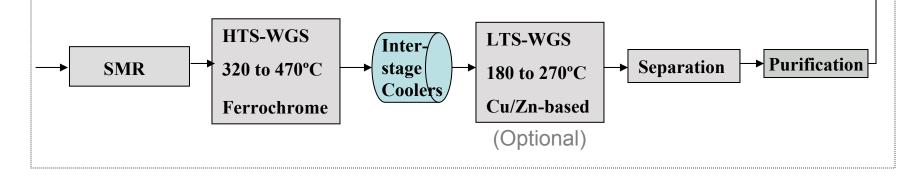
Carbon Molecular Sieve Membrane as Reactor/Separator for Water Gas Shift Reaction DE-FG36-05G015092

Paul KT Liu Media and Process Technology Inc. 1155 William Pitt Way Pittsburgh, PA 15238 Date: November 7,2007

- **Professor Theo T. Tsotsis** University of Southern California
- Dr. Babak Fayyaz-Najafi Chevron ETC, End User Participant
- **Dr. Hugh Stitt,** Johnson Matthey, Catalyst Manufacturer

Features of Membrane Reactors and Barriers to Implementation

For a small scale hydrogen production process:


- MR is ideal for process intensification.
- MR can deliver capital & operating cost reduction.
- A small scale H₂ production process is an ideal platform for MR to demonstrate its technical and commercial viability.

Few commercial MR units have been installed thus far, major barriers include:

- Membrane with sufficient material stability and long term functional stability under the reaction environment – i.e., membrane has minimum tolerance.
- Membrane reactor engineering, such as heat transfer, catalyst packing density, compatibility of membrane and catalyst materials, housing/seal...
- Large scale commercially available membranes
- ..

Potential Opportunities for Membrane Reactors Hydrogen Production via Steam Methane Reforming

Conventional process concept for H₂ production via steam reforming for FCV

Potential Membrane Reactor Configurations and Their Challenges							
No. Steps	No. Steps Configuration MC HR Operating Features/Challenges						
One Step	Reforming + WGS + Separation	89%	96%	>~600°C, Pd membrane material stability (physical & chemical), Heat transfer, Large scale defect free membrane, Steam effect on hydrogen permeation and material stability			
Two Step	WGS (HTS) + Separation WGS (LTS) + Separation	- 93%	- 90%	>~350°C Steam effect on hydrogen permeation and material stability ~250°C,			

Innovation & Uniqueness

Unique Approach

- Our project team focuses on reaction engineering and process development of the MR, not the membrane material development.
- Our CMS membranes demonstrate excellent chemical and material stability under the proposed reaction environment.

Innovation

- Although our MR is limited to the LTS range, the CO conversion was found to be fast and nearly complete with our unique MR process (HiCON).
- Unique and innovative thermal management is delivered with our membrane and membrane reactor.

Limitation

• Our microporous CMS membrane cannot deliver 99.999+% purity.

Under this project, we did develop an innovative, nearly "zero" penalty post treatment scheme to meet this objective. This polishing step can be integrated into our WGS/MR; thus, a very economical and effective approach can be implemented to achieve 99.999+% purity.

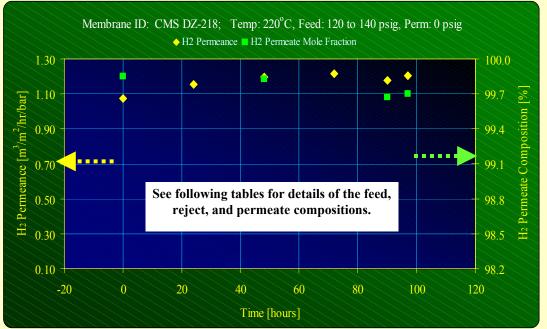
MEMBRANES, BUNDLE AND MODULE

Pilot Scale Module of CMS/ceramic Membrane (1.5" diameter and 34"L)

Our full-scale ceramic membrane _ module (3 - 4" dia, prototype) for gas applications

These membranes and modules were adapted from our existing commercial ceramic membrane products and modules.

Membrane Cost [\$/ft ²]	\$40
Hydrogen Permeance	19 scfh/ft ² at 20 psi pressure drop (linear relationship)
Module Cost, including membrane $[/ft^2]$	\$60 for low pressure, \$80 for high pressure applications
Purity and Recovery Ratio	97-99% purity with 90% hydrogen recovery, depending on P
Operating Temperature [°C]	150 to 300°C
Operating Pressure [psi]	1,500 psi


CMS/Ceramic Membrane full scale (34" L)

Media and Process Tech Inc.

<u>CMS Membrane:</u> Material Stability at a Refinery Pilot Test

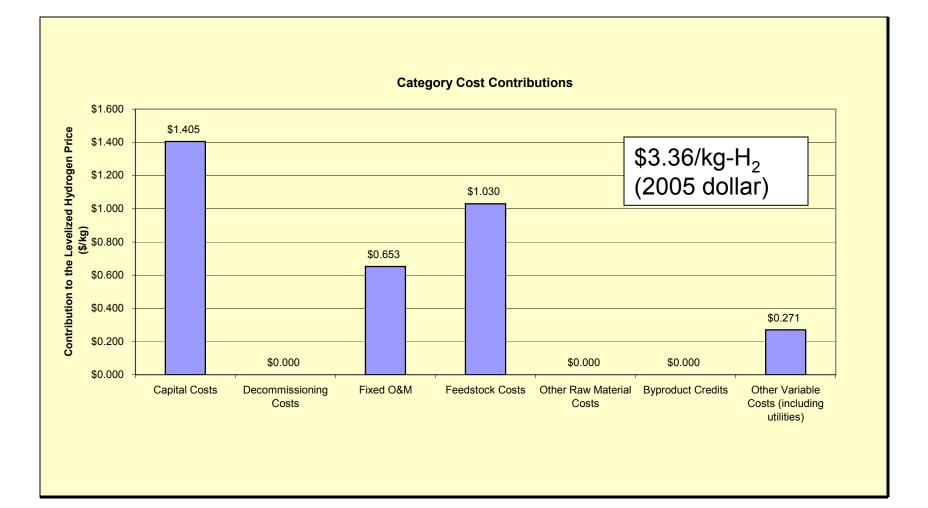
Membrane performance is stable in a 100 hour challenge test conducted at a refinery pilot facility using VGO hydrocracker off-gas in the presence of significant H_2S , NH₃, and higher hydrocarbon contamination.

Gas Stream Compositions, Stage Cut and H₂ Recovery During the VGO Hydrocracker Pilot Test

	1	At time = 3	6 hours		
Gas	Со	mposition	H ₂ /Slow	G	
Gas	Feed	Reject	Permeate	Selectivity	Gas
H_2S	5.2	32.0	0.03	163	H ₂ S
H ₂	89.9	38.9	99.88	1	
C ₁	2.1	12.2	0.08	123	H ₂
C ₂	0.88	54	0.01	~600	C ₁
C ₃ +	1.88	(11.6)	ND	>1,000	C ₂
					C ₃ +
	Stage Cu	ıt	8	5%	
H ₂ Recovery			9	2%	

At time = 100 hours								
Car	Co	mposition	[%]	H ₂ /Slow				
Gas	Feed	Reject	Permeate	Selectivity				
H_2S	4.8	24.5	0.16	74				
H ₂	90.8	50.6	99.70	1				
C ₁	1.9	9.9	0.06	123				
C ₂	0.81	42	0.01	~600				
C ₃ +	1.66	10.7	ND	>1,000				
	Stage Cu	ıt	8	0%				
	H ₂ Recove	ery	8	<mark>5%</mark>				

Media and Process Tech Inc.

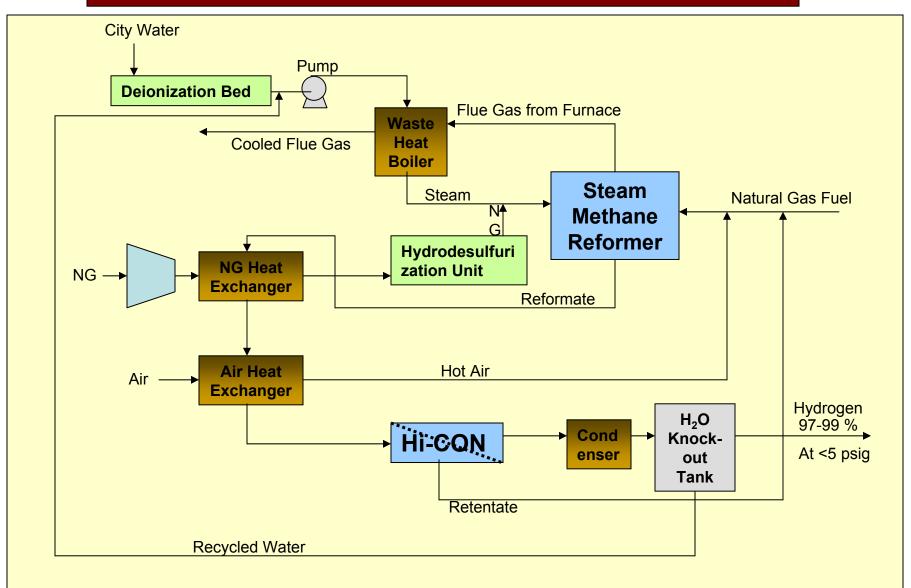

CMS Membrane: Material Stability at a Pilot Test - Durability

Membrane Regeneration

Pure Component Permeance and Selectivity

Test Conditions: 220°C @ ~120 psig

Test Phase	H ₂ [m ³ /m ² /hr/bar]	H ₂ /N ₂ [-]
Before Hydrocracker Testing	1.27	75
After Hydrocracker Testing	1.22	ND
After Dead Head Hydrocracker Challenge Test >> ~17 hrs w/NO Reject Flow (100% Stage Cut) >> Permeate flow falls from ~450 to ~3 cc/min	0.62	53
After Regeneration	1.26	67



H2A Inputs

	\$1,020,000 \$1,116,000 with option					
Duiment foodstook usesse						
 Primary feedstock usage : (avaluating fuel usage) 	2.4 kg NG/kg H ₂ , or 3.4 Nm ³ NG/kg H ₂ or					
(excluding fuel usage)	$1.23 \text{ E}+05 \text{ kJ/kg H}_2$					
	1.25 L+05 KJ/Kg II ₂					
• Total other energy usage:	0.50 kWh/kg H ₂ for NG Compression, and					
	2.70 kWh/kg H ₂ for H ₂ Compression, and					
	0.7 Nm ³ /kg H ₂ for Fuel Usage					
	<u>3.50 E+04 kJ/kg-H, Total</u>					

\$0.67/kg H₂ excluding utilities

M&P HiCON for CO Conversion and H₂ Separation of Reformate from Steam Methane Reformer

Distributed Hydrogen Production Process	Capacity: 1250 kg/day H SMR:	l ₂ production \$472,000
	Membrane:	\$188,000
	Pretreatment for compression	\$ 50,000
	Polishing Beds (optional):	\$ 70,000
	Installation Factor:	1.45
	Anticipate Foot Print Size:	????????
Feed $CH_4: 2\%$ $H_2: 5\%(0.2)$ $H_2: 52\%$ $CO: 0\%$ SMR $CO_2: 0\%$ $H_2O: 31\%$ $H_2O: 72\%(3)$ $H_2O: 31\%$ 803 kmol/day $850^{\circ}C$ 25 bar $250^{\circ}C$ 25 bar $H_2O: 10\%$	$\begin{array}{c} \begin{array}{c} 250^{\circ}\text{C} \\ \underline{25 \text{ bar}} \\ \hline \\ H_2 \\ \underline{250^{\circ}\text{C}} \\ \underline{25 \text{ bar}} \\ \hline \\ H_2 \\ \underline{250^{\circ}\text{C}} \\ \hline \\ H_2 \\ \underline{250^{\circ}\text{C}} \\ H_2 \\ \underline{250^{\circ}\text{C}} \\ \hline \\ H_2 \\ \underline{250^{\circ}\text{C}} \\ \hline \\ H_2 \\ \underline{250^{\circ}\text{C}} \\ \underline{1.03 \text{ bar}} \\ \hline \\ \hline \\ 1.03 \text{ bar} \\ \hline \\ $	additional <u>compression</u> CO ₂ H ₂ : 99.999% CO: <10 ppm 625 kmol/day 30°C 30 bar

Media and Process Tech Inc.

INPUT AND OUTPUT FOR ENERGY & WATER

Energy efficiencies for individual process steps	Values	Basis
Production System Feedstock Consumption (kJ Feedstock (LHV)/kg of H2)	146595.6	9.31 kmol/hr for 52.1 kg-H2/hr. This feedstock includs the use of methane as fuel in addition to the use of methane as feedstock for H2.
Production Unit Hydrogen Efficiency (%)	83.7%	93% Methane conversion and 90% H2 recovery
Production Electricity Consumption (kWhe/kg of H2)	0.497	25900 watt/52.1 kg-H2/hr for NG compression, 3 stages
Hydrogen Leak from Production System (%)	0%	
Production Step Efficiency (%)	82.3%	
Compression, Storage and Dispensing Feedstock Consumption (kJ (LHV)/kg of H2)	0.0	
Compression, Storage and Dispensing Electricity Consumption (kWhe/kg of H2)	2.7	according to Ariel, 9 stages, <270F
Hydrogen Leak from Compression, Storage and Dispensing Systems (%)	0%	
Compression, Storage and Dispensing Step Efficiency (%)	92.0%	based upon LHV of H2
Total H2 Leak (%)	0%	
Total System Efficiency (%)	75.7%	
Process water consumption (L/kg of H2)	8.1	3:1 ratio, 23.4 kmol/hr, credit from retentate not accounted for yet

Capital Cost of Major System Components - M&P

		Base Cost [\$]		Base S			Scale Factor	Eq. Cost	Notes
Pre-reformer		COSt [#]		Dasec	Cale			Lq. 005t	Notes
Natural Gas Compress	sor	33,000	5	MW	21,941	mol/hr	0.82	1.63E+04	
Natural Gas Feed Syst		2,000	5	MW	21,941	mol/hr	0.82	3.43E+00	
Heat Exchanger (steel		7,800	2	m2			0.59		see NG heater
Heat exchanger (stainl	ess steel)	15,500	2	m2			0.59		see Air heater
Desulfurization unit	ŕ	4,800	0.79 r	nolCH4/hr	0.79		0.6	1.89E+04	
Water Puritifcation		2,100	90	l H2O/hr	5	kmol/h	0.68	5.99E+03	
Water pump		1,200	90	l H2O/hr	5	kmol/h	0.7	3.53E+03	
Waste-heat boiler		19,200	90	l H2O/hr	5	kmol/h	0.67	5.39E+04	
Sweep gas boiler		19,200	90	l H2O/hr	5	kmol/h	0.67		
NG heater								2000	heat exchanger
Air heater									heat exchanger
								1.07E+05	Subtotal
Reformer									
Combustion chamber	(furnace)	2,100	4.79	kg H2/hr			0.78	1.35E+04	
Membraen reactor (wit	hout membran	14,100	4.79	kg H2/hr	(3x for te	mp diff)	0.7	2.25E+05	
Catalyst (initial loading	for SMR&WG	S))		-				1.26E+05	
								3.65E+05	Subtotal
Post Refomer									
Hydrogen compresor		22,000	4.79	kg H2/hr			0.82		
Condenser and water I	knock-out	4,900	4.79	kg H2/hr			0.68	2.48E+04	
Carbon dioxide compre	essor	3,000,000	6	MW			0.7		
Dehydration equipmen	t	35,000	1180	m3/hr	41671	ft3/hr	0.7	2.14E+04	
Cryogenic CO2 separa	ation unit	475,000	0.6	t CO2/hr			0.7		
								4.62E+04	Subtotal
liCON									
Membrane#1		\$800	1	m2			1	\$188,975	25 bar feed
Total Equipment Cost								7.07E+05	
Total Installed Capital Cost at 1.	45 factor							1.02E+06	

Ref. 1: Information (except membranes) was obained from Sjardin, M., *Energy, 31*, 2523(2006); Catalysts are considered replacement cost.

Uncertainties/Improvements

Technology Component	Specific Uncertainties/Improvements	ECD
Capital Cost vs Capacity	~50% of the hydrogen product cost is contributed by the capital cost recovery. / Refine the capital cost along with our industrial participant. Identify a throughput which can deliver most favorable capital cost contribution with our technology.	12/31/07
WGS/MR– experimental verification with a system approach	The current performance of the system was generated through simulation. Previously, we have conducted bench-top study to verify the fundamentals of the unit operations. / <i>An experimental study to substantiate the projected system</i> <i>performance is essential.</i>	6/30/08
Polishing Step	The capital and operating cost of the current polishing step was established by us. / A more rigorous analysis by an engineering/equipment vendor will be pursued. Also experimental study will be performed to demonstrate the feasibility to meet the purity spec.	6/30/08
Peripheral Application Potential	Our HiCON process does not address the SMR step. Its potential economic impact is limited under this H2A analysis./ Other opportunities for our HiCON process will be identified and analyzed for future consideration, including: (i) feedstocks with substantial and complex contaminants, and (ii) hydrogen production other than reforming, such as gasification.	6/30/08

Questions #1: Relevance to Overall DOE Objectives

- The presentation was extremely vague on the specific targets required by DOE. No cost estimates
 were provided. In addition, no clear flux targets were provided just a vague comparision to metallic
 membranes which appears low and in odd units.
- The temperatures being considered are low 200+ degrees. There should be consideration to get this a bit higher - maybe into the HTS range.
- Interesting work, but not a critical piece of the puzzle for hydrogen success. Conventional WGS works
 pretty well and isn't overly expensive.

Question #2: Approach to Performing R&D

- Catalyst testing and membrane development appear to be occurring along two separate paths. They
 need to be integrated together into a single development path
- The target CO value should be decreased to 1 ppm CO for distributed hydrogen production for dispersing to fuel cell vehicles.
- There will be other impurity level constraints in addition to CO, for these systems that must be met for the systems to be deployed.
- This process produces hydrogen at low pressure which then needs to be compressed. The ultimate
 measure is in the cost of hydrogen, where the hydrogen is at 300 psi.

Question #3: Technical Accomplishments and Progress toward DOE Objectives

- The technical progress is difficult to judge. Although actual results are alluded to and appear to be included on some of the graphs, much of the work appears to be mathematical modeling. However, it is not clear which are results produced from this work and what is from the literature. It appears that the project has been minimally funded (30%) so it is not clear how much actual progress has been made.
- The use of microporous membranes will not likely give the most effective separations. The purity and
 percent recovery will remain a concern and the contractor has not done a lot to improve on the
 situation. The separation mechanism itself will likely limit these parameters.
- The use of microporous membranes will not likely give the most effective separations. The purity and
 percent recovery will remain a concern and the contractor has not done a lot to improve on the
 situation. The separation mechanism itself will likely limit these parameters.
- The technical accomplishments to date are somewhat confusing. The stated goal is 99.999%, but reports that 97-99% clean-up was accomplished and that a non-defined adsorbent would polish the hydrogen to 99.999% with CO apparently being the principle impurity at < 10 ppm. This must be addressed

Question #4: Technology Transfer with Industry and Universities

 Technology transfer and industry involvement appears minimal. There are some academic publications. The intro slides did list involvement of other partners, but their roles and contributions are not clear. It appears that the testing is primarily being conducted by MPT and the University of Southern California. The industry partners need to be more involved to ensure that the developed technology is worthwhile.

Question #5: Approach to and Relevance to Proposed Future Research

- The proposed economic analysis is needed to substantiate the potential cost attractiveness of this
 process.
- In particular, the use of the polishing step needs more careful analysis, as the ultimate purification may add more to the cost than expected on the basis of a preliminary analysis.