YATEU UNIT : 1-3 CURRENT DATE : 10/08/1994 CURRENT TIME : 00:00:11

DAILY EMISSIONS REPORT FOR ... DATE 1 10/07/1994

.

.

		OPAC1	ΤY	- • • • •	DITY INDEX
LIME	# 1);F	6 MEN ALM	AV6%	# OF EXCES	SSES AVE INDEX
0000-0100					
0100-0200					
0200-0300					
<u> </u>					
0400-0500					
&S&&-&6&					
Q6QQ-Q7QQ		1 .	48.14		
U7UU-UBUU					
0800-0900					
<u>4940-1000</u>					
1000-1100					
1100-1200					
1200-1300				•	
1300-1400					
1400-1500					
1500-1600					
1600-1700					
1700-1800					
1800-1900					
1900-2000					
2000-2100					
2100-2200					
2200-2300					
2300-2400					
SUMMARY		1	48-14		
LIMI I'S		-	40.00		34.00

.

RLS1536686

.

RLS1	53	66	8
------	----	----	---

- -

.

、

		OPAC11	fΥ	UPAC117	INDEX
EMIN	# UF 6	MIN ALM	AVG%	# 014 (EXCESSIES	AVH INDEX
QQQQ-Q100		3	49.12		
0100-0200		10	65.37		
`0200-0300		4	65.11		
0300-0400				Ł	35.30
0400-0500					
<u> </u>					
0600-0700					
U7UU-0800					
0800-0900					
U900-1000					,
1000-1100		1	54.75		
1100-1200					
1200-1300					
1300-1400					
1400-1500					
1500-1600					
1600-1700					
1700-1800					
1800-1900					
1900-2000					
2000-2100					
2100-2200					
2200~2300					
2300-2400					
SUMMARY		18	58.59	1	35.30
LIMICS			40.00	-	34.00
			·		

A-6

DAILY EMISSIONS REPORT FOR DATE : 10/12/1994

;

PLANT: YATEB UNIT : 1-3 CURRENT DATE : 10/13/1994 CURRENT TIME : 00:00:12

PLANT: YATEB UNIT: 1-3 CURRENT DATE: 10/14/1994 CURRENT TIME: 00:00:11

- -

DAILY EMISSIONS REPORT FOR DATE : 10/13/1994

				(UPACT	íY.			UPACITY	INDEX	
1 I MIE	ŧ	n:-	6	MIN	HLM.	AVBX	÷	0i?	HEXIDEG/GEG	HVB	INDEX
0000-0100											
0100-0200											
0200-0300											
4300-0400											
0400-0500											
ଏଅଏଏ–ଏରେଏ											
0600-0700											
U100-0800											
0800-0900											
0900-1000				1		60.22					
1000-1100					-			•			
1100-1200											
1200-1300										•	
1300-1400											
1400-1500								•			
1500-1600											
1600-1700											
1700-1800											
1300-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				1		60.22					
LIMITS						44.00					34.00

.

RLS1536688

- -

PLANT: YATEB UNIT: 1-3 UNRRENT DATE: 10/19/1994 UNRRENT TIME: 00:00:11

.

-

DAILY EMISSIONS REPORT FOR DATE : 10/18/1994

				(JPAC1	ΤY			OPACITY	INDEX	
C 1 ME	#	13;-	6	MIN	HLM	AV1374	ŧ	۱.,	EXCENSES		INDEX
0000-0100											
0100-0200											
0200-0300											
ଏଏହାର~ଡ4ଡଡ											
0400-0500											
USUU-0600											
0600-0700											
U/UU-0800											
<u> </u>											
U900-1000								-			
1000-1100											
1100-1200											
1200-1300				' 5		83.82		•			
1300-1400				10		31.13			ĩ		40.09
1400-1500											
1500-1600											
1600-1700											
1700-1500											
1500-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				15		పెద్ది పేటి			ĩ		40.09
ETTML1						40.00			-		34.00

.

RLS1536689

		(IPACI)	Ŷ			GRACITY	INDEX	
TIME	# 1)F 6	MIN ALM	HV15%	÷	0F	EXCENSES	нйю	INDEX
0000-0100								
0100-0200								
0200-0300								
0300-0400								
0400-0500								
U500-0600								
0600-0700		ï	71.31					
0700-0300		6	82.81					
0800-0900								
N900-1000								
1000-1100								
1100-1200								
1200-1300								
1300-1400								
1400-1500	-							
1500-1600								
1600-1700								
1100-1800								
1600-1900								
1900-2000								
2000-2100								
2100-2200								
2200-2300								
ି:ଓଉଡ-2400								
SUNMARY		7	77.06					
LIMCES			41.11					34. ØØ

A-9

- -

•

DAILY EMISSIONS REPORT FOR DATE : 10/19/1994

PLANT: YATES UNIT: 1--3 CURRENT DATE : 10/20/1994 CURRENT TIME : 00:00:12

and the second s

.

.

1-

PLANT: YATES UNIT : 1-3 CURRENT DHIE : 11/12/1994 CURRENT TIME : 00:00:10 DAILY EMISSIONS REPORT FOR DATE : 11/11/1994

.

.

.

	- fi	PACINY	(- <u></u>	**
41 £ 1786-E	응 이번 중 HLN :	,	· 문화되었는 · 문화 · 문	
େଇଡାଇ-ଡାଏଡାର				17 M 12 - 19 MARINA
ି । ଜଣ୍ଡ-ପ୍ରଥେହ 🍐 🐇				
<u>©200-0300</u>				
්රාර්ත-විදිවලි				
ତ୍ୟରତ-ଡ଼ିଶ୍ରେ				
<u> </u>			•	
~~ <i>~~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
ଏ : ସେହା- କିଥିହାର				
ତ୍ରରେଡିକ-ଡେକ୍ଟର୍ଡ				
ବିତ୍ରିପାଳ-1 ହିନ୍ଦ୍ର	i	化合正分量		
1000-1100	• •	61.69		
1100-1200				
1:200-1300				
1300-1400		•		
> 当初第一1 5 5 2				
1999年179日				
1 : 22-12202				
1520-1500				
1900-2000				
- 1992-0-0120				
· · · 아파는 문양성				
1.19 0 - 2 500				
009-8408 				
L.B.H.F.RY		8-2 - 1 - X		
PU 1991 1 4 1 5		÷.4		مراجع المحمول

.

.

÷∹...A آم ای جنور

. •

· •

PLANT: YATES UNIT: 1-3 UTRENT DATE: 11/14/1994 UTRENT TIME: 00:00:15

-

. -

.

DATEY ENCOSTING REPORT FOR DATE : II/(3/1994

		and a star of the	
····································			
ిర్గామ ం విజ ోజాలలు ఎందర్గా ప్రాథింగి			

이는 영국 위험 일 4월 1935	•.	
	4	

.

RLS1536692

PLANT: YATES UNIT: 1-3 CURRENT DATE: 11/28/1994 CURRENT TIME: 11:45:23

.

، المان جمعند،

.

DEMAND FOR DAILY EMISSIONS REPORT FOR DATE : 11/27/1994

•

. .

				(JPACI	ТҮ			OPACITY	INDEX	
TIME	#	OF	6	MIN	ALM	AVG%	#	OF	EXCESSES	AVG	INDEX
&&&&=											
0100-0200											
&20 &- &3&&											
<u> </u>											
0400~0500											
.0500-0600											
Ø6ØØ~Ø7ØØ											
Q7QQ-Q8QQ											
ଦ୍ୟରଦ~ରଚର୍ଦ୍ଦ											
<u>0900-1000</u>				З		71.34					
1000-1100				10		72.99					
1100-1200				10		77.07			1		45.48
1200-1300				10		82.60					
1300-1400				5		53.85	•				
1400-1500											
1500-1600									1		40.11
1600-1700											
1700-1800											
1800-1900											
1900-2000				5		46.60					
2000-2100											
2100-2200											
2200-2300											
2300-2400				1		55.41			•		
SUMMARY				41		65.69			2		42.79
LIMITS						40.00					34.00

PLANTS YATEB UNITS 1-3 CURRENT DATE : 11/29/1994 CURRENT TIME : 00:00:15

DAILY EMISSIONS REPORT FOR DATE : 11/28/1994

..

			UPAC:1	τv	0F-AC1TY 1	NATE V
TIME	# 1	ar s	MIN ALM		# OF EXCESSES	AVG INDEX
0000-0100			1	J4. 64		
0100-0200						
0200-0300						
4.300-0400						
0400-0500						
0500-0600						
0600-0700						
U700-0800						
0800-0900					·	•
0900-1000						
1000-1100						
1100-1200						
1200-1300				· .		
1.300-1400	·					
1400-1500						
1500-1600						
1600-1700						
1700-1800						
1800-1900						
1900-2000						
2000-2100						
2100-2200						
2200~2300						
2300-2400						
SUMMARY			1	54.64		
LIMITS			•	410.1010		34.00

RLS1536694

.

_---<u>-</u>---

PLANT: YATE8 UNIT: 1-3 CURRENT DATE: 12/01/1994 CURRENT TIME: 00:00:15

DAILY EMISSIONS REPORT FOR DATE : 11/30/1994

				i		t.			OPACITY	INDEX	
TIME	#	OF	6	MIN	ALM	AVG%	÷	OF	EXCESSES	AVG	INDEX
0000-0100											
0100-0200											
<u>ଜଟଉଡ</u> -ଡ୍ରଡ୍ଡ											
0300-0400							•				
<u> ଜ୍ୟତତ</u> -ଡ଼ିଇଡ଼ି											
<u> </u>											
<u>ଜିତେତ</u> -ଡି7ିତ୍ତ											
<u>ଡ7ଡଡ</u> –ଡ6ଡଡ											
ଉଚ୍ଚଉଳ-ଡ଼େଇର				1		46.16					
0900-1000											
1000-1100											
1100-1200											
1200-1300											
1300-1400								-			
1400-1300											
1300-1600											
1600-1700											
1700-1800											
1800-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				í		46.16					
LIMITS						40.00					34.00

PLANT: YATES UNIT: 1-3 CARRENT DATE: 12717/1994 CARRENT TIME: 000:000:11

THAT Y FRISSIONS REPORT FOR

347F 1 1273673994

٤.

.

.

• •

.

OPACETY GPACITY INVEX # OF 6 MON ALM AV6% # UP FACESSES HVG THDEX 1124 99999° 9199 **6100-0200** 67-66-6366 6366-6466 94999-91,699 65,66-6666 9699-9799 97499-98999 4844- 4944 5 55.63 -4004-1444 1000-1100 1100-1200 1200-1300 1300-1400 1400-1000 1100-1600 . 1699-1799 1700-1800 3 616161- 3 96161 1999-29999 214949-2134949 21444-2244 2299-2399 2300-2400 SUMMARY 51.63 1 < 34.99 LIMPS: 49.00

RLS1536696

A-15

Appendix B

Quarterly Operational Monitoring Report for the Fourth Quarter of 1994

QUARTERLY OPERATION MONITORING REPORT

•

Georgia Power Company Plant Yates P.O. Box 718 Newnan, Georgia 30264

. ••

.;

From <u>10-01-94</u> To: <u>12-31-94</u>

Permil Number: GA0001473

Discharge Location: 01A - Condenser Cooling Water Units 1-5							
Frequency of Analysis: 1/wk							

Location Type Sample Frequency Parameter	Intake In. Situ. 1Wk Temp. ⁰ F	Mixing Zone In. Situ. 1/Wk Temp. ^O F	N/A T 1/Wk Temp. ^O F	Condenser Grab TRC mg/L	Condenser Grab Time of TRC Release
PCS Code Limits	00011 N/A	00011 Max.90	00018 Max. 5	50060 Inst. Max. 0.2	81400 Max. 120 Min.
DATE				Note	Note
10-06-94	67	68	1	1	T
10-13-94	61	61	0		
10-18-94	63	63	0		
10-24-94	66	67	1		
11-02-94	61	61	0	- <u>}</u>	
11-07-94	65	65	0		
11-14-94	61	61	0	1	
11-22-94	62	64	2		
11-30-94	54	55	1		
12-06-94	60	60	0		
12-15-94	54	54	0	1	1
12-19-94	54	54	0		
12-28-94	51	52	11		
					<u> </u>
			<u> </u>		<u> </u>
Note: No chlorination were	performed on discharge (01A this quarter.	·		· · · · · · · · · · · · · · · · · · ·
			İ	<u></u>	
j j		1			
Month of: October					
Month of: October No. of Samples	4	4	4		
	<u> </u>	4 65	4		
No. of Samples		65 68	.5		
No. of Samples Average Value	64	65	.5		
No. of Samples Average Value Max. Value	64 67	65 68	.5		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded	64 67 61	65 68 61	.5 1 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November	64 67 61 0	65 68 61 0	.5 1 0 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples	64 67 61 0	65 58 61 0 	5 1 0 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value	64 67 61 0 	65 68 61 0 	.5 1 0 0 5 .6		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value	64 67 61 0 	65 68 61 0 	5 1 0 0 5 .6 2		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value	64 67 61 0 	65 68 61 0 	.5 1 0 0 5 .6		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value Max. Value Limits Exceeded	64 67 61 0 	65 68 61 0 5 61 65 65 55	.5 1 0 0 5 .6 2 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value Limits Exceeded Month of: December	64 67 61 0 5 61 65 54 0	65 68 61 0 	.5 1 0 0 5 .6 2 0 0 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Min. Value Limits Exceeded Month of: December No. of Samples	64 67 61 0 	65 68 61 0 	.5 1 0 0 5 .6 2 0 0 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value Max. Value Min. Value Min. Value Limits Exceeded Month of: December No. of Samples Average Value	64 67 61 0 	65 68 61 0 5 61 65 55 0 4 55	.5 1 0 0 5 .6 2 0 0 0 4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: November No. of Samples Average Value Min. Value Limits Exceeded Month of: December No. of Samples	64 67 61 0 	65 68 61 0 	.5 1 0 0 5 .6 2 0 0 0		

Page 1 of 6

QUARTERLY OPERATION MONITORING REPORT

Georgia Power Company Plant Yates P.O. Box 718 Newnan, Georgia 30264

٠

...

From: <u>10-01-94</u> To: <u>12-31-94</u>

Permit Number: GA000147

Discharge Location: 018 - Ash Transport Water

Location Type Sample Frequency Parameter PCS Code Limits	Ash Transport Water Grab 2/Month Suspended Solids (mg/L) 00530 Avg. 30 Max 100	Ash Transport Water Grab 2/Month Oil & Grease (mgA.) 00556 Avg.15 Max 20	Final Discharge Grab 2/Month PH {PH Units) 00400 Min. 6.0 Max, 9.0
Clinics	Avg. Do Wax 100	ANG. 13 MAL 20	Mar. 0.0 Widt, 5.0
DATE			
10-03-94	3	0	6.87
10-17-94	2	0	7.01
11-07-94	2	0	6.60
11-21-94	10	0	6.74
12-05-94	5	00	6.88
12-19-94	0	00	7.19
	<u> </u>		<u></u>
<u> </u>	<u> </u>	<u> </u>	<u> </u>
	<u> </u>	<u> </u>	<u> </u>
			
······································	}	}	<u></u>
<u> </u>	<u>}</u>	<u> </u>	<u>}</u>
<u> </u>			{
		<u> </u>	{
}	<u>}</u>	}	<u>}</u>
<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Month ol: October			
No. of Samples	2	2	2
Average Value	2.5	0	<u> </u>
Max. Value	33	0	7.01
Min. Value	2	0	6.87
Limits Exceeded	0	0	0
		<u> </u>	<u> </u>
Month of: November No. of Samples	2		2
No. 01 Samples	5	2	<u> </u>
Max. Value	10	0	6.74
Min, Value	2	0	6.60
Limits Exceeded		<u> </u>	0.00
			<u> </u>
Month of: December		i	
No. of Samples	2	2	2
Average Value	2.5	0	
Max, Value	5	0	7.19
Min. Value	0	0	6.88
Limits Exceeded	0	0	0

Page 4 of 6

QUARTERLY OPERATION MONITORING REPORT

Georgia Power Company Plant Yates P.O. Box 718 Newnan, Georgia 30264

From:	10-01-94	
To:	12-31-94	

Permit Number: GA0001473

There were no discharges from the following outfalls during the quarter covered by this report:

01L	Building Sump Overflow
01M	Building Sump Overflow
01N	Building Sump Overflow
02	Ash Pond Emergency Overflow
04	Low Volume Waste Sump
05	Coal Pile Runoff Emergency Overflow

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

M. J. Knowles Plant Manager

Attachment

Page 5 of 6

Appendix C

•

,

Groundwater Monitoring Report for the Third Quarter of 1994

i -

DEMONSTRATION OF INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS

Plant Yates

Environmental Monitoring Program Report: Groundwater Monitoring for the Third Quarter of 1994

(Final)

DOE DE-FC22-90PC89650 SCS C-90-002284

Prepared for:

Southern Company Services, Inc. P.O. Box 2625 600 North 18th Street Birmingham, Alabama 35291-1195

Prepared by:

Radian International LLC 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

Cleared by DOE Patent Counsel on September 19, 1995.

Legal Notice

This report was prepared by Radian International LLC for Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc., nor any of its subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either:

- 1. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the process disclosed in this report may not infringe privately-owned rights; or
- 2. Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

Table of Contents

1.0	Intro	duction
	1.1	Project Summary
	1.2	Purpose and Scope of Groundwater Monitoring1
	1.3	Report Contents
2.0	Samj	bling and Analytical Methods5
	2.1	Sampling Methods
	2.2	Analytical Procedures
3.0	Sum	mary of Results
4.0	Sum	mary of QA/QC Activities
Арр	endix A	A: Historical Monitoring Data for Selected Parameters A-1
Арр	endix B	B: QA/QC Results

List of Figures

1	Location of Groundwater Monitoring Wells
2	Historical Data for Representative Species from Well GWA-1 (Upgradient)
3 .	Historical Data for Representative Species from Well GWC-2 (Downgradient) 14
4	Historical Data for Representative Species from Well GWC-4 (Downgradient) 15

.

List of Tables

1	EMP Groundwater Monitoring Parameters
2	Summary of Groundwater Samples Collected at Plant Yates on August 31, 19946
3	Sample Containers, Preservation Method, and Maximum Holding Times
4	Analytical Methods
5	Results of Groundwater Monitoring Conducted August 31, 1994 (Third Quarter 1994)
6	Results for Duplicate Samples—3rd Quarter 1994

1.0 Introduction

This report summarizes the results of groundwater monitoring performed during the third calendar quarter of 1994 as part of the environmental monitoring program (EMP) for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia.

1.1 Project Summary

The purpose of this ICCT project is to demonstrate the use of the Chiyoda Thoroughbred-121 flue gas desulfurization process as a means of reducing SO_2 and particulate emissions from pulverized-coal utility boilers that use medium-sulfur coal. This project is also designed to demonstrate the lower cost and higher reliability of the CT-121 process compared to conventional wet limestone FGD processes.

The demonstration project at Plant Yates consists of four distinct environmental test periods:

- Period 0: Site Preparation, Construction, and Startup of the Demonstration Project (including background groundwater monitoring [29 months]);
- Period 1: Baseline Testing at Low Particulate Loading—ESP In Service (12 months);
- Period 2: Testing at High Particulate Loading—ESP Detuned or Out of Service (12 months); and
- Period 3: Post Demonstration Groundwater Testing and Gypsum Byproduct Evaluation.

Groundwater monitoring was initiated in Period 0 and will continue through Period 3.

1.2 Purpose and Scope of Groundwater Monitoring

The CT-121 process produces gypsum, which is being disposed of in an on-site stacking area, where the solids are concentrated as they are allowed to settle, dewater, and dry. The gypsum and gypsum/fly ash stacking areas are lined with synthetic liners to minimize the

potential for adverse impacts on the groundwater. Requirements for the liners, leachate collection system, and groundwater monitoring are specified in the permit issued by the Georgia Department of Natural Resources (DNR). One requirement is the regular monitoring of groundwater before, during, and for two years after the demonstration program. The purpose of this monitoring is to demonstrate that the gypsum stacking area can be operated in an environmentally benign and acceptable manner.

In 1990, five groundwater monitoring wells were installed in the vicinity of the proposed gypsum stacking area. These wells were used to monitor baseline groundwater quality prior to construction of the stacking area. Monitoring was conducted every two months from September 1990 through July 1991. Table 1 is a summary of the parameters that were monitored during this period. The results of this monitoring activity were summarized in the report "Environmental Monitoring Program Report of Preconstruction Monitoring: 1990-1991 Background Water Quality."

Following the preconstruction monitoring period, and as a DNR permit requirement, two additional monitoring wells were installed in 1992. The locations of all seven monitoring wells are shown in Figure 1. Because of a delay in the commencement of Phase 1 testing, an additional round of preoperational groundwater monitoring was conducted on September 3-4 and October 14, 1992. The results from this monitoring effort were presented in the report "Interim Data Report of Preoperational Groundwater Monitoring: September 3-4 and October 14, 1992."

Operational-phase groundwater monitoring, which is performed on a quarterly basis, was initiated in the fourth quarter of 1992. Monitoring is conducted for the suite of parameters shown previously in Table 1. Samples are analyzed each quarter for all parameters shown except for radionuclides, which are monitored semiannually. Beginning in the second quarter of 1994, monitoring is also being performed quarterly for total organic halides (TOX) and annually for volatile organics (VOCs). These parameters have been added at the request of the Environmental Protection Division of the DNR.

1.3 Report Contents

This report presents the results of quarterly operational-phase groundwater monitoring for the third calendar quarter of 1994. The groundwater monitoring wells were sampled on August 31, 1994.

Bottle Label	Containers'	Parameter	Preservation Method	Maximum Holding Time (days)
Total Organic Carbon	500-mL Amber Glass	Total Organic Carbon	H ₂ SO ₄ pH<2	28
Anions/TDS	1-L Plastic	Bromide	4 °C	28
		Chloride	4 °C	28
		Fluoride	4 °C	28
		Nitrate-Nitrite	4`°C	28
		Sulfate	4 °C	28
		Total Dissolved Solids	4 °C	7
Total Organic Halogens	250-mL Amber Glass, no headspace	Total Organic Halogens	H,SO4 pH<2	28
VOCs	(2) 40-mL VOA Vials	Volatile Organics	HCl pH<2	14
Metals	1-L Plastic	Trace Metals	Filtered On Site Ultrex II HNO ₃ pH<2	180
Radioactivity	(3) 1-L Plastic	Radium 226, Radium 228, Gross Alpha, Gross Beta, Gross Gamma	Filtered On Site Ultrex II HNO, pH<2	180

Table 3. Sample Containers, Preservation Method, and Maximum Holding Times

^a Sample containers supplied by either I-Chem or Eagle Picher.

2.2 Analytical Procedures

The analytical methods used in this program are listed in Table 4. There were no deviations from these methods.

3.0 Summary of Results

The results of the third-quarter 1994 groundwater monitoring are presented in Table 5. The concentrations of all of the monitored dissolved constituents in the groundwater near the gypsum stacking area continue to be low.

To help determine whether the material in the gypsum stacking area is having an impact on groundwater quality, the monitoring data for a selected number of representative species from all of the monitoring rounds conducted to date were tabulated and examined in detail. The representative species selected are those present in appreciable concentrations in the gypsum slurry, including the major cations and anions (i.e., calcium, magnesium, chlorine, and sulfate), as well as several other indicator parameters such as pH, TDS, conductivity, and alkalinity. The complete set of historical data for these species is provided in Appendix A. Concentrations of several selected species are shown as functions of time in Figures 2 through 4. Data are presented for the upgradient well, GWA-1, and two downgradient wells, GWC-2 and GWC-4. The locations of these wells were shown previously in Figure 1. Samples were not obtained this quarter from either the upgradient well, GWA-1 or downgradient well GWC-6. Well GWC-6 has been nonproductive since groundwater monitoring began. Well GWA-1 has been nonproductive for four straight quarters.

For well GWC-2, the measured concentrations for all monitored parameters were generally close to the historically observed concentrations of these species. For well GWC-4, the trend of increasing concentrations of chloride, magnesium, and calcium that began in the 4th quarter of 1993 continued this quarter. The observed increases may be due to the continuing effects of a breach in the gypsum pond dike that occurred on July 24, 1993, in the vicinity of this well. The contaminant levels in the groundwater at this location are still very low. For example, the latest chloride concentration is still less than 1/10th the maximum concentration recommended in the National Secondary Drinking Water Standards (i.e., 20.8 mg/L vs. 250 mg/L).

Parameter	Technique	Reference
pH	Potentiometry	EPA 150.1
Conductivity	Specific Conductance	EPA 120.1
Temperature	Temperature Probe	EPA 170.1
Eh	Electrometry	ASTM D1498
Alkalinity	Titrimetric or Colorimetric	EPA 310.1 or 310.2
Bromide	Ion Chromatography	EPA 300
Chloride	Ion Chromatography	EPA 300
Total Organic Carbon	Combustion/IR	EPA 415.1
Total Organic Halo- gens	Carbon Adsorption/Combustion/ Electrolytic Titration	SW-846 Method 9020A
VOCs	GC/MS	SW-846 Method 8260
Fluoride	SIE	EPA 340.2
Nitrate/Nitrite	Colorimetry	EPA 353.1
Sulfate	Ion Chromatography	EPA 300
Total Dissolved Solids	Filtration/Evaporation/Gravimetry	EPA 160.2
Mercury	On-site Filtration/Cold Vapor AA	EPA 245.1
Trace Elements	On-site Filtration/AA and ICP-AES	EPA 200.7, 7421 (Cr), 7060 (As), 7421 (Pb), 7041 (Sb), 7740 (Se), and 7841 (Tl)
Radium 226 and 228	Proportional Counter	ASTM D2460
Gross Alpha	Proportional Counter	ASTM D1943
Gross Beta	Proportional Counter	ASTM D1890
Gross Gamma	Gamma Ray Spectrometer	ASTM D2459

Table 4. Analytical Methods

Legend:

AA = Atomic absorption spectrophotometry;

SIE = Specific ion electrode;

- ICP-AES = Inductively coupled plasma-atomic emission spectrometry; and
 - IR = Infrared detection.
- GC/MS = Gas Chromatography/Mass Spectroscopy

References:

EPA "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-020, revised March 1983. ASTM = American Society for Testing and Material, Annual Book of ASTM Standards.

SW-846 "Test Methods for Evaluating Solid Waste," SW-846, 3rd Ed., November 1986.

Hd	GWA-1-15-12	GWC-1-15-1	GWC-2-15-1	GWC-3-15-1	GWC-4-15-1	<u>GWC-5-15-1</u>
		6.09	5.63	5.41	5.10	5.53
Conductivity (µS/cm)		68	60	30	108	43
Temperature (°C)		18.0	18.4	19.0	18.1	18.4
Eh (mV)		365	350	305	440	372
Alkalinity (mg/L CaCO,)		25	7	pLL	5	13
Total Dissolved Solids (mg/L)		64	60	39°	93	61
Bromide (mg/L)		<0.0226	<0.0226	<0.0226	<0.0226	<0.0226
Chloride (mg/L)		2.71	3.92	2.91	20.8	2.67
Total Organic Carbon (mg/L)		<0.357	<0.357	<0.357	1.42 ^c	<0.357
Total Organic Halogens (μg/L)		<11.7	<11.7	<11.7	12.7°	11.9°
Fluoride (mg/L)		0.0596 ^b	0.0402 ^b	0.0424 ^b	0.0334 ^b	0.0284 ^b
Nitrate-Nitrite (mg/L as N)		0.459 ^b	0.810 ^b	0.366 ^b	1.80 ^b	0.167 ^b
Sulfate (mg/L)		1.64	6.73	<0.0471	4.83	6.68
Radium 226 and 228 (pCi/L)		0.12 ± 0.048 -0.56 ± 0.68	0.14 ± 0.052 -0.83 ± 0.72	0.10 ± 0.046 -0.091 ± 0.70	0.12 ± 0.055 0.92 ± 0.89	0.10 ± 0.046 0.23 ± 0.72
Gross Alpha (pCi/L)		0.64 ± 0.51	-0.13 ± 0.33	0.08 ± 0.30	0.14 ± 0.36	1.9 ± 0.7
Gross Beta (pCi/L)		1.8 ± 0.8	1.5 ±0.7	1.2 ± 0.7	0.67 ± 0.72	3.6 ± 0.9
Gross Gamma (pCi/L)			· · · · ·			
Ac-227		NR	NR	NR	NR	NR
Ac-228		NR	NR	NR	NR	NR
Bi-212		<110	06>	<92	<100	<110
Bi-214		57 ± 32	52 ± 28	50 ± 34	77 ± 32	<37
Co-60		<10	<12	<16	<13	<15
Cs-134		4</td <td><11</td> <td><15</td> <td><12</td> <td><16</td>	<11	<15	<12	<16
Cs-137		<13	<12	<13	<14	<13
K-40		<170	<120	<220	<210	<210

Table 5. Results of Groundwater Monitoring Conducted August 31, 1994 (Third Quarter 1994)

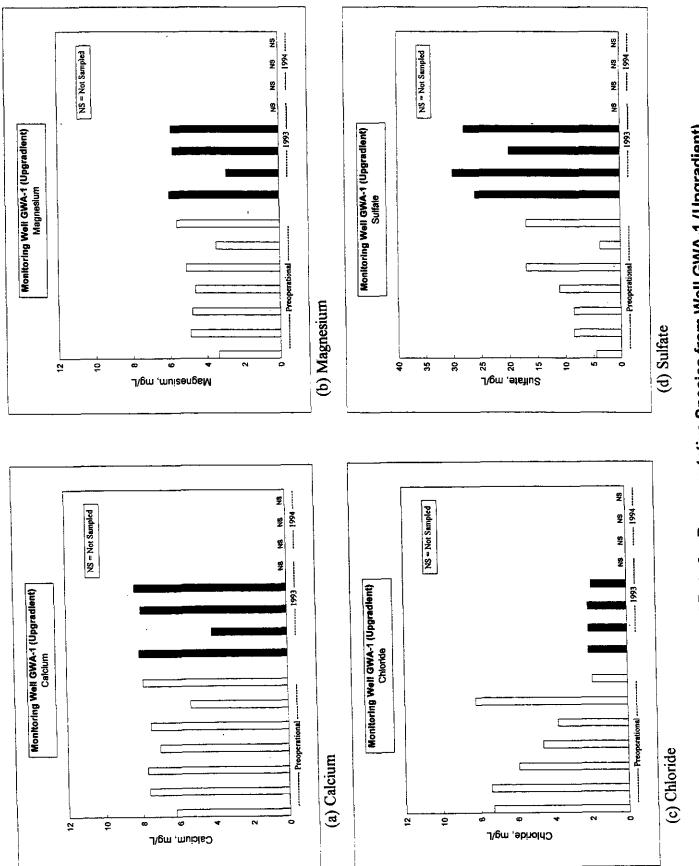

		Table 5 (Table 5 (continued)			
		CWC-1-14-1	GWC-2-15-1	GWC-3-15-1	GWC-4-15-1	<u>GWC-5-15-1</u>
Parameter	T-T-CI-T-RM-1	ND	AN	NR	NR	NR
Pb-211		VIN		01	2	<19
Pb-212		<20	¢l>	212	VC - 07	,
Ph-214		86 ± 27	57 ± 23	33 ± 27	08±30	7
Do 273		<62	<54	<61	<67	<64
N4-247		<290	<230	<280	<270	<290
Ka-220		<81	<63	<87	<83	-77
Kn-219		<78	<61	<74	<77	<78
177-11		<560	<840	<940	<1100	<940
1h-228		001×	<160	<170	<200	<180
11-231		065>	<400	<480	<460	<430
Th-234		45	38	⊲35	<47	<44
TI-208		<0.0	<13	<16	<16	<18
U-235		ON N	NR	NR	NR	NR
U-238		VN		0.00610		<0.00519
Silver (mg/L)		<0.00519	610000>	61CUU.0>	61000	(1000)
Aliminim (mo/L)		<0.0523	<0.0523	<0.0523	<0.0523	<0.0523
		<0.00214	<0.00214	<0.00214	<0.00214	<0.00214
Arsenic (IIB/L/)		<0.0176	<0.0176	<0.0176	0.0361°	<0.0176
Boron (mg/L)		0.0000	0.00952	0.00693	0.0178	0.00693
Barium (mg/L)		<0.00051	<0.00051	<0.00051	<0.00051	<0.00051
		<0.0132	<0.0132	<0.0132	<0.0132	<0.0132
		5.00	2.11 ^b	0.328 ^b	2.73 ^b	1.26 ^b
Calcium (mg/L)		0.00533°	<0.00386	<0.00386	<0.00386	<0.00386
Cadmium (mg/L)		<0.0007	<0.00407	<0.00407	<0.00407	<0.00407
Cobalt (mg/L)		<0.00916	<0.00916	<0.00916	<0.00916	<0.00916
Copper (mg/L)		<0.00524	0.0102	0.00653	<0.00524	0.00562°
Chromium (mg/L)		<0.00013	<0.000033	<0.000033	<0.000033	<0.000033
Mercury (mg/L)						

		Table 5	Table 5 (continued)			
Parameter	GWA-1-15-1*	GWC-1-15-1	GWC-2-15-1	GWC-3-15-1	GWC-4-15-1	GWC-5-15-1
Iron (mg/L)		0.0203°	0.0125	<0.00452	0.0126°	0.0419
Potassium (mg/L)		<0.822	<0.822	<0.822	<0.822	<0.822
Lithium (mg/L)		<0.00543	<0.00543	<0.00543	<0.00543	<0.00543
Magnesium (mg/L)		3.70	2.03	1.00	7.32	1.46
Manganese (mg/L)		<0.00155	0.0102	0.00289	0.194	0.00436°
Molybdenum (mg/L)		<0.00739	<0.00739	<0.00739	<0.00739	<0.00739
Sodium (mg/L)		4.32	7.17	4.17	5.80	5.38
Nickel (mg/L)		<0.0141	0.0455°	<0.0141	<0.0141	<0.0141
Phosphorus (mg/L)		<0.0610	<0.0610	<0.0610	<0.0610	<0.0610
Lead (mg/L)		<0.00205	<0.00205	0.0140	<0.00205	<0.00205
Sulfur (mg/L)		0.344°	2.18	<0.175	1.38	2.29
Antimony (mg/L)		<0.00146	<0.00146	<0.00146	<0.00146	<0.00146
Selenium (mg/L)		<0.000592	0.00242°	<0.000592	0.000930	0.000650
Silicon (mg/L)		11.8	12.9	9.15	16.6	10.5
Tin (mg/L)		<0.0145	0.0146°	<0.0145	<0.0145	0.0146°
Strontium (mg/L)		0.0157	0.0124	0.00286°	0.0210	0.0114
Tellurium (mg/L)		<0.0317	<0.0317	0.0405°	<0.0317	<0.0317
Titanium (mg/L)		<0.00159	<0.00159	0.00164°	0.00188°	<0.00159
Thallium (mg/L)		<0.00185	<0.00185	<0.00185	<0.00185	<0.00185
Uranium (mg/L)		<0.199	<0.199	<0.199	<0.199	<0.199
Vanadium (mg/L)		<0.00454	<0.00454	<0.00454	<0.00454	<0.00454
Tungsten (mg/L)		<0.0408	<0.0408	<0.0408	<0.0408	<0.0408
Zinc (mg/L)		0.0111	0.0137°	0.00569°	0.0134°	0.0138°
Well was dry; no samples collected.				1		

.

Table 5 (continued)

Well was dry; no samples collected.
 Detected in the method blank.
 Less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.
 Less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.
 Less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.
 Result is questionable; concentration of reagent used in titration is unclear.
 NR = Not reported.

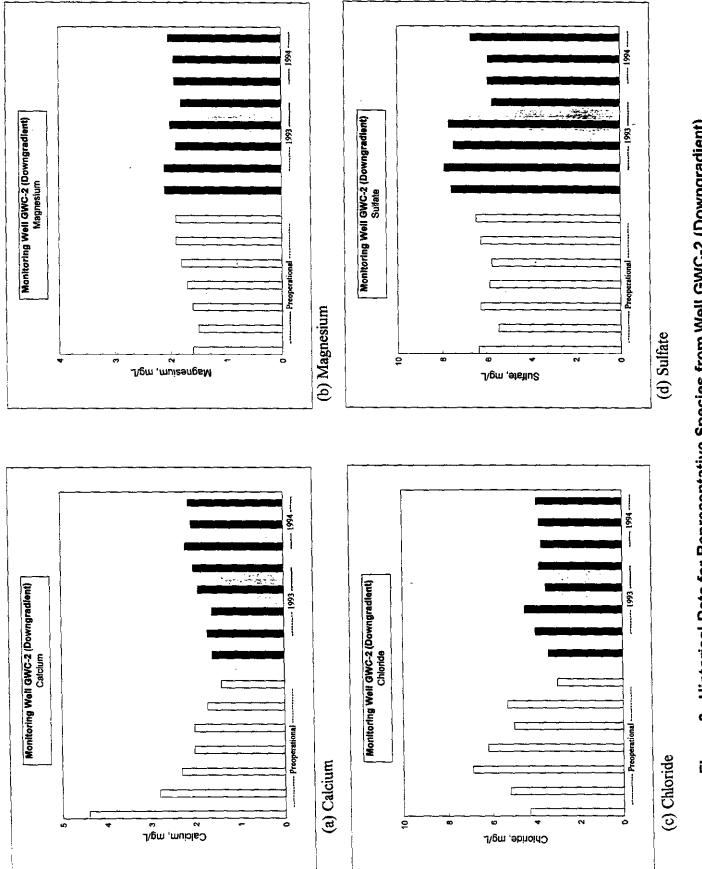
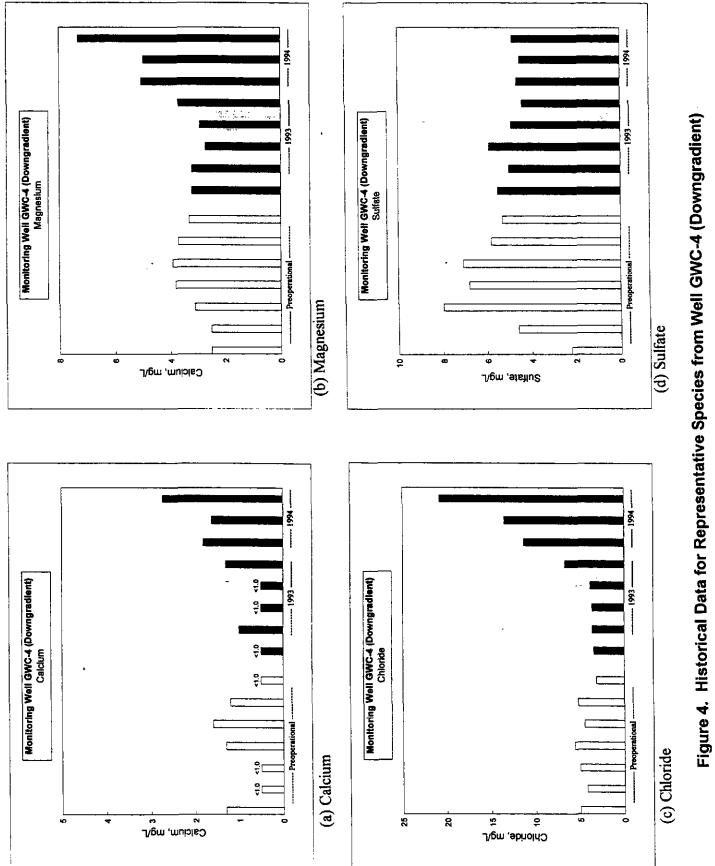



Figure 3. Historical Data for Representative Species from Well GWC-2 (Downgradient)

4.0 Summary of QA/QC Activities

A number of QA/QC activities are being performed, as specified in the project's EMP, to ensure that the data collected meet project objectives. These include the following:

- Groundwater samples were split for independent analysis by a laboratory selected by SCS.
- Established sampling and analytical methods were specified and used. All samples were analyzed within the specified holding times, as outlined in Section 2. There were no deviations from the specified methods during this quarter's monitoring effort.
- Chain-of-custody procedures established in the test plan for this project were observed.
- In the laboratory, method blanks, control samples, and matrix spikes were analyzed in conjunction with the sample analyses, following recognized good laboratory practice. Specified recovery limits (typically 80 to 120%) were met for all analytes in the laboratory control samples and matrix spikes.
- Duplicate samples were obtained in the field and analyzed for all parameters.
 Replicate analyses were performed for a smaller number of parameters.

The results of the analysis of field and laboratory duplicate samples are summarized in Table 6 for those parameters measured above the detection limit. Complete results are provided in Appendix B. Differences in the duplicate analyses results were small for most species (i.e., less than 10%). For nitrate-nitrite and calcium, the percentage differences between the sample and the field duplicate were -32% and 64%, respectively, but both analytes were detected in method blanks. For strontium and zinc, the percentage differences between the sample and the field duplicate were 50% and 190%, respectively, but for both analytes the results were less than five times the method detection limit, where less accurate results can be expected. For barium the result for the field duplicate was about an order of magnitude higher than the result for the sample, making the results for this analyte somewhat suspect.

Parameter	Units	Sample GWC-3-15-1	Field Duplicate GWC-3-15-2	% Diff."	Duplicate Analysis GWC-3-15-2	% RPD [®]	Spec. Limit
Total Dissolved Solids	mg/L	39.0	42.0	7.7	40.0	4.9	15
Chloride	mg/L	2.91	2.82	-3.1	2.82	0.0	20
Fluoride	mg/L	0.0424°	0.0390°	-8.0			
Nitrate-Nitrite as N	mg/L	0.366°	0.249°	-32	0.256°	2.6	20
Total Organic Halides	μ <u>g/</u> L	<11.7	_15.1 ^d	NC	12.0 ^d	23	20
Aluminum	mg/L	<0.0523	0.147 ^d	NC			
Barium	mg/L	0.00693	0.0715	930			
Calcium	mg/L	0.328°	0.539°	64			
Copper	mg/L	<0.00916	<0.00916	NC			
Iron	mg/L	<0.00452	0.227	NC			
Magnesium	mg/L	1.00	1.07	7.0			
Manganese	mg/L	0.00289 ^d	0.00300 ^d	3.8			
Sodium	mg/L	4.17	_ 4.61	11			
Lead	mg/L	0.0140	<0.00205	NC			
Silicon	mg/L	9.15	9.53	4.2			
Strontium	mg/L	0.00286 ^d	0.00429 ^d	50			
Tellurium	mg/L	0.0405 ^d	<0.0317	NC			
Titanium	mg/L	0.00164 ^d	0.00166 ⁴	1.2			
Zinc	mg/L	0.00569 ^d	0.0166 ^d	190			

Table 6. Results for Duplicate Samples-3rd Quarter 1994

,

* % Difference = (GWC-3-15-2 - GWC-3-15-1)/GWC-3-15-1 x 100%

^b RPD = Relative Percent Difference, defined as follows:

 $RPD = \frac{(Larger Value - Smaller Value)}{Larger Value + Smaller Value)/2} \times 100\%.$

° Detected in the method blank.

^d Value is less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.

Appendix A

Historical Monitoring Data for Selected Parameters

			Baselii	aseline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
Well: GWA-1 (Well: GWA-1 (Formerly CW-1)										
pH	5.86	6.27	5.6	6.7	6.05	5.94	6.4	5.7	6.82	6.1	5.9
Conductivity	98	114	112	121	104	85	116	101	128	100	011
Alkalinity	15.6	22.3	25.8	27.1	25	16.4	35.4	22.7	28	27	24.8
TDS	94	87	86	84	06	<i>LL</i>	66	011	011	116	66
Chloride	7.3	7.4	5.9	4.6	3.8	8.2	1.9	2.1	2.1	2.1	6.1
Sulfate	4.5	8.5	8.5	11	17	3.7	17	26	30	20	28
Calcium	6.2	7.6	1.1	7	7.5	5.3	9.7	8.1	4.1	8.0	8.3
Magnesium	3.4	4.9	4.8	4.6	5.1	3.5	5.6	6.0	2.9	5.8	5.9
Sodium	4.2	4.8	4.9	4.3	4,4	3.8	4.1	4.2	4.0	4.4	4.3
Silicon	9.8	11	14	16	17	9.6	15	17	11	18	17
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94	Round 14 21-22 Jun 94	Round 15 31 Aug 94							
Well: GWA-1 ((Formerly CW	Well: GWA-1 (Formerly CW-1) (Continued)									
Hd	SN	SN	NS	SN							
Conductivity	NS	SN	NS	SN							
Alkalinity	NS	SN	NS	SN							
TDS	SN	NS	NS	NS							
Chloride	SN	NS	NS	NS							
Sulfate	SN	SN	NS	SN							
Calcium	SN	NS	NS	SN							
Magnesium	NS	SN	NS	NS							
Sodium	NS	NS	NS	NS			ľ				
Silicon	SN	SN	NS	NS							

Table A-1. Historical Monitoring Data for Selected Parameters

					able A-1	(continued)	ed)				
			Basel	Baseline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sen 92	Round 8	Round 9	Round 10	Round 11
Well: GWC-1 (Formerly CW-2)	(Formerly CW	-2)							CC IPINI TC-00	54 July 25	<u> 43-44 Oep 93</u>
Hd	60.9	5.79	5.62	5.93	6.04	5.96	6.1	4.5	5 83	60.8	0.7
Conductivity	81	70	72	8	63	66	78	57	6	57	0.U
Alkalinity	21.7	22.9	24.4	22.1	20.5	25.8	27.8	23.3	22.5	176	10
TDS	81	51	59	52	48	64	2	89	E4	147	C. 17
Chloride	3.5	2.8	3.1	3.4	2.8	2.5	2.5	2.6	2.6	2,6	ر ۲
Sulfate	7.6	Ş	2.8	<0.05	1.2	1.5	3.2	3.3	2.2	Š	36
Calcium	3.9	3.6	3.8	3.2	3.4	3.6	4.3	4.0			0.7
Magnesium	2.3	2.5	2.8	2.2	2.4	2.5	32	3.0	5,5	1.6	4.1
Sodium	5.9	5.2	4.3	4.1	4.2	4,1	4.0	40	40	404	0.0
Silicon	6	9	9.2	=	†	=	=	5		2	0.0
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94	Round 14 21-22 Jun 94	Round 15 31 Aug 94					2	71	71
Well: GWC-1 (Formerly CW-2) (Continued)	Formerly CW-	2) (Continued)									
Hd	6.1	5.89	5.91	60.9							
Conductivity	74	61	99	89							T
Alkalinity	29.9	25	30.1	25							
TDS	22	66	56	64						\uparrow	Ī
Chloride	3.5	2.43	2.77	2.71							
Sulfate	3.3	1.75	1.77	1.64							
Calcium	5.1	4.72	4.65	5.00							
Magnesium	3.7	3.14	3.39	3.70			ł				
Sodium	4.3	4.12	4,16	4.32					- 		
Silicon	12.7	6.11	9.11	11.8							

Table A-1 (continued)

				19	ble A-1	lable A-1 (continued)	6d)				
			Baselin	Baseline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
Well: GWC-2 (Formerly CW-3)	Formerly CW-	-3)									
Hq	5.64	5.6	5.04	5.5	4.97	5.65	5.5	4.6	5.29	5.4	5.6
Conductivity	76	69	64	66	33	71	66	56	67	56	49
Afkalinity	23.5	19.3	15.2	16.9	12.2	17.5	18.2	17.3	12.5	14.1	15.9
TDS	91	50	55	55	63	65	62	11	89	11	60
Chloride	4.3	5.2	6.9	6.2	5	5.3	3.0	3.4	4.0	4.5	3.5
Sulfate	6.4	5.5	6.3	5.9	5.8	6.3	6.5	7.6	67	2.5	<i>L.T</i>
Calcium	4.4	2.8	2.3	2	2	1.7	1.4	1.6	1.7	1.6	6'1
Magnesium	1.6	1.5	1.6	1.7	1.8	1.9	1.9	2.1	2.1	1.9	2.0
Sodium	5.7	7.4	6.9	7	7.5	7.6	7.5	7.4	7.5	6.7	6.8
Silicon	10	10	9.3	12	11	11	11	13	12.0	11	13
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94	Round 14 21-22 Jun 94	Round 15 31 Aug 94							
Well: GWC-2 (Formerly CW-3) (Continued)	Formerly CW-	-3) (Continued)									
Hď	5.75	5.5	5.72	5.63							
Conductivity	53	57	59	60							
Alkalinity	15.7	14	16.2	7.0							
TDS	27	76	58	60							
Chloride	3.8	3.7	3.79	3.92							
Sulfate	5.78	5.97	5.95	6.73							
Calcium	2.0	2.19	2.05	2.11							
Magnesium	1.8	1.92	1.93	2.03							
Sodium	7.0	7.15	7.09	7.17							
Silicon	12.9	13.3	13.0	12.9							

Table A-1 (continued)

				10 	I-H ald	able A-1 (continued)	Ina				
			Baseli	3aseline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
Well: GWC-3	Well: GWC-3 (Formerly CW-4)	-4)									
PH	5.4	5.15	4.8	4.73	6.19	5.08	5.25	3.8	5.23	5.2	5.3
Conductivity	40	35	30	34	32	35	32	27	33	27	27
Alkalinity	11.5	15.2	6.6	11	7	1,1	10.0	6.8	7.0	8.5	9.1
TDS	50	35	31	34	39	41	28	37	44	52	21
Chloride	3	2.8	3.2	3.4	3.1	3.1	2.0	2.3	2.7	2.9	2.8
Sulfate	2.6	2.1	<0.05	<0.05	6.0	1.5	1.7	2.6	1.6	<2.5	<2.5
Calcium		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Magnesium	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0 l>	0′l>	0'1>	0'1>
Sodium	4,4	4.5	4.3	4.1	4.6	4.3	4.1	4.0	4.1	3.9	3.8
Silicon	8	7.8	3.9	8.5	8.6	8.3	8.3	6.9	9.0	8.7	9.2
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94	Round 14 21-22 Jun 94	Round 15 31 Aug 94							
Well: GWC-3	Well: GWC-3 (Formerly CW-4)	(
Hq	5.5	5.18	5.43	5.41		,					
Conductivity	22	28	29	9E							
Alkalinity	9.3	7.5	8.5	11							
TDS	<8.7	42	36	39							
Chloride	2.8	2.77	2.76	2.91							
Sulfate	<0.06	1.38	1.52	<0.0471							
Calcium	<1.0	0.392	0.321	0.328							
Magnesium	<1.0	0.962	0.935	1.00							
Sodium	4.1	4.35	4.14	4.17							
Silicon	9.7	10.1	9.16	9.15							

•

				Ta	ble A-1	Table A-1 (continued)	ed)				
			Baseliı	Baseline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
Well: GWC-4 (Formerly CW-5)	(Formerly CW.										
Hd	5.34	4.97	4.8	4.6	5.03	5.4	5.05	3.9	5.04	5.2	5.2
Conductivity	62	62	66	72	54	70	72	58	64	52	54
Alkalinity	12.5	15.3	13.1	15.1	8.6	14.2	5.11	8.0	6.0	6.9	7.0
TDS	61	52	60	51	58	64	19	65	63	55	44
Chloride	5	4.2	5	5.6	4.5	5.2	3.1	3.4	3.6	3.6	3.8
Sulfate	2.2	4.6	90	6.8	1.1	5.8	5.3	5.5	5.0	5.9	4.9
Calcium	1.3	<1.0	<1.0	1.3	1.6	1.2	<1.0	<1.0	1.0	<1.0	<1.0
Magnesium	2.5	2.5	3.1	3.8	3.9	3.7	3.3	3.2	3.2	2.7	2.9
Sodium	5.4	5.8	5.3	5.1	s	5.2	4.8	4.9	4.7	44	44
Silicon	9.9	9.1	4.7	9.7	9.2	10	8.6	9.5	8.7	8.3	9.3
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94	Round 14 21-22 Jun 94	Round 15 31 Aug 94							
Well: GWC-4 ((Formerly CW	Well: GWC-4 (Formerly CW-5) (Continued)									
рН	5.2	4.98	5.2	5.10							
Conductivity	63	72	81	108							
Alkalinity	9.2	5.0	10.3	5.0							
TDS	20	64	75	93							
Chloride	6.7	11.3	13.5	20.8							
Sulfate	4.4	4.64	4.50	4.83							
Calcium	1.3	1.81	1.62	2.73							
Magnesium	3.7	5.05	4.98	7.32							
Sodium	5.0	5.33	4.87	5.80							
Silicon	9.8	16:6	9.18	9.91							-

Bareline Monitoring Remart I Remart I Round 3 Round 4 Round 4 Round 4 Round 4 Round 4 Round 4 Round 5 Rou					Ta	ble A-1	Table A-1 (continued)	ed)	-			
Remain Remain<				Baselii	ne Monitoring							
WC-3 Site 44 613 <th>Parameter</th> <th>Round I 6 Sep 90</th> <th>Round 2 2 Nov 90</th> <th>Round 3 8-9 Jan 91</th> <th>Round 4 11 Mar 91</th> <th>Round 5 8 May 91</th> <th>Round 6 1-2 Jul 91</th> <th>Round 7 3-4 Sep 92</th> <th>Round 8 29-30 Dec 92</th> <th>Round 9 30-31 Mar 93</th> <th>Round 10 21 Jun 93</th> <th>Round 11 23-24 Sep 93</th>	Parameter	Round I 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
itity <	Well: GWC-5											
titlight ite i	рН							5.6	4.4	6.13	5.4	5.6
iy i </td <td>Conductivity</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>61</td> <td>60</td> <td>54</td> <td>41</td> <td>40</td>	Conductivity							61	60	54	41	40
e i	Alkalinity							14.8	13.5	12.5	10.2	11.5
e i	TDS							16	86	67	56	50
1 1 8.8 10 7.4 1 1 1 1 21 2.7 2.2 1 1 1 1 21 2.7 2.2 18 1 1 1 1 1 21 2.7 2.2 18 1 1 1 1 1 1 21 2.2 18 1 1 1 1 1 1 1 1 2 2 2 2 2 2 18	Chloride							1.8	2.6	2.7	2.9	2.5
im	Sulfate							8.8	10	4 L	6.7	5.5
im	Calcium							2.1	2.7	2.2	1.6	1.4
Image: bound 12 Round 13 Round 14 Round 15 (0.000)	Magnesium							1.9	2.3	1.8	1.5	1.4
Round 12 Round 13 Round 14 Round 15 Round 13	Sodium							6.0	6.2	5.7	5.5	5.2
Round 12 Round 13 Round 14 5 Jan 94 22-23 Mar 21-22 Jun 94 7.0 5.38 5.42 WC-5 (Continued) 5.38 5.42 ivity 39 43 45 ivity 39 43 61 10.8 8.6 10.8 61 29 5.34 2.48 61 29 5.3 6.1 0.8 10 10.8 8.6 10.8 61 29 5.3 6.56 7.65 138 1 1.65 1.38 1.65 1.38 1 1.65 1.65 7.65 1.38 1 1.65 1.65 1.55 1.13 1 1.1 1.13 1.13 1.13	Silicon							12	14	13	12	12
:WC-5 (Continued) 5.38 5.42 7.0 5.38 5.42 tivity 39 43 45 tivity 39 43 45 tivity 39 43 45 tivity 39 43 61 29 53 61 8 e 2.6 2.34 2.48 1 1.3 1.65 1.38 1 1.3 1.65 1.38 1 1.3 1.65 1.38 1 1.3 1.65 1.55 1 1.3 1.65 1.55 1 1.4 1.18 1.13	Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94		Round 15 31 Aug 94							
7.0 5.38 5.42 tivity 39 43 45 ity 10.8 8.6 10.8 ity 10.8 8.6 10.8 29 53 61 29 53 61 29 53 61 29 53 61 1 29 53 1 1.3 1.65 1 1.3 1.65 1 1.3 1.55 1 5.5 5.74 5.5 5.74 5.77 1 1.18 1.13	Well: GWC-5 (Continued)							i			
tivity 39 43 45 ity 10.8 8.6 10.8 ity 10.8 8.6 10.8 29 53 61 2 2.34 2.48 5.3 6.56 7.65 1 1.3 1.65 1.38 1 1.3 1.65 1.38 ium 1.3 1.6 1.55 11.4 11.8 11.3	рН	7.0	5.38	5.42	5.53							
ity 10.8 8.6 10.8 29 53 61 29 53 61 e 2.6 2.34 2.48 e 2.6 2.34 2.48 1 1.3 1.65 7.65 1 1.3 1.65 1.38 ium 1.3 1.6 1.55 ium 1.3 1.6 7.55 11.4 1.18 1.13	Conductivity	39	43	45	43							
29 53 61 e 2.6 2.34 2.48 1 2.3 6.56 7.65 1 1.3 1.65 1.38 1 1.3 1.65 1.38 ium 1.3 1.6 1.55 5.5 5.74 5.77 11.4 11.8 11.3	Alkafinity	10.8	8.6	10.8	13.0							
e 2.6 2.34 2.48 5.3 6.56 7.65 1 1.3 1.65 1.38 ium 1.3 1.65 1.38 5.5 5.74 5.77 11.4 11.8 11.3	TDS	29	53	61	19							
5.3 6.56 7.65 1 1.3 1.65 1.38 ium 1.3 1.6 1.55 sin 1.6 1.55 5.5 5.74 5.77 11.4 11.8 11.3	Chloride	2.6	2.34	2.48	2.67							
ium 1.3 1.65 1.38 ium 1.3 1.6 1.55 5.5 5.74 5.77 11.4 11.8 11.3	Sulfate	5.3	6.56	7.65	6.68							
ium 1.3 1.6 1.55 5.5 5.74 5.77 11.4 11.8 11.3	Calcium	£.1	1.65	1.38	1.26							
5.5 5.74 5.77 11.4 11.8 11.3	Magnesium	1.3	1.6	1.55	1.46							
	Sodium	5.5	5.74	5.77	5.38							
	Silicon	11.4	11.8	11.3	10.5							

Appendix B

•

QA/QC Results

Parameter	Units	Sample GWC-3-15-1	Field Duplicate GWC-3-15-2	% Diff.*	Duplicate Analysis GWC-3-15-2	% RPD ^b	Spec. Limit
Total Dissolved Solids	mg/L	39.0	42.0	7.7	40.0	4.9	15
Bromide	mg/L	<0.0226	<0.0226	NC	<0.0226	NC	_
Chloride	mg/L	2.91	2.82	-3.1	2.82	0.0	20
Fluoride	mg/L	0.0424°	0.0390°	-8.0			
Total Organic Carbon	mg/L	<0.357	<0.357	NC	< 0.357	NC	20
Nitrate-Nitrite as N	mg/L	0.366°	0.249°	-32	0.256°	2.6	20
Sulfate	mg/L	<0.0471	<0.0471	NC	<0.0471	NC	20
Total Organic Halides	μg/L	<11.7	15.1 ^d	NC	12.0 ^d	23	20
Silver	mg/L	<0.00519	<0.00519	NC		_	
Aluminum	mg/L	<0.0523	0.147 ^d	NC			
Arsenic	mg/L	<0.00214	<0.00214	NC			
Boron	mg/L	<0.0176	<0.0176	NC			
Barium	mg/L	0.00693	0.0715	930		_	
Beryllium	mg/L	<0.00051	<0.00051	NC			
Bismuth	mg/L	<0.0132	<0.0132	NC			
Calcium	mg/L	0.328°	0.539°	64			
Cadmium	mg/L	<0.00386	<0.00386	NC			
Cobalt	mg/L	<0.00407	<u><0</u> .00407	NC			
Copper	mg/L	<0.00916	<u><0.00916</u>	NC			
Chromium	mg/L	0.00653 ^d	<u><0</u> .00524	NC			
Mercury	mg/L	<0.000033	< 0.000033	NC			
Iron	mg/L	<0.00452	0.227	NC			
Potassium	mg/L	<0.822	<0.822	NC			
Lithium	mg/L	<0.00543	<u><0</u> .00543	NC			
Magnesium	mg/L	1.00	1.07	7.0			
Manganese	mg/L	0.00289 ^d	0.00300 ^d	3.8			
Molybdenum	mg/L	<0.00739	<u><0.00739</u>	NC			
Sodium	mg/L	4.17	4.61	11			
Nickel	mg/L	<0.0141	<0.0141	NC			
Phosphorus	mg/L	<0.0610	<0.0610	NC			
Lead	mg/L	0.0140	<0.00205	NC			
Sulfur	mg/L	<0.175	<0.175	NC			
Antimony	mg/L	<0.00146	<0.00146	NC			
Selenium	mg/L	<0.000592	<0.000592	NC			<u> </u>

Table B-1. Results for Duplicate Samples—3rd Quarter 1994

		T ^{err} terine en e	(<u></u>		
Parameter	Units	Sample GWC-3-15-1	Field Duplicate GWC-3-15-2	% Diff.*	Duplicate Analysis GWC-3-15-2	% RPD ^b	Spec. Limit
Silicon	mg/L	9.15	9.53	4.2			
Tin	mg/L	<0.0145	<0.0145	NC			
Strontium	mg/L	0.00286 ^d	0.00429 ^d	50			
Tellurium	mg/L	0.0405 ^d	<0.0317	NC			
Titanium	mg/L	0.00164 ^d	0.00166 ^d	1.2			
Thallium	mg/L	<0.00185	<0.00185	NC			
Uranium	mg/L	<0.199	<0.199	NC			
Vanadium	mg/L	<0.00454	<0.00454	NC			
Tungsten	mg/L	<0.0408	<0.0408	NC			
Zinc	mg/L	0.00569 ^d	0.0166 ^d	190			

Table B-1 (continued)

* % Difference = (GWC-3-15-2 - GWC-3-15-1)/GWC-3-15-1 x 100%

^b RPD = Relative Percent Difference, defined as follows:

 $RPD = \frac{(Larger Value - Smaller Value)}{Larger Value + Smaller Value)/2} \times 100\%.$

^c Detected in the method blank.

^d Value is less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.

NC = Not computed.