

PLASMA ASSISTED CATALYSIS SYSTEM FOR NOx REDUCTION

BY NOXTECH

With the Support & Cooperation of DOE

Noxtech, Inc.

Delaware Corporation registered to do business in California

•MBO from Cummins Engine CO 1996: Total \$28 million invested (Cummins & Noxtech) emissions control technology

•DOE, CEC & AQMD supplied significant funding for all technology developed.

•Stationary Markets Autocatalytic Process that is patent (three) protected (boilers & IC engine powered generators):

-ICE Generators: Currently being produced and sold

-Boilers: Successfully demonstrated under license 200 MW boiler

•Transportation Market patent (one basic) protected Plasma process: 80 hp Plasma System prototype demonstrated 94% NOx reduction next generation system being fabricated

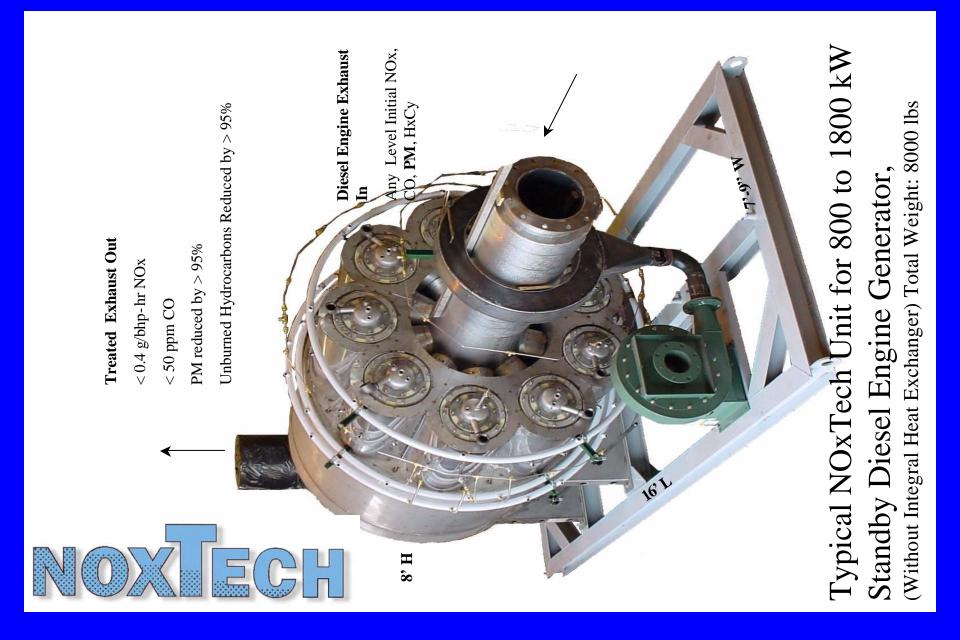
Autocatalytic Noxtech System Capabilities

- •Controls NOx to 30 ppm for diesel, NG, coal fired combustion
- •Concurrent Depletion of UBHC, CO, Soot, & NH₃ slip
- •Can use polishing catalysts to achieve very low levels of NOx (10 ppm) & particulates
- •Low operating costs: no catalyst replacement, uses low grade urea
- Low operating back pressure minimizes fuel consumption

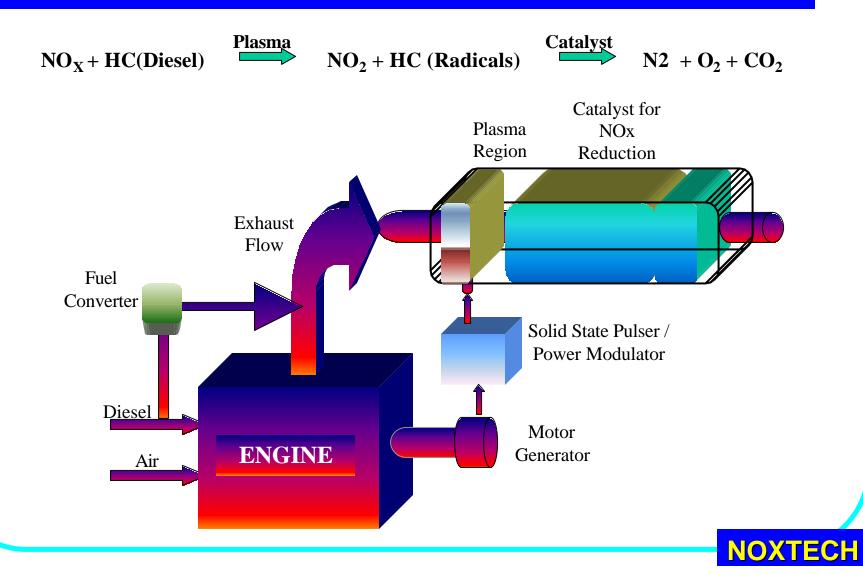
Commercial Status Advanced Noxtech Technology Auto-Catalytic NOx Reduction system

IC Engine/generators

Commercial sales of systems to treat the exhaust of diesel and natural gas powered generators in 2002.


Projected market of over \$500 million (retrofits of 7500 MW's) in California and \$5 billion US: Stand-by diesel powered and bio-diesel powered generators

Boilers


License granted to Mitsui-Babcock Corporation

Noxtech process pas been successfully demonstrated on a TVA 200 MW coal fired boiler located in Kingston TN by Mitsui-Babcock anticipate 4 additional coal fired boiler installations fourth quarter 2002.

PAC SYSTEM SCHEMATIC

Program Objectives 2002

Fully characterize (parametric studies), redesign and refine 80 Hp system with advanced (practical, semi-commercial) components:

Thyratron pulser ---->solid state pulser

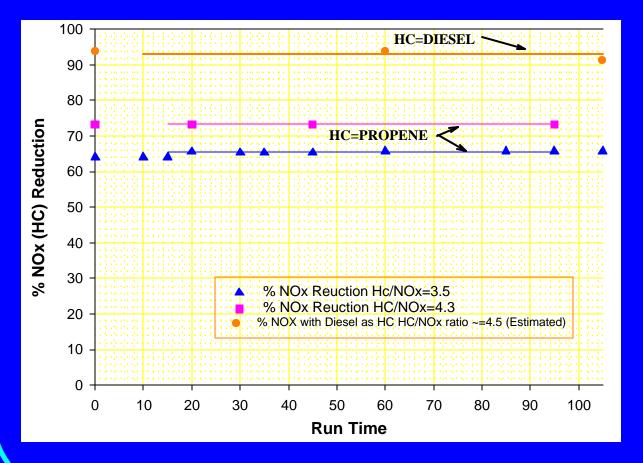
 diesel fuel conversion system: improved performance/design

-Develop & improve catalysts:spheres--> monolith, enhanced performance: space velocity, available surface, selectivity

-plasma reactor----> smaller more efficient

Scale, design 250 Hp system.

Supply 80 hp prototypes for third party evaluation


Plasma Program Accomplishments

- •Demonstrated 94% NOx reduction @30,000 on original design 80 hp system
- Performed parameter studies to obtain design data for advanced unit
- •Resigned, built and currently evaluating an advanced version of the original 80 hp capable prototype.
- •Demonstrated technical viability & improved design/performance of all system components:
 - -Diesel fuel converter: demonstrated ability to use No. 2
 - (500 ppm off-highway) diesel fuel as a reductant
 - -Pulser: converted to solid state major reduction in size and components
 - -Plasma reactor: reduced size, improved efficiency, simplified
 - construction/fabrication

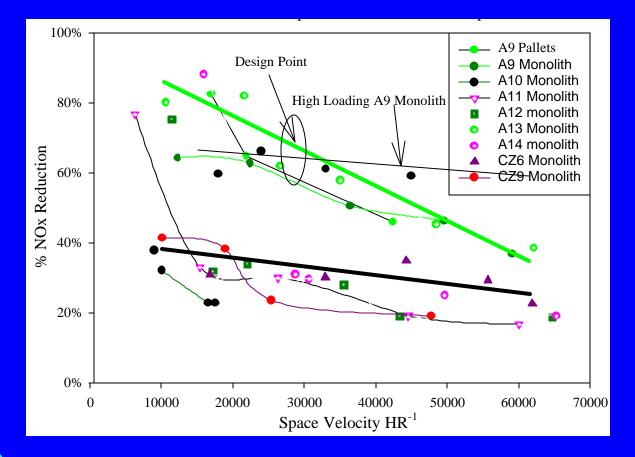
-Demonstrated a sulfur tolerant ceramic catalyst, with broad temperature activation range

Noxtech's 80 Hp Plasma Assisted catalyst system Performance at Steady state with 1988 Cummins 80 Hp Engine

Some data on steady state run with Series B Engine and Diesel and Propene as HC reductant source.

Sp. Plasma energy = 17.5 J/lit :

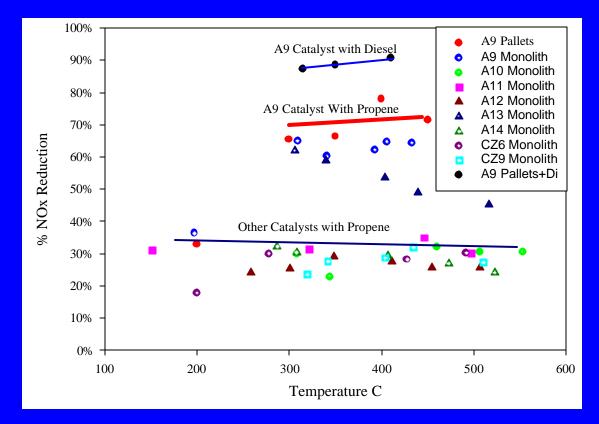
Engine load = 48


Hp: Diesel Exhaust

Conclusion

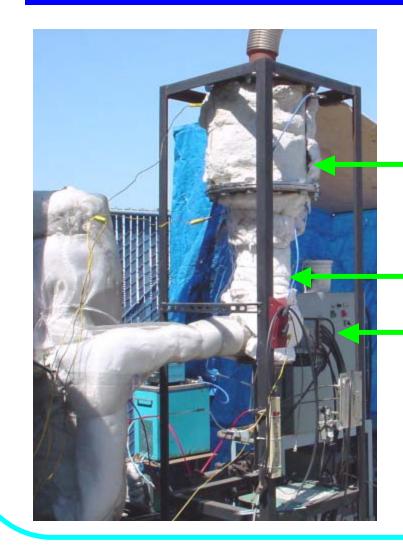
Initial testing shows good NOx reduction can be achieved with PAC system operating with diesel as a reductant source.

NOXTECH


NOx reduction Vs. Space velocity for catalysts tested in phase 2(2002)

HC/NOx Ratio = 5 Temp = 350°C HC source= Propene Simulated gases 300 PPM NOx Feed

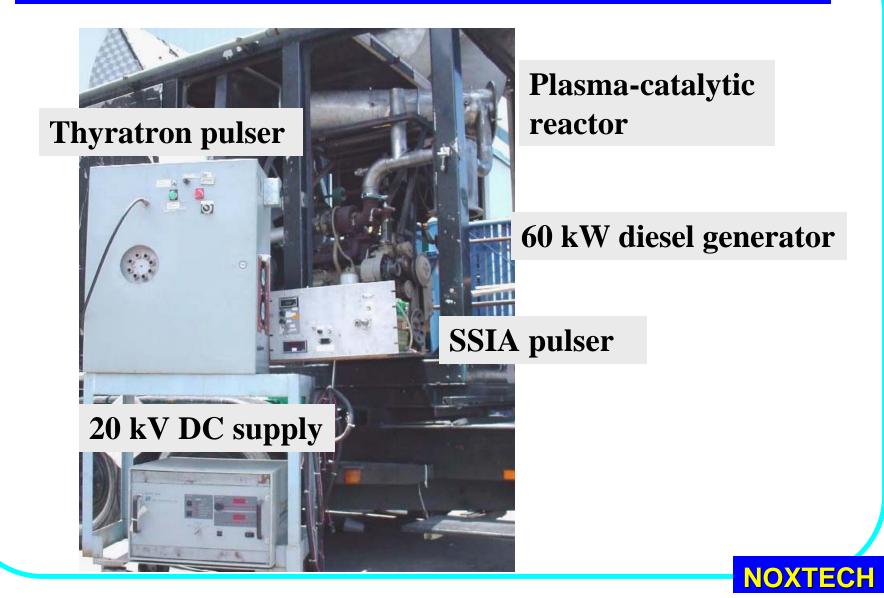
NOXTECH


Temperature vs. NOx Reduction for catalysts tested in phase 2(2002) on a bench reactor

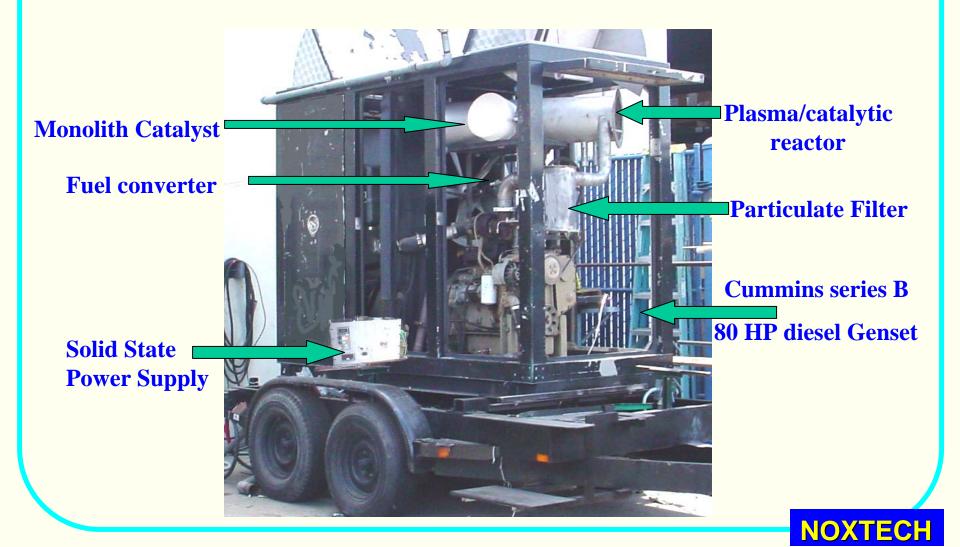
HC source= Propene HC/NOx = 5: NOx feed = 300 PPM Simulated gases Sp. Velocity 30K HR⁻¹

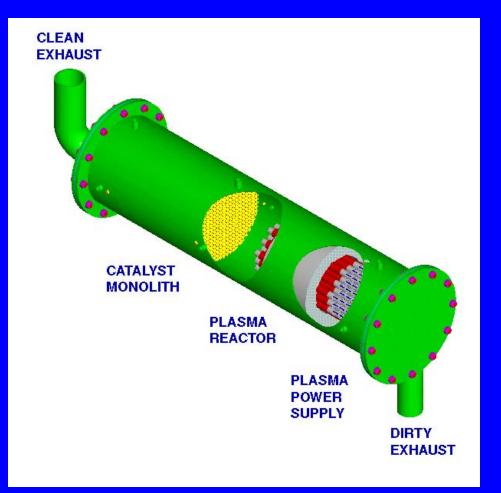
NOXTECH

Initial 80 Hp Plasma Assisted catalyst system


-Catalytic Reactor

Co-axial Plasma reactor


-Thyratron based power supply


Initial Power Supply & Pulser 80 hp Unit

Noxtech Advanced 80 hp Plasma System

NOXTECH'S INTEGRATED 80 HP PAC SYSTEM

Overall 10" OD X 45" Long. Integrated in current 80 Hp Genset. Passive system

Noxtech's Solid-State Pulsers

SSIA: 8 kV, 160 A, 0.5 kW

SSOS: 8 kV, 200 A, 250 W

PLASMA REACTOR FOR 80 HP SYSTEM

Total reactor 7" OD X 12" Length Very High space velocity throughput. Lightweight.

Project Goals & Objectives for 2003

- •Evaluation of advanced 80 hp PAC prototype under transient operation
- •Fabrication and demonstration of 250 hp prototype
- •Third party evaluation of 250 hp prototype
- •Evaluation of 250 hp prototype system under transient operation

•Continue to refine and improve system components: size, performance, efficiency, durability and producability

•Design 450-500 hp PAC prototype

OVERALL PROJECT TIMELINE

2000		2001			2002			20	2003			2004			2005	1	
Task Name	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 Q4	Q	1 Q2	Q3 Q4	l Q1	Q2	Q3	Q4	Q1 Q2	Q3
Project Starts																	
Redesign and Testing of a PAC on a 80 hp Engine																	
Integration of a PAC on a 80 hp Engine																	
Componant Development and testing (additional scope of work)																	
Parametric/Reliability and Durability Testing																	
Transient Testing and Integration of Power Supply with Engine																	
Third Pary Testing																	
Scale-up, Design, Fabrication, Integration and Testing on a 250 hp Engine																	
Design, Fabrication and Installation of a 250 hp PAC system																	
Parametric/Reliability and Durability Testing																	
Transient testing/Third party testing																	
Failure testing and analysis																	
Scale-up, Design, Fabrication, Integration and Testing on a 450-500 hp Engine																	
Design, Fabrication and Installation of a 450-500 hp PAC System												_					
Parametric/Reliability and Durability Testing																1	
Field-Testing of Integrated Plasma/Catalyst Muffler																	
Development of Commercilization Plans														I.			
Project Management and Reporting Efforts																	

PARTNERS

John Deere

- One of the major Diesel engine producer in the world.
- Presence in 160 countries with 37,000 work force.
- \$960 Million dollar profit in 1997 on \$12.79 Billion sales.
- Factories located worldwide.

Mack Trucks Inc.

- Founded in 1900
- One of largest producers of heavy-duty trucks and engines.
- \$105 Million dollar profit in 1998 on \$2.77 Billion sales.
- Factories located worldwide.

Sud-Chemie Prototech

- Part of Süd-Chemie AG of Munich, Germany.
- One of largest producers Catalyst, Specialty Chemicals and industrial minerals.
- Operates 25 Plants in 18 Countries.

ArvinMeritor

NOXTECH

- ArvinMeritor is joining of two companied namely Arvin industries Inc and Meritor Automotive Inc.
- One of the largest producers of OEM and aftermarket automotive parts
- 1999 combined revenue of \$7.6 Billon dollars.

ArvinMeritor

Acknowledgements & Thanks

- DOE: John Fairbanks, Program Manager
- •Mack Trucks, Inc.: Will Miller
- •Sud-Chemie: Amiram Bar-Ilan, YinYan Huang

•Noxtech Team: Barry Bhatt, Scott Blacklock, Jim Cipolla, Artur Martynov, Jeff Marguglio and Victor Puchkarev

