

AN INTRODUCTION TO OPTICAL SYSTEMS AT THE ALS

BY MALCOLM HOWELLS

Optical systems for synchrotron radiation: overview

• What is a beam line?

Optical components

- Mirrors
- Gratings
- Zone plates
- The need for cooling
- The value of deformable optics

• Optical systems

- Monochromators with spherical and plane gratings
- Microscope condensers
- Microscopes

• Whole beam lines

- The need for vacuum
- Paraxial optical design
- Phase-space matching beam-line optics to experiments
- The "extras" that make them expensive

• Introduction to the ALS tour

WHAT IS A BEAM LINE?

ALS RADIATION IS PRODUCED BY BENDING MAGNETS AND UNDULATORS

WHAT IS A BEAM LINE?

X-RAY MIRRORS

Fresnel equation:

$$R_{s}(\theta) = \frac{\rho^{2} (\sin \theta - \rho)^{2} + \beta^{2}}{\rho^{2} (\sin \theta + \rho)^{2} + \beta^{2}} \qquad \rho^{2} = \frac{1}{2} \sin^{2} \theta - 2\delta + \sqrt{(\sin^{2} \theta - 2\delta)^{2} + 4\beta^{2}}$$

Where the refractive index of the mirror is $\tilde{n} = 1 - \delta - i\beta$

Reflectivity of Ni for various grazing angle

GRAZING INCIDENCE MIRROR UNDER TEST

An Invar mirror undergoes interferometric testing for figure accuracy at the ALS Optical Metrology Lab.

- 1 meter-long grazing-incidence mirrors collimate and focus the x-rays
- Four Nickel-plated Invar mirrors made. These are a new technical development made by the ALS Experimental Systems Group
- Mirror shape is controlled by two bending couples and one point load
- Mirrors are water-cooled via longitudinal gun-drilled holes
- Before bending the mirrors were polished flat within ~ 1.5 µrad RMS by Newport Precision Optics

MIRROR BENDING DEVICES USED AT ALS

MIRROR SHAPED BY BENDING

- Reflecting surface faces downward
- Bending forces are applied by adjustable flexible leaf springs
- Mirror shape is a cubic approximation to the ideal parabolic cylinder that collimates the beam for entry into the double crystal monochromator
- Advantages: do *flat* polishing, adaptive, can form "difficult" shapes i. e. not flat or spherical,

ERKELE

PRINCIPLE OF THE REFLECTION GRATING

Grating period≕d₀ Spectral order=*m*

Grating equation: $m\lambda = d_0(\sin\alpha + \sin\beta)$

ALS SPHERICAL REFLECTION GRATINGS

- Polished in electyroless-nickel plated Glidcop
- Conductivity of copper with greater strength and stability
- Double skin watercooling
- Sub microradian surface accuracy even under heat load
- Record resolving power (65000) in 1995

COMMON MONOCHROMATOR TYPES

GRATING CARRIAGE OF ALS SPHERICAL GRATING MONOCHROIMATOR (SGM)

COOLED GRATINGS ON THE ALS SPHERICAL GRATING MONOCHROMATOR

ALS MONOCHROMATOR SLIT

INSTALLED SPHERICAL GRATING MONOCHROMATOR (BL 9.3.2)

JENOPTIC SX700 MONOCHROMATOR

Mirror cooling for high heat load at low energy (75eV)

The rms slope error (μ rad) of the premirror corresponding to a resolving power R=7500 (FWHM) from the 150l/mm grating.

ALS SX700 MONOCHROMATOR: OVERVIEW

KOHZU DOUBLE-CRYSTAL MONOCHROMATOR

APM-2L monochromator:crystal adjustment mechanics.

- Commercial double-crystal monochromator type APM2 by Kohzu-Seiki of Japan
- Tunable over 2.3-22.5 KeV photon energy or 5-60 degree Bragg angle
- Cooled silicon 111 crystals providing resolving power E/dE of 7000

COOLED MONOCHROMATOR CRYSTALS

Transverse water cooling Channels in Silicon

- First Si (111) crystal is water-cooled via transverse drilled holes: hole-to-surface distance matches power load @ 12.6 keV
- Finite-element analysis indicates slope errors below 0.4 µrad RMS with full thermal load from beam.

X-ray imaging is a major ALS activity

From ALS website (<u>www-als.lbl.gov/als</u>)

ALS MICROSCOPES

Imaging device	Beam line	Resolution	Mission
Microscopes			
Photoelectrom emission	7.3.1.1	20 nm	Magnetic imaging
			(SXR)
Scanning transmission	7.0.1	100 nm	Materials science
zone plate			(SXR)
SPEM	7.0.1	150 nm	Surface science (SXR)
Imaging zone plate	6.1.2	25 nm	Life science (SXR)
Microprobes			
Scanning Kirkpatrick-	7.3.3	420 nm	Microdiffraction (HXR)
Baez reflection			
Scanning Kirkpatrick-	7.3.1.2	1000 nm	XPS – microcircuit
Baez reflection			diagnostics (SXR)
Scanning Kirkpatrick-	10.3.1	1000 nm	Scanning XRF (HXR)
Baez reflection			
Scanning Kirkpatrick-	10.3.2	1000 nm	Small-spot EXAFS
Baez reflection			(HXR)
Diffractive imaging			
Diffraction/holography	9.0.1	10 nm (projected)	Life science (SXR)

PRINCIPLES OF X-RAY MICROSCOPES FOR EXAMINING SURFCACES

Full-Field Photoemission Microscope

Scanning Zone Plate Microscope

The STXM upgrade

Side view

Looking Downstream

The STXM upgrade

High Resolution Zone-Plate Microscope XM-1 at the ALS

cccc

G. Denbeaux, L. Johnson, A. Lucero, W. Chao, E. Anderson, D. Attwood

Erik Anderson, Deirdre Olynick and Bruce Harteneck, Zone Plate Fabrication with the Nanowriter.

ALS BEAM LINE LAYOUT MAY 2000

