HPC Resource DataStar : A 10TF Power4 + Federation Switch System

Amit Majumdar

(majumdar@sdsc.edu)

Scientific Computing Applications Group San Diego Supercomputer Center University of California San Diego

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

SDSC

- A NSF center with compute and data resources allocated *freely* through peer review process
- One of the emphasis of SDSC for national Cyberinfrastructure initiative is Data intensive computing
- Acquired Datastar (DS) at the beginning of the year to replace Bluehorizon (BH) as the main compute engine
- Per NSF guidance we are planning on procuring our next big machine in FY06

DataStar

- 10.1 TF, 1760 processors total
- 11 32-way 1.7 GHz IBM p690s
 - 2 nodes 64 GB memory for login and interactive use
 - 6 nodes 128 GB memory for scientific computation
 - 2 nodes 128 GB memory for database, DiscoveryLink
 - 1 node 256 GB memory for batch scientific computation
 - All p690s connected to Gigabit Ethernet with 10 GE coming soon

176 8-way 1.5 GHz IBM p655

- 16 GB memory
- Batch scientific computation
- All nodes Federation switch attached
- All nodes SAN attached
- Currently 66 TB GPFS will be increased in the near future

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

SANergy Data Movement

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

SDSC

Porting Issues

- We moved from default 32bit to default 64bit
- Fairly easy to port from BH to DS
- Mixed Fortran + C/C++ codes encountered some trouble

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Initial Setup Difficulties

- Substantial jump in weight, power and cooling load for DS compared to BH
- Memory and performance leak
 - Fixed through NFS automounts
 - Removing unnecessary daemons
- Problems related to GPFS over SAN
 - Upgrade of IBM FC adapters, Brocade switches and SUN disks
- Loss of processors, memory, cache
- HMC issues
- Federation issues

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

SAN DIFGO SUPERCOMPL

Large Scale Pre-production Computing

- 100k to 200k hours per project
- Onuchic, UCSD: Study the folding kinetics of a beta hairpin at room temperature in explicit water
- Yeung 2048**3 turbulence run
- Goodrich, BU 3D calculation of the shearing and eruption of solar active regions on 201 x 251 x 251 mesh
- Richard Klein, UCB: dynamical evolution, gravitational collapse and fragmentation of large turbulent molecular cloud in the galaxy
- NREL, Cornell: Cellulose project, 1 million atom CHARMM simulation of protein interactions

Performance Analysis

- All codes are 64bit compiled
- Still some problems, so the results may not be the best
- All the runs are done on 1.5GHz P655s
- NAS benchmarks CG, FT, LU and MG
- Applications ENZO

BH Versus DS Latency and Bandwidth

	MPI	Latencies (usec)		Bandwidth (MB/s)	
		BH	DS	BH	DS
 Intra 	-node	12.68	3.9	512.2	3120.4
 Inter 	-node	18.6	7.56	353.6	1379.1

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Bisection Bandwidth

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

MPI Barrier Performance (Federation)

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

MPI Broadcast Performance

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Unusual Bcast Behavior

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

NPACI

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Basic MPI Performance

 Understanding the raw MPI call performance (message size, No. of PEs) is useful to interpret real applications using MPI traces

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

GPFS Performance

- Metadata performance
- File read, write performance
- MPI_tile_io (IOR, Pallas MPI I/O, MDTEST)
- Each processor writes one rectangular tile
 - 16 bytes per element
 - each tile is 1000 x 1000 elements
- 1024PE run writes 32X32 tiles: 16GB file

GPFS Performance (MPI I/O)

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

NAS Benchmarks: Strong scaling

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

NAS Benchmarks: strong scaling

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

NAS Benchmarks: strong scaling

- DS %peak is more flat than BH due to the better bandwidth
- Initially %peak increases due to cache effects and then drops due to communication over heads
- Sparse matrix codes give the worst %peak and dense matrix codes gives the best %peak

Application Benchmarks

- ENZO: Astrophysics code
 - Consumes 1 Million hours on Datastar

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Original Enzo Performance on DS,BG/L

Improved Enzo Performance on BH and DS

Datastar Summary

- Datastar has become stable with good performance
- DS Federation switch and GPFS performance is significantly improved compared to BH
- P690s can be used for pre/post processing of large memory runs – no need to switch to different machine

Blue Gene/L

- We are looking into getting a 1-rack Blue Gene/L system – this is not finalized, not official yet
- If we do get this 1-rack system, a possible configuration would be 1024 nodes, 2.7/5.4 TFLOP peak speed, 0.5 GB memory/node, and 128 I/O nodes making compute to I/O node ratio 8:1 (LLNL BG/L this ratio is 64:1)
- The machine will be used initially for benchmarking performance of various applications from SDSC and ASCI alliance

