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Lattice model of equilibrium polymerization. IV. Influence of activation,
chemical initiation, chain scission and fusion, and chain stiffness
on polymerization and phase separation
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The influence of thermal activation, chemical initiation, chain fragmentation, and chain stiffness on
basic thermodynamic properties of equilibrium polymerization solutions is systematically
investigated using a Flory–Huggins type lattice model. The properties treated include the average
chain lengthL, extent of polymerizationF, Helmholtz free energyF, configurational entropyS,
specific heatCV , polymerization transition temperatureTp , osmotic pressureP, and the second and
third virial coefficients,A2 and A3 . The dependence of the critical temperatureTc and critical
compositionfc ~volume fraction of associating species! on the enthalpyDhp and entropyDsp of
polymerization and on the strengtheFH of the FH effective monomer–solvent van der Waals
interaction (x5eFH/T) is also analyzed as an illustration of the strong coupling between phase
separation and polymerization. For a given polymerization model, bothTc andfc , normalized by
their values in the absence of polymerization, are functions of the dimensionless ‘‘sticking energy’’
he[(uDhpu/R)/(2eFH) ~where R is the gas constant! and Dsp . © 2003 American Institute of
Physics. @DOI: 10.1063/1.1625642#
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I. INTRODUCTION

Our recent series of papers1–3 stresses that the gener
nature of the thermodynamic properties of reversibly ass
ating particle and molecular systems can be inferred from
behavior of the classic example of ‘‘living polymerization
in solution. This focus on living polymerization is dictate
by the availability of careful measurements for this type
complex fluid4,5 and by the relative simplicity of the unde
lying mean field theory that restricts itself to chain grow
occurring exclusively at the chain ends due to the presenc
a chemical ‘‘initiator.’’ Of perhaps more far reaching impl
cations, we have argued1–3 that this model is generally rep
resentative of other associating particle systems becaus
equilibrium condition should make the details of chain co
nectivity and the mode of cluster growth and fragmentat
of secondary significance in mean field theory. While mu
physical evidence supports these arguments, it remain
establish the correctness of this ‘‘universal’’ view of the the
modynamics of equilibrium particle clustering through t
systematic treatment and comparison with other models
equilibrium polymerization in which there are different co
straints on the polymerization process. These different c
straints are very relevant to descriptions of clustering in co
plex fluids that polymerize without the presence of chemi
initiators, which are essential components of the model a
lyzed in Papers I–III. In particular, we focus in this paper
the influence of activation, chemical initiation, and cha

a!Electronic mail: k-freed@uchicago.edu
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stiffness on the general thermodynamic properties of equ
rium polymer solutions and, specifically, on the competiti
between chain formation and phase separation. A subseq
paper will describe how constraints on chain topology~i.e.,
branching! affect the same thermodynamic and critic
properties.6

Dynamic clustering of atomic and particle systems
equilibrium is ubiquitous in nature,1 and consequently nu
merous studies have emphasized various aspects of this
nomenon since the pioneering work of Dolezalek7 nearly a
century ago. Fisher and Zuckerman8 review the evolution,
impact, and difficulties in modeling this type of associati
phenomenon in the context of ionic solutions where the pr
ence of clustering has long been appreciated. Gee9 and
Tobolsky and Eisenberg10,11 made pioneering contribution
to modeling the equilibrium polymerization of linear poly
mer chains, and the history of this topic is summarized
Petscheket al.12 and Greer.4,5 Associating fluids are also ex
tensively discussed in the chemical engineering literatu
For example, Economou and Donohue13 discuss the use o
integral equation theories for associating fluids and the in
relations between chemical association models of these
ids. Highly informative simulations of equilibrium polymer
ization by Jacksonet al.14 and Milchev and co-workers15,16

are also notable. The influence of fluctuations on the criti
behavior of activated and initiated equilibrium polymers h
been investigated by Wheeler and co-workers,17–22and Cates
and co-workers23,24 present scaling arguments indicatin
how excluded volume interactions affect chain properties

Our studies of equilibrium polymerization owe a partic
5 © 2003 American Institute of Physics
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lar debt to Tobolsky and Eisenberg10,11 and Scott25 who in-
troduce a general classification scheme into their mode
of equilibrium polymerization and the competition betwe
phase separation and chain association in activated poly
ization systems. These early investigations focus on mo
ing the polymerization process in particular physical s
tems, such as sulfur,25 and many basic aspects of th
coupling between polymerization and phase separation
main to be investigated analytically. Given the importance
this type of model as a paradigm for molecular se
organization, there is a need for systematic investigation
how the general classes of polymerization~thermally acti-
vated, chemically initiated, and freely associating!,10 influ-
ence the critical solution properties (Tc ,fc), the transition
lines governing the location of the polymerization transitio
and essential thermodynamic solution properties~osmotic
pressure, theta temperature, second and third osmotic v
coefficients, etc.!. This kind of information is required for
identifying the mechanism of polymerization occurring
real systems and for determining the relevant interaction
rameters governing these transitions. We are particularly
terested in dynamic clustering in connection with und
standing the thermodynamics and the stability
nanoparticle dispersions in polymeric materials, polyelec
lyte solutions, and colloid dispersions. Many aspects of
theory are developed here for future applications to th
complex fluids, although these applications are not explic
discussed in the present paper. For example, a sep
paper26 considers phase separation in associating dipolar
ids, and the free energy expression derived here is an im
tant component of that work. Our comparative study of th
associating fluids confirms the presence of certain gen
patterns in the thermodynamic properties, but also emp
sizes the regulatory effect of the activation and chemical
tiation processes on the average mass distribution of
polymers that are formed and on the breadth of the polym
ization transition. We systematically investigate the imp
of these ‘‘constraints’’ on the polymerization transition
resolve further which solution properties are ‘‘universal’’
specific to a particular type of polymerization process.

Section II describes the simplest model of an associa
fluid in which all monomers can associate with each ot
without either activation or chemical initiation. Section I
summarizes the essential results for the thermodyna
properties of polymer solutions undergoing equlibrium po
merization controlled by an activation process. Notab
within the Flory–Huggins~FH! model,27 the thermodynamic
properties in both models of Secs. II and III are found to
completely insensitive to the mode of linear association~i.e.,
to whether the chains grow by adherence of monomers to
chain ends or by linking two chains at their ends and
whether the chains may break in the middle or lose term
segments!. The theoretical expressions for a wide range
thermodynamic properties are derived for the two extrem
of chain semiflexibility, i.e., for fully flexible and stiff chains
The free association model of Sec. II is shown to emerge
a special case of the activated association model. For c
pleteness, Sec. IV briefly reviews some basic thermodyna
characteristics of the chemically initiated equilibrium pol
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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merization model~‘‘living polymerization’’ ! that is the sub-
ject of our earlier papers.1–3 This review also includes som
new results~e.g., third virial coefficient, asymptotic analys
of the critical temperature and critical composition, etc!.
Section V provides a critical comparison of these basic eq
librium polymerization models.

Before developing the theory, we summarize some of
assumptions invoked. The treatment is based on a mean
FH lattice model description for the thermodynamics
these associating polymer solutions where the difference
the solvent and monomer structure are neglected and w
the solutions are assumed to be incompressible. The equ
rium polymerization models developed here employ
minimal number of parameters necessary to distinguish
tween different classes of polymerization. Many possible
tensions simply follow from improvements of the F
theory.27 For example, structural differences between spec
can be treated using the lattice cluster theory generaliza
of the FH model.28 We neglect orientational interactions th
are important for semiflexble chains at high
concentrations.29

II. ‘‘FREE ASSOCIATION’’ MODEL

The simplest possible model of equilibrium polymeriz
tion postulates that each molecule or particle can assoc
with another monomer or polymer chain. This polymeriz
tion model corresponds to case III in the general classifi
tion scheme of Tobolsky and Eisenberg10 and is popular as
an approximate model of worm-like micelles.30 Recently,
this model has also been used to describe dynamic cluste
in ionic fluids comprised of ions and counterions of high
disparate sizes.31

The system studied is composed ofns solvent molecules
and n1

o monomers of speciesM that can ‘‘freely associate’’
into polymers once the free energy of this association p
cess becomes negative. The resulting polymers form and
integrate in dynamic equilibrium, and attention is confined
the time-averaged properties of these complex fluids.

The free association model places no restrictions on
mechanism of chain formation and disintegration, so t
chain growth may proceed by addition of a single monom
or by the linkage of two chains. Similarly, chains may bre
in the middle, or segments may dissociate from the ch
ends. The two modes of polymerization can be character
by the single kinetic equation,

M j1Mk
M j 1k , j ,k51,2,. . . ,`. ~1!

The numbers of molecules$ni% of the individual speciesMi

are related to the initial number of monomers,n1
o by the mass

conservation condition,

n1
o5(

i 51

`

ini . ~2!

The thermodynamic properties of the system are
scribed using a minimal incompressible Flory–Huggins l
tice model, where a single site occupancy constraint app
to solvent molecules and to all monomers~unreacted as wel
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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12647J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Lattice model of equilibrium polymerization. IV
as those in the polymers!. Thus, the total numberNl of lattice
sites is written in terms of the numbers of molecules$ni% of
the individual speciesMi as

Nl5ns1(
i 51

`

ni i 5ns1n1
o , ~3!

and the total Helmholtz free energyF for the system is given
by

F

NlkBT
5fs ln fs1(

i 51

`
f i

i
ln f i1fsx(

i 51

`

f i1(
i 52

`

f i f i ,

~4!

wherefs5ns /Nl512f1
o and$f i5ni i /Nl% denote the vol-

ume fractions of the solvent and ofi -mers, respectively.x
5eFH/T is the dimensionless monomer–solvent interact
parameter,f i is the dimensionless specific free energy of
i -mer, andkB is Boltzmann’s constant. For simplicity, a
monomers are assumed to interact identically with the
vent molecules, regardless of whether they are unpolym
ized or belong to polymerized species. Hence, the effec
interaction parameterxmm8 between unreacted monome
and the monomers in polymers is taken to vanish identica
The specific free energyf i is quoted in the following, while
the quantitiesf 1 and f s are taken as vanishing identical
since both solvent and monomer species are treated as
ties occupying single lattice sites. The latter assumption
plies, in turn, that the internal entropies of both solvent a
monomer molecules define our zero of entropy, so that
entropies computed from Eq.~4! arenot absolute quantities
The mass conservation constraints from Eq.~2! can be reex-
pressed conveniently in terms of volume fractions as

f1
o5(

i 51

`

f i , ~5!

wheref1
o5n1

o/Nl is the volume fraction of monomers befo
polymerization.

The condition of chemical equilibrium imposes the re
tion between the chemical potentialsm j , mk , and m j 1k of
the M j , Mk , andM j 1k species, respectively,

m j1mk5m j 1k , j ,k51,2,. . . ,`. ~6!

Equation~6! can be rearranged into the simpler relation

m i5 im1 , i 52,3,. . . ,`. ~7!

that formally corresponds to the following sequential po
merization scheme:

Mi1M1
Mi 11 , i 51,2,. . . ,`. ~8!

The equivalence of Eqs.~6! and ~7! explicitly demonstrates
that the equilibrium properties predicted by the free asso
tion model arecompletely insensitiveto whether the chains
grow by addition of single monomers to the chain ends or
linking two chains and whether they break at their ends o
the middle. In fact, this insensitivity is implicit in Eq.~1!.
The chemical potentials$m i% can be calculated directly from
the free energy of Eq.~4! as
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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m i2 ims5
]F

]ni
U

T,Nl ,nkÞ i

, ~9!

where the exchange chemical potentialm i
ex[m i2 ims ~with

ms being the solvent chemical potential! emerges from Eq.
~4! as a consequence of the assumed incompressibility o
system. After simple algebra, the equilibrium condition
Eq. ~7! takes a form in which thems terms cancel identically,
leading to the simple result

lnF f i

f1
i G5 i 212 i f i , i 52,3,. . . ,`. ~10!

It is possible within FH theory27 to describe polymer
chains as semiflexible molecules~as in Paper I1!, but for
notational compactness, we present the derivation for the
extreme limits of chain semiflexibility, i.e., for fully flexible
chains and stiff rods. This specialization is chosen beca
the description of these two limits does not require introd
ing an additional parameter, i.e., the energy difference
tweengaucheandtransconformations. The specific free en
ergy f i ( i 52,3,. . . ,`) is obtained from the Flory theory fo
linear, fully flexible polymer chains as

f 25
1

2
lnF 2

2zG112
1

2
1

1

2

D f p

kBT
~11!

and

f i5
1

i
lnF2~z21!2

iz G1
i 21

i
2 ln~z21!1

i 21

i

D f p

kBT
,

i>3, ~12!

wherez is the lattice coordination number andD f p desig-
nates the free energy change due to the polymerization r
tion in Eq.~1!, a modification appended to the Flory speci
free energy in order to describe the free association sys
The necessity of distinguishing betweenf 2 and f i , (i>3) is
obvious since dimers are not flexible objects. Consequen
the f 2 in Eq. ~11! does not contain factors of ln(z21) that
reflect the flexibility of higher order polymers (i>3). In the
limit where all polymers are modeled as stiff rods, Eq.~12! is
replaced by

f i5
1

i
lnF 2

izG112
1

i
1

i 21

i

D f p

kBT
, i>2. ~13!

Combining Eqs.~10!–~13! leads to the compact expres
sion for the volume fractions$f i%,

f i5 iCAi , i>2, ~14!

with the quantityA given by

A[f1~z21!Kp ~ fully flexible chains!, ~15!

A[f1Kp ~stiff chains!, ~16!

where Kp5exp(2Dfp /kBT) is the equilibrium constant for
the polymerization reaction@see Eq.~1!# in the stiff chain
system. A factor of (z21) in Eq. ~15! can be absorbed into
the definition ofDsp for the fully flexible chain model, but
we retain Eq.~15! unchanged for clarity of comparison be
tween systems of flexible and rigid chains. Thus, the equi
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rium constant of reaction~1! in the fully flexible chain sys-
tem is defined as the product ofKp and (z21).

The prefactorC for these two limits of chain stiffnes
has the corresponding definitions,

C[
z

2~z21!2Kp
~ fully flexible chains!, ~17!

C[
z

2Kp
~stiff chains!. ~18!

As shown above, the distribution ofi -mers is insensitive to
the monomer–solvent interaction parameterx and is solely
governed by the temperature, inital monomer concentra
f1

o , energyDhp , and entropyDsp of polymerization (D f p

5Dhp2TDsp). The insensitivity of$f i% to the presence o
weak van der Waals interactions no longer applies32 when we
distinguish between polymer–solvent and monomer–solv
interactions or assume a non-vanishing monomer–poly
interaction parameterxmp[xmm8Þ0.

Substituting Eq.~14! into Eq. ~5! and performing all the
summations~with the constraint 0,A,1) yield the impor-
tant relation betweenf1

o andf1 ,

f1
o5f11

CA2~22A!

~12A!2 . ~19!

This nonlinear equation must be solved numerically to de
mine f1 as a function ofT andf1

o .
After inserting Eq.~14! and performing the summation

in Eq. ~4!, the Helmholtz free energyF for the system re-
duces to the following form:

F

NlkBT
5~12f1

o!ln~12f1
o!1f1

o ln f1

1~12f1
o!f1

ox1
CA2

~12A!2 , ~20!

which specifiesF for a given set of parametersT, f1
o , eFH,

Dhp , and Dsp . ~Note thatA is proportional tof1 .) The
basic thermodynamic properties, such as internal energU
(5enthalpyH within an incompressible FH model!, specific
heatCV (5CP), and entropyS of the system follow from
Eq. ~20! as standard derivatives of the free energyF,

U

NlkBT
5

1

NlkBT

]@F/~kBT!#

]@1/~kBT!#
U

Nl

5~12f1
o!f1

ox1
CA2

~12A!2

Dhp

kBT
, ~21!

S

NlkB
5

1

Nl

]F

]T U
Nl

52~12f1
o!ln~12f1

o!2f1
o ln f1

1
CA2

~12A!2 FDhp

kBT
21G , ~22!

and
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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NlkB
5

1

NlkB

]U

]T U
Nl

5S Dhp

kBT D 2 2CA2

~12A!3 F f1
o

f1
o1

2CA2

~12A!3

2
12A

2 G .

~23!

Following conventional usage, the enthalpy of polymeriz
tion Dhp is called the ‘‘sticking energy.’’ Equation~22!
yields the entropy relative to that of unpolymerized mon
mers in solution rather than the absolute entropy, and, th
this relative entropy may be negative. The polymerizat
transition temperatureTp is defined by the maximum in the
specific heatCV(T), and the variation ofTp with f1

o is
termed a ‘‘polymerization transition line.’’ For systems th
polymerize upon cooling, the monomers, generally, rem
largely unpolymerized aboveTp , while significant polymer-
ization occurs forT<Tp . The reverse situation ensues f
systems that polymerize upon heating. The interpretation
the polymerization line as a boundary between the mono
rich and polymer rich ‘‘phases’’ becomes less adequate w
the polymerization transition is very broad, as occurs in
free association model. The polymerization temperatureTp

determined from the maximum ofCV(T) departs signifi-
cantly from the ideal polymerization temperatureTp

(o) pre-
dicted by the Dainton–Ivin equation,33

Tp
(o)5

Dhp

Dsp1kB ln f1
o , ~24!

which is often assumed to describe associating syst
generally.34 Large deviations ofTp from Tp

(o) for other poly-
merization models are discussed in Sec. V.

Other basic properties of associating polymer solutio
are the extent of polymerizationF and the average chai
lengthL[^ i &. The former quantityF is defined as the frac
tion of monomers converted into polymers,

F[
f1

o2f1

f1
o 5

1

f1
o

CA2~22A!

~12A!2 . ~25!

The variation ofF with T at a givenf1
o is always monotonic

because the sign of the derivative,

]F

]T U
f

1
o
5F 1

f1
oT

2CA2f1

~12A!3f1
o12CA2G Dhp

kBT
,

0,A,1, C.0,

is dictated by a sign of the ‘‘sticking energy’’Dhp . The
extent of polymerization increases withT whenDhp.0 ~po-
lymerization upon heating! and decreases monotonical
with T when Dhp,0 ~polymerization upon cooling!. The
average chain lengthL is determined from an average ov
all monomer containing species in the system
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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L[
( i 51

` f i

( i 51
`

f i

i

5
f1

o

f1
o2

CA2

~12A!2

. ~26!

Equations~25! and ~26! imply that the average chain lengt
L and the extent of polymerizationF are related to each
other as,

L5
22A

22A2F
. ~27!

The variation ofL(T) for a givenf1
o is likewise monotonic

since the sign of the derivative]L/]T is also controlled by
the sign ofDhp . For polymerization upon cooling, the ave
age chain lengthL in the low temperature regime (T!Tp)
exhibits the well-known scaling23–25 L;(f1

o)1/2

3exp@2Dhp /(2kBT)# ~see the Appendix!, so thatL only di-
verges in this model asT→01. While many properties tha
characterize the polymerization transition of associating
lutions, such as those defined by Eqs.~21!–~23! and ~25!–
~26!, are independent of the Flory–Huggins interaction p
rameter x, other thermodynamic quantities, such as
osmotic pressure, second virial coefficient, theta temperat
and critical temperature and critical composition~for phase
separation!, are strongly influenced by bothx and the free
energy parametersDhp and Dsp . We now summarize the
essential thermodynamic relations for some of these pro
ties.

The osmotic pressureP can be evaluated from th
Helmholtz free energyF as

Pa3

kBT
52

a3

kBT

]F

]V U
T,n

1
o

52
1

kBT

]F

]ns
U

T,n
1
o

52 ln~12f1
o!2~f1

o!2x2
CA2

~12A!2 , ~28!

with a35V/Nl being the volume associated with a sing
lattice site. Expanding the logarithmic term of the right-ha
side of Eq. ~28! around f1

o→0 and rearranging the rati
CA2/(12A)2 into a series expansion inf1

o yield the osmotic
virial expansion,

Pa3

kBT
5f1

o1~f1
o!2A21~f1

o!3A31¯ , ~29!

where the second (A2) and third (A3) virial coefficients are
identified as

A25~1/2!2x~T!2C~T!G~T!2, ~30!

and

A35~1/3!12C~T!G~T!3@2C~T!G~T!21#, ~31!

with the notationC(T) used forC of Eqs. ~17! and ~18! to
emphasize its temperature dependence. The factorsG(T) are
defined as

G[~z21!Kp ~ fully flexible chains!,
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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G[Kp ~stiff chains!.

The productsC(T)G(T) in Eqs.~30!–~31! represent the ef-
fective contributions to the virial coefficients which aris
from association. The theta temperature is defined as
temperature at whichA2 vanishes identically and may b
obtained numerically from Eq.~30!.

Equations~19! and~20! indicate that the free associatio
model formally contains only one independent composit
variable (f1

o), which implies that the stability condition fo
the existence of a stable homogeneous phase is simply

]2F/~NlkBT!

]f1
o2 U

Nl ,T

.0.

Calculating the second derivative ofF with respect tof1
o

and equating it to zero produce the constant volume spino
curvesT5T(f1

o) as the solution of

1

f1
o1

2CA2

~12A!3

1
1

12f1
o 22x50, ~32!

where the quantityA5A(f1
o ,T) or, equivalently, the com-

positonf15A/G of unreacted monomers is determined n
merically from the mass conservation condition in Eq.~19!.

A maximum~or minimum! of the spinodal curve define
the critical temperatureTc and critical compositionfc

[(f1
o)c . Knowledge of the critical parametersTc andfc in

conjunction with Eq.~28! enables calculating the critical os
motic compressibility factorZc5Pca

3/(kBTcfc), another
important thermodynamic quantity for associating system

The spinodal condition in Eq.~32! can be transformed to
the following form:

1

f1
oF11

2~121/L !

12A G 1
1

12f1
o 22x50, ~33!

which evidently resembles the spinodal condition for po
mer solutions. In the absence of polymerization (L51, A
50), Eq. ~33! coincides with the spinodal equation for th
monomer–solvent system. Since (12A) is positive for all
compositionsf1

o and temperaturesT, the coefficient that
multiplies f1

o in Eq. ~33! is also positive, and, consequentl
both Tc and fc of the free association system are well d
fined as long as the exchange energyeFH ~reflecting the net
short range, isotropic interaction between the associa
species and solvent! is positive. A more precise analysis~see
the Appendix! demonstrates that the critical compositionfc

scales witheFH in the low temperature regime (Tc!Tp) as

fc;F 1

exp@2D f p /~2kBeFH!#G
1/5

,

Dhp,0, Dsp,0, Tc!Tp .

The above scaling, when reexpressed in terms of the ave
degree of polymerizationL,

fc;L22/5, Dhp,0, Dsp,0, Tc!Tp , ~34!

exhibits a departure from well-known prediction of F
theory27 for monodisperse polymer solutions,fc;N21/2,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with N denoting the polymerization index. The scaling in E
~34!, however, is close to the observed scaling betweenfc

and chain length in real polymer solutions, where an ex
nent near20.4 is found.35 The critical temperatureTc is
positive for any positiveeFH and smoothly approaches ze
aseFH→0,

Tc.2eFH, Dhp,0, Dsp,0, Tc!Tp , ~35!

coinciding, of course, with the the critical temperature
polymer solutions in the limit of infinite molecular weigh
polymers.27

III. ACTIVATED EQUILIBRIUM POLYMERIZATION

Many physical systems undergo secondary kinetic p
cesses that serve to regulate the dynamic clustering pro
For example, the polymerization of sulfur begins with t
activation step involving the opening of theS8 ring, a nec-
essary kinetic event that ‘‘activates’’ the monomer species
subsequent polymerization.25 The propagation of monomeri
G-actin to F-actin filaments is believed to require conform
tional transitions in the G-actin monomer to activate t
monomer for further association.36 Simulations of ionic
fluids31 suggest that ion-pairing occurs as a prelude to s
sequent clustering of dipolar and quadrupolar species
linear and branched polymer species. The activated equ
rium polymerization corresponds to case II in the classifi
tion scheme10 of Tobolsky and Eisenberg. We generalize th
former treatment by introducing chain stiffness and solv
quality effects into a systematic description of all thermod
namic properties, including the coupling between ph
separation and clustering.

The simplest model of activated polymerization emerg
from considering the minimal reaction scheme,10

M1
M1* , ~36!

M1* 1M1
M2 , ~37!

Mi1M1
Mi 11 , i 52,3,. . . ,`, ~38!

in which the activated speciesM1* reacts only with nonacti-
vated monomersM1 to form dimers. Alternatively, only ac
tivated monomers and polymers can participate in the ch
propagation processes,

M1
M1* , ~39!

M1* 1M1*
M2 , ~40!

Mi1M1*
Mi 11 , i 52,3,. . . ,`. ~41!

The description of equilibrium polymerization in Eqs.~39!–
~41! is mathematically isomorphic to that corresponding
Eqs. ~36!–~38! because both models become identical up
introducing an appropriate redefinition of the correspond
free energy parameters as discussed in the following. M
over, the free association model is evidently a limit of E
~39!–~41! where the activation process in Eq.~39! is as-
sumed to proceed to completion.

The reaction scheme in Eqs.~36!–~38! is further speci-
fied by designating D f a5Dha2TDsa and D f p5Dhp

2TDsp as the free energies of activation and polymeri
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tion, respectively, and by taking, for simplicity, both the e
thalpiesDhp and entropiesDsp associated with dimer forma
tion @Eq. ~37!# and with the propagation process@Eq. ~38!# as
identical. The Helmholtz free energyF of the equilibrium
system ~consisting of nonactivated monomers, activat
monomers, and polymers! is given by

F

NlkBT
5fs ln fs1f1* ln f1* 1(

i 51

`
f i

i
ln f i1fsf1* x

1fsx(
i 51

`

f i1f1f 1* 1(
i 52

`

f i f i . ~42!

Equation~42! differs from Eq. ~4! for the free association
model by the appearance of the terms associated with
presence of the activated monomers whose volume frac
and dimensionless specific free energy are denoted byf1*
and f 1* , respectively. For simplicity, short range van d
Waals interactions are represented in Eq.~42! @as in Eq.~4!#
by a single interaction parameterx that describes the averag
effective interactions between the solvent and monomers~in-
cluding activated ones! of the associating speciesM .

The specific free energies$ f i% emerge from the FH
theory27 as

f 150, f 1* 5
D f a

kBT
, ~43!

f 25
1

2
lnF 2

z 2G112
1

2
1

1

2
D f p

1
1

2

D f a

kBT
~ fully flexible chains!, ~44!

f i5
1

i
lnF2~z21!2

z i G1
i 21

i
2 ln~z21!1

i 21

i

D f p

kBT

1
1

i

D f a

kBT
, i>3 ~ fully flexible chains!, ~45!

and

f i5
1

i
lnF 2

z iG112
1

i
1

i 21

i

D f p

kBT
1

1

i

D f a

kBT
,

i>2 ~stiff chains!, ~46!

while the chemical potentials$m i% of the individual species
can be evaluated from the free energy in Eq.~42!. Applying
the equilibrium conditions@see Eq.~7!# appropriate for the
reactions in Eqs.~36!–~38! yields the distribution of volume
fractions$f i%,

f1* 5f1Ka , Ka5exp~2D f a /kBT!

and

f i5 iCAi , i>2. ~47!

The quantitiesA andC are given by

A[f1~z21!Kp ~ fully flexible chains!, ~48!

A[f1Kp ~stiff chains!, ~49!

and
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C[
z

2~z21!2

Ka

Kp
~ fully flexible chains!, ~50!

C[
z

2

Ka

Kp
~stiff chains!. ~51!

whereKa5exp(2Dfa /kBT) denotes the equilibrium constan
for monomer activation @see Eq. ~36!# and Kp5exp
(2Dfp /kBT) designates the equilibrium constant for polyme
ization @see Eqs.~37! and ~38!# in the stiff chain system.
@The earlier assumption of identical free energy parame
for dimerization—Eq. ~37!—and chain propagation—Eq
~38!—implies an identicalKp for these two processes.# The
equilibrium constant of reactions~37! and ~38! in the fully
flexible chain system is defined as the product ofKp and
(z21).

The existence of equilibrium conditions analogous
those characterizing the free association model implies
validity of an alternative polymerization mechanism
which chains can also form~or break! through chain cou-
pling ~or scission!. Hence, Eq.~38! may be generalized to th
reaction scheme,

M j1Mk
M j 1k , j 52,3,. . . ,`, k51,2,. . . ,`.

Notice that Eq.~47! has the identical form as Eq.~14!. More-
over, Eqs.~48!–~51! reduce to the free association mod
Eqs. ~15!–~18! when D f a50 ~i.e., Ka51), as they must.
This formal identity does not imply, however, thatA and
$f i% have the same values for these two models since
mass conservation constraint for the activated associa
model,

f1
o5f1@11Ka#1

CA2~22A!

~12A!2 , ~52!

contains the extra termf1* 5f1Ka that is absent in Eq.~19!.
Additional differences arise, of course, from the various d
nitions of the prefactorC @compare Eqs.~50! and ~51! with
Eqs.~17! and ~18!#. Surprisingly, the Helmholtz free energ
of Eq. ~42! reduces@after inserting Eq.~47! and performing
the summations# to the simple form

F

NlkBT
5~12f1

o!ln~12f1
o!1f1

o ln f1

1~12f1
o!f1

ox1
CA2

~12A!2 , ~53!

which does not explicitly contain the volume fractionf1* .
Equation~53! is formally identicalto Eq. ~20!.

The internal energyU, specific heatCV , and entropyS
of the system are represented, however, by more len
formulas than the corresponding Eqs.~21!–~23!,

U

NlkBT
5

1

NlkBT

]@F/~kBT!#

]@1/kBT#
U

Nl

5~12f1
o!f1

ox1
CA2

~12A!2 S Dhp

kBT
2

Dha

kBT D
1~f1

o2f1!
Dha

kBT
, ~54!
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NlkB
5

U

NlkBT
2

F

NlkBT

52~12f1
o!ln~12f1

o!2f1
o ln f1

1
CA2

~12A!2 FDhp

kBT
2

Dha

kBT
21G

1~f1
o2f1!

Dha

kBT
, ~55!

and

CV

NlkB
5

1

NlkB

]U

]T U
Nl

5S Dhp

kBT
2

Dha

kBT D 2 2CA2

~12A!3 F f1
o

f1
o1

2CA2

~12A!3

2
12A

2 G
1S Dha

kBT D 2 f1

f1
o1

2CA2

~12A!3

3Ff1
o2f11

2CA2

~12A!3G12S Dhp

kBT
2

Dha

kBT D S Dha

kBT D
3

f1

f1
o1

2CA2

~12A!3

2CA2

~12A!3 . ~56!

SettingDha50 in Eqs.~54!–~56! recovers the free associa
tion model Eqs.~21!–~23!, as it must.

The definitions of the extent of polymerizationF and the
average degree of polymerizationL must explicitly include
the presence of activated monomers,

F[
f1

o2f12f1*

f1
o 5

1

f1
o

CA2~22A!

~12A!2 , ~57!

and

L[
f1* 1( i 51

` f i

f1* 1( i 51
`

f i

i

5
f1

o

f1
o2

CA2

~12A!2

. ~58!

Since the right-hand sides of Eqs.~57! and~58! are the same
as those in Eqs.~25! and ~26!, Eq. ~27!,

L5
22A

22A2F
,

still applies. In contrast to the free association model, E
~57! and~58! indicate that both the extent polymerizationF
and the average chain lengthL are no longer generally
monotonic functions of temperature when an activated p
cess is present. For instance, the temperature derivative oF,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]F

]T U
f

1
o
5

1

f1
oTS f1

o1
2CA2

~12A!3D FDhp

kBT

2CA2f1

~12A!3

1
Dha

kBT

CA2~22A!f1

~12A!2

1S Dhp

kBT
2

Dha

kBT D 2CA2f1*

~12A!3 G ,
0,A,1, C.0, ~59!

may vanish whenDhp and Dha have different or the sam
signs. In the latter case, (]F/]T)uf

1
o50 only if uDhau

.uDhpu.
The identical form of the free energyF for the free as-

sociation and activated association models implies a c
mon expression for the osmotic pressure@see Eq.~28!#,

Pa3

kBT
52 ln~12f1

o!2~f1
o!2x2

CA2

~12A!2 ,

and for the spinodal stability condition@see Eqs.~32! and
~33!#,

1

f1
o1

2CA2

~12A!3

1
1

12f1
o 22x50,

or

1

f1
oF11

2~121/L !

12A G 1
1

12f1
o 22x50.

As already mentioned, this commonality does not lead to
same values ofP, Tc , fc , etc., in these two models due t
the different mass conservation equations determiningA.
The second and the third virial coefficients are given by d
ferent expressions than those in Eqs.~30! and ~31! for the
free association model,

A25
1

2
2x2

CGp
2

~11Ka!2 , ~60!

and

A35
1

3
1

2CGp
3

~11Ka!3 F 2CGp

11Ka
21G , ~61!

whereGp5aKp anda equals to (z21) and 1 for fully flex-
ible and stiff chains, respectively. The validity of Eqs.~32!
and~33! also suggests that the critical point for the activa
association solutions always exists ifeFH is positive. On the
other hand, the asymptotic analysis of the critical proper
~see the Appendix! is no longer analytically tractable becau
of the presence of an additional parameter~i.e., the free en-
ergy of activationD f a). We can distinguish, however, tw
limiting behaviors offc and Tc for activated association
systems. Consider polymerization upon cooling~i.e., Dhp

,0, Dsp,0) in the low temperature regime (Tc!TP) and
assume, for simplicity, that the entropies of activation a
polymerization are identical~i.e., Dsa5Dsp). The first lim-
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iting case emerges whenDha>0. Then, we obtainA→1, L
@1, fc→0, and limeFH→0Tc.2eFH→0, in analogy to the
free association system~and polymer solutions!. Another
limiting case arises whenuDhau>uDhpu, which, in turn, im-
plies A→0, L→1, fc→1/2 and limeFH→0Tc5(1/2)eFH→0,
resembling a monomer–solvent system. Other choices
Dha ~i.e., 0,uDhau,uDhpu) yield the critical composition
fc between 1/2 and 0 and the critical temperatureTc be-
tween (1/2)eFH and 2eFH.37

For completeness, expressions forA andC are quoted in
the following for the activated association model in whi
only the activated monomers and polymers can participat
the chain propagation@see Eqs.~39!–~41!#,

A8[f18~z21!Kp8Ka8 ~ fully flexible chains!,

A8[f18Kp8Ka8 ~stiff chains!,

and

C8[
z

2~z21!2

1

Kp8
~ fully flexible chains!,

C8[
z

2

1

Kp8
~stiff chains!.

The superscript prime is used to distinguish variables fr
the corresponding quantities of the alternative activated
sociation model described by Eqs.~36!–~38!. Both models
predict identical properties upon redefinition of the free e
ergy parameters,

D f a85D f a , Ka8[exp@2~D f a8/kBT!#5Ka , ~62!

and

D f p85D f p2D f a , Kp8[exp@2D f p8/kBT#5Kp /Ka .
~63!

While the analysis in this section is performed assum
equal volumes for solvent molecules and for monomers
the associating species, our recent treatement38 of actin po-
lymerization shows that all equations for the basic therm
dynamic properties are unchaged when the volume rativ
5vm /vs differs from unity, because the parameterv can be
absorbed into the definition ofDsp . This formal insensitivity
of the basic equations tov is also maintained for the othe
association models.

IV. LIVING POLYMERIZATION

In contrast to the free and activated association mod
chain growth in the living polymerization system is induc
by a chemical ‘‘initiator’’ I . This type of polymerization cor-
responds to case I in the classification scheme of Tobo
and Eisenberg10 and has been discussed extensively in o
previous papers.1–3 The equilibrium polymerization of
poly~a-methylstyrene! in methylcyclohexane with sodium
naphthalide as an initiator provides a specific example o
system exhibiting this type of dynamic clusterin
transition.4,5 Here we briefly review some essential chara
teristics of this model and include a description of new pro
erties for completeness and comparison with the other
models of association.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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One possible mechanism for the initiation process
volves a bifunctional dimerM2I 2 as the smallest propagatin
species and postulates that it is formed by an irrevers
reaction,

2M112I→M2I 2 . ~64!

Polymerization proceeds by the successive addition of mo
mersM1 to dimersM2I 2 , trimersM3I 2 , etc., which, accord-
ing to the chemical equlibrium, can sequentially disintegr
as well,

MiI 21M1
Mi 11I 2 , i 52,3,. . . ,`. ~65!

The Helmholtz free energyF of the system is given by

F

NlkBT
5fs ln fs1f1 ln f11(

i 52

`
f i

i 12
ln f i1fsf1x

1fsx(
i 52

`

f i1(
i 52

`

f i f i , ~66!

where f1 , fs512f1
o2f I , and $f i% denote the volume

fractions for the residual~i.e., unpolymerized! monomers,
the solvent, and polymers, respectively, andf I is the initial
composition of initiator. The equilibrium system does n
contain free initiator molecules because of the assumed
versibility of the initiation reaction in Eq.~64!. Again, for
simplicity, we assume that different types of monomers~i.e.,
unpolymerized or belonging to polymers! interact with sol-
vent with the same van der Waals energies and display
preference in the mutual interactions, i.e.,xmm850. Conse-
quently, there is only a single interaction parameterx
5eFH/T in Eq. ~66!. The dimensionless specific free ene
gies$ f i% of i -mers are obtained within FH theory as

f i5
1

i 12
lnF2~z21!2

z~ i 12! G1
i 11

i 12
2 ln~z21!

1
i 21

i 12

D f p

kBT
, i>2 ~ fully flexible chains!, ~67!

and

f i5
1

i 12
lnF 2

z~ i 12!G1
i 11

i 12
2

i

i 12
1

i 21

i 12

D f p

kBT
,

i>2 ~stiff chains!. ~68!

The condition of chemical equilibrium imposes the relati
between the chemical potentials$m i%, m2 , andm1 of i -mers
MiI 2 ( i>3), dimers M2I 2 , and monomersM1 , respec-
tively,

m i5m21~ i 22!m1 , i 53,4,. . . ,`, ~69!

which, in turn, can be converted to mass action form,

lnF f i

f2fm
i 22G5 i 222~ i 12! f i14 f 2 , i 53,4,. . . ,`.

~70!

The relation in Eq.~69! cannotbe rearranged to a form ad
mitting of alternative mechanisms of chain propagation t
involve chain coupling and scission.
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Combining Eqs.~67!–~68! and~70! leads to the equilib-
rium distribution of volume fractions$f i%,

f i5~ i 12!CAi 22, i>2, ~71!

where the quantitiesA andC are defined as

A[f1~z21!Kp ~ fully flexible chains!, ~72!

A[f1Kp , Kp5exp@2D f p /kBT# ~stiff chains!,
~73!

and

C[~1/4!f25~1/2!f I~12A!. ~74!

The initiator compositionf I and the intial monomer compo
sition f1

o are related through the mass conservation con
tion,

f1
o5f11

f I

2

~22A!

~12A!
. ~75!

Equation~75! can be solved analytically forf1 , producing

f15
B2AB224~f1

02f I !G

2G
, ~76!

where the notation

B[11@f1
02~1/2!f I #G, G[aKp , ~77!

is employed with the coefficienta equal to (z21) or 1 for
fully flexible or stiff chains, respectively. After inserting Eq
~71! and performing the summations in Eq.~66!, the Helm-
holtz free energyF for the equilibrium system reduces to th
following form:

F

NlkBT
5~12f1

o2f I !ln~12f1
o2f I !1~f1

o2f I !ln f1

1f1
o2f11~f1

o1f I !~12f1
o2f I !x

1
f I

2 F lnS f I~12A!a2

z D1
D f p

kBT
11G , ~78!

which is equivalent to the more complicated Eq.~3! of Paper
II. The extent of polymerizationF and the average chai
lengthL can be expressed in terms of the quantityA and the
dimensionless initiator concentrationr 5f I /f1

o as

F[
f1

o2f1

f1
o 5

r

2

~22A!

~12A!
, ~79!

and

L[

f11( i 52
` f i

i

i 12

f11( i 52
`

f i

i 12

5
f1

0~12A!

~12A!f1
o2~1/2!f I

, ~80!

while other thermodynamic quanties of the system~such as
the internal energyU, entropyS, or specific heatCV) follow
directly from Eq.~78!,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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U

NlkBT
5

1

NlkBT

]@F/~kBT!#

]@1/kBT#

5~12f1
o2f I !~f1

o1f I !x1Ff1
o2f12

f I

2 G Dh

kBT
,

~81!

S

NlkB
5

U2F

NlkBT
52~12f1

o2f I !ln~12f1
o2f I !

2~f1
o2f I !ln f11Ff1

o2f12
f I

2 G
3FDhp

kBT
21G2

f I

2 F lnS f I~12A!a2

z D
1

D f p

kBT
12G , ~82!

and

CV

NlkB
5

1

NlkB

]U

]T U
Nl

5S Dh

kBTD 2 ~f1
o2f12f I !f1

f1
o2f1A2f I

. ~83!

Equation~83! can be transformed even to a more comp
form involving the temperature derivative of the extent
polymerizationF,

CV

NlkB
5f1

o Dhp

kB

]F

]T U
f

1
o
, ~84!

which clearly demonstrates that the temperatureTp at which
CV(T) has a maximum coincides with the temperatureTF at
which the extent of polymerizationF exhibits an inflection
point ~as a function ofT).22 The temperatureTp andTF no
longer are identical for the free and activated associa
systems because the specific heatCV for these models de
pends on the derivative]F/]T in a more complicated fash
ion. For instance, the specific heat in the free associa
model is given by

CV

NlkB
5f1

o Dhp

kB F ]F

]T U
f

1
o
~12F!2

Dhp

kBT2f1
o

CA2

~12A!2G .

Not only areTp andTF equal for the living polymeriza-
tion system, but both these temperatures approach the
polymerization temperatureTp

(o) of the Dainton–Ivin equa-
tion in ther→0 limit. As noted previously by Kennedy an
Wheeler,22 the magnitude of the peakCV* (r→01) in CV(r
→01) depends only onDhp andTp

(o) ,

CV* ~r→01!

NlkB
5F Dhp

kBTp
(o)G2

.

The specific heat maximumCV* (r→01) is actually insensi-
tive to Dhp , sinceTp

(o);Dhp . Specifically, Eq.~24! implies,

CV* ~r→01!

NlkB
5FDsp

kB
1 ln f1

oG2

,

indicating that only the sum of the entropies of mixing a
polymerization determines the magnitude ofCV* . The loga-
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rithmic term characteristically predominates at lowf1
o , and

thereforeCV* of associating solutions tends to increase w
their dilution.1 This concentration dependence ofCV* is ap-
parently a singular feature of equilibrium polymerization a
can be used to discriminate this kind of particle associat
from phase separation.39

The living polymerization solution is formally a thre
component system characterized by two independent com
sition variablesf1

o andf I . Consequently, the constant vo
ume spinodal condition,40

D[
]2F

]f1
o2U

Nl ,T,f I

]2F

]f I
2U

Nl ,T,f
1
o

2F ]2F

]f1
o]f I

U
Nl ,T

G 2

50,

~85!

involves three types of second-order composition derivati
of the Helmholtz free energyF. After some algebra, Eq.~85!
can be converted to the compact form

1

12f1
o2f I

1
1

f1

]f1

]f1
o U

Nl ,T

1
2~f1

o1f I2f1!2

f I

22x50,

~86!

where the derivative]f1 /]f1
o in Eq. ~85! can be obtained

from Eq. ~76!. Equation~86! resembles the spinodal cond
tion for the free and activation association systems wh
both undergo phase separation~with well-defined critical
composition and critical temperature for any positiveeFH).
This apparent resemblance of the spinodal conditions is
however, sufficient to prove that the critical point also a
ways exists for the living polymerization solution wheneFH

.0. Generally, the spinodalT5T(f1
o ,f I) obtained from Eq.

~86! is a surface, but often it is convenient to consider
projection onto a lineT5T(f1

o) for r 5f I /f1
o fixed. ~Ex-

periments are indeed often performed for systems wit
constant initiator fractionr .4,5,34! Under this assumption, the
critical point for the living polymerization system is dete
mined by the vanishing of the derivative (]D/]f1

o)uNl ,T,f I
,

whereD is defined in Eq.~85!. The constraint,

]D

]f1
o U

Nl ,T,f I

50,

is equivalent to the vanishing of the combination of the th
derivatives ofF,

]3F

]f1
o3 U

Nl ,T,f I

1
]3F

]f1
o]f I

2 U
Nl ,T

S d12

d22
D 2

22
]3F

]f1
o2]f I

U
Nl ,T

S d12

d22
D50 ~87!

with

d12[
]2F

]f1
o]f I

U
Nl ,T

, d22[
]2F

]f I
2U

Nl ,T,f
1
o

.

An asymptotic analysis of Eqs.~87! and~86! is specialized to
the case of polymerization upon cooling (Dhp,0, Dsp,0)
and to the low temperature regime (Tc!Tp) where G@1.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The critical compositionfc is found to be determined exclu
sively by the ratior 5f I /f1

o of the initatior compositionf I

and the initial monomer concentrationf1
o ,

fc5Ar

2F12Ar

2
1OS r

2D G , r !1,

Dhp,0, Dsp,0, Tc!Tp , ~88!

whereas the critical temperatureTc depends on botheFH and
r ,

Tc52eFHH 12S r

2D 1/2

1
3

2 S r

2D1OF S r

2D 3/2G J . ~89!

For small r , Eq. ~89! simplifies to Tc.2eFH(12fc), and
this relation contrasts with Eq.~35! for the free association
system whereTc.2eFH. The independence offc on tem-
perature and the emergence of a nonzerofc , even at a very
low T, accentuates another relevant difference betw
chemically initiated and free association polymerization p
cesses. Equation~88! can be alternatively reexpressed
terms of the low temperature average chain lengthL52/r ,
yielding

fc5L21/22L211O~L23/2!, r !1

Dhp,0, Dsp,0, Tc!Tp , ~90!

which is the~mean field! asymptotic result27 for the critical
composition of a high molecular weight polymer solution
polymerization indexL.

The osmotic pressure is evaluated as

Pa3

kBT
52 ln~12f1

o2f I !1f12f1
o2~1/2!f I

2x~f1
o1f I !

2, ~91!

which is equivalent to Eq.~6! of Paper III. The second viria
coefficientA2 ,

A252x~11r !21~1/2!~11r !22~1/2!r ~12r !G, ~92!

is obtained by expanding the first two terms of Eq.~91!
aroundf1

o→0 and keepingr 5f I /f1
o constant. An alterna-

tive definition ofA2 , that arises from expanding the terms
Eq. ~91! around thef[f1

o1f I→0 limit and keepingf I

constant, is reported in Paper III. The third virial coefficie
A3 , which is not considered in our previous paper,3 is given
by

A35~1/3!~11r !32~1/2!r ~12r !@12~3/2!r #G2, ~93!

whereG is defined in Eq.~77!.

V. CRITICAL COMPARISON OF EQUILIBRIUM
POLYMERIZATION MODELS

Although many characteristics of the equilibrium pol
merization models described in the previous sections exh
broad similarities, the presence of thermal activation
chemical initiation processes greatly affects the breadth
the polymerization transition, the ratedL(T)/dT at which
polymers grow as the temperatureT is varied, and the ulti-
mate average lengthL(T!Tp) of polymers far below the
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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polymerization transition temperatureTp . In this section, we
compare and contrast several basic thermodynamic pro
ties to clarify the extent of their similarity. While the theor
of Secs. II–IV applies for quite general cases of equilibriu
polymerization, the present illustrative analysis is specializ
to systems that polymerize upon cooling (Dhp,0,Dsp,0)
and to stiff chains for comparison and consistency with
results summarized in Papers I–III. The more general tre
ment of systems containing semi-flexible polymer cha
leads to much more complicated theoretical expressions,
to the same qualitative trends in thermodynamic behavio

The free association, chemical initiation, and thermal
tivation models involve different numbers of essential p
rameters governing polymerization and phase separa
The simplest free association~F! model only requires speci
fication of the enthalpyDhp and entropyDsp of polymeriza-
tion. The initiation ~I! model is described by an additiona
variable, the relative initiator concentrationr 5f I /f1

o ,
which is assumed to be constant and independent of the
tial monomer concentrationf1

o . The thermal activation~A!
model is determined by the specification of the enthalpyDha

and entropyDsa for the monomer activation process, in a
dition to the polymerization reaction parametersDhp and
Dsp . Obviously, the specific thermodynamic properties p
dicted by each of these three models generally depend oT,
the initial monomer concentationf1

o , and the strength of the
effective interactioneFH ~which within FH theory describes
the variation of the effective monomer–solvent interacti
parameterx with temperatureT).

Unless otherwise noted, the representative valuesDhp

5235 kJ/mol andDsp52105 J/(mol K) are chosen fo
calculations illustrating and contrasting equilibrium polyme
ization in these three models.@These parameters are tho
determined from extensive experimental investigations of
poly~a-methylstyrene! living polymerization by Greer
et al.4,5# To minimize the number of variables, the entropy
activation Dsa in the A model is taken as identical to th
entropy of polymerization Dsp @Dsp5Dsa52105 kJ/
(mol K)# because these two quantities are anticipated to h
comparable orders of magnitude in many systems. The
tiator concentrationr for the I model is chosen asr
50.0044, which is the value utilized in former studies
poly~a-methylstyrene! solutions.4,5 Finally, the enthalpy of
activationDha is varied between the extreme limits ofDha

50 and Dha5Dhp corresponding to a relatively low an
high equilibrium constant for activation, respectively. Cons
quently, the following text employs the notation of Alow

[A(Dha50) and Ahigh[A(Dha5Dhp) to describe these
relatively ‘‘low activation’’ and ‘‘high activation’’ limits. In
the former Alow case, the majority of monomers remains
the nonactivated speciesM1 , and the polymer propagatio
reaction between theM1 and Mi ( i>2) species@see Eq.
~38!# is favorable~for the above choices ofDhp and Dsp),
whereas in the latter Ahigh case, almost all monomers ar
converted into activated speciesM1* , which inhibits polymer
growth because the propagation steps in Eqs.~37! and ~38!
involve unactivated monomersM1 . Note that this physical
interpretation of the activated polymerization refers only
the polymerization reaction scheme defined by Eqs.~36!–
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Values of parameters used in comparative analysis of equilibrium polymerization models.

Parameter

Model

F Alow Aint Ahigh I

Dhp ~kJ/mol! 235 235 235 235 235
Dsp @J/~mol K!# 2105 2105 2105 2105 2105
Dha ~kJ/mol! NA 0 217.5 235 NA
Dsa @J/~mol K!# NA 2105 2105 2105 NA
r 5f I /f1

o NA NA NA NA 0.0044
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~38!, which is considered exclusively in our comparati
analysis.@The alternative activated polymerization mech
nism see Eqs.~39!–~41!, which assumes the participation o
activated monomers in the propagation steps, is mathem
cally isomorphic upon a redefinition of the free energy p
rameters.# In addition to the Alow and Ahigh models, an ‘‘in-
termediate activation model,’’ Aint[A(Dha5Dhp/2), is also
included in some figures to illustrate how a moderate eq
librium constant for activation affects the polymerizatio
process. Table I summarizes the parameters used in illu
tive calculations for the basic models of equilibrium pol
merization. The lattice coordination number is taken az
56 ~appropriate to a cubic lattice in three dimensions!, and
the effective interaction iseFH5302 K, following the con-
vention of Paper II.

A. The average chain length L and extent of
polymerization F

The average degree of polymerizationL of polymer
chains is one of the most essential properties of equilibr
polymer solutions. Figures 1~a! and 1~b! display the variation
of L with T ~for a fixed f1

o) and with f1
o ~for a fixed T),

respectively, for the Alow , Aint , Ahigh, F, and I models. In-
spection of Figs. 1~a! and 1~b! reveals a substantial mode
dependence ofL for a given choice of the polymerizatio
free energy parameters. The chain lengthL diverges at low
temperatures in the low activation model Alow , but saturates
to a finite value@L(T!Tp)52/r # in the initiation model I
for fixed nonzeror . (L in the I model evidently diverges a
low T as r→01.) Neither a saturation effect (L
→constant), nor a diverging behavior ofL, occurs in the F,
Aint , and Ahigh models at low temperatures (T→01), how-
ever. For the Ahigh model, chain growth at lowT is very
limited, and we findL(T→01)51.2, a magnitude that is
indistinguishable from unity on the scale employed in F
1~a!. The high activation model Ahigh resembles the initiation
model I in the formal limitr→11 whereL(T→01)52. The
free association model F, in which all particlescanassociate
without restriction, corresponds approximately to the acti
tion model with Dha5Dsa50 ~denoted asAo), i.e., to a
system with an equal probability for each monomer to
activated or unactivated. TheL(T) curves for the F and Ao
models are indistinguishable in Fig. 1~a!, while other com-
puted properties~e.g., the extent of polymerization! are
close, but not identical. As discussed in Sec. II,L diverges in
the F model only asT→01, and the polymerization occur
ec 2003 to 129.6.154.32. Redistribution subject to AI
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FIG. 1. ~a! Average degree of polymerizationL as a function of temperature
T for the free association~F!, thermal activation~A!, and chemical initiation
~I! models of equilibrium polymerization. The initial monomer concent
tion f1

o is fixed as 0.1. The three activation models Alow , Ahigh , and Aint

correspond to a low, high, and intermediate value of the equilibrium c
stantKa5exp(2Dfa /kBT), respectively, whereD f a5Dha2TDsa is the free
energy of activation.~Values ofDha and Dsa for the three A models are
given in Table I.! The same enthalpyDhp5235 kJ/mol and entropyDsp

52105 J/(mol K) of polymerization are used for the F, I, and A mode
The initiator concentrationr for the I model is chosen asr 50.0044. Unless
otherwise noted, the same parameters (Dhp , Dsp , Dha , Dsa , and r ) are
employed in all subsequent figures, and all figures refer to polymeriza
upon cooling.~b! Average degree of polymerizationL21 atT5275 K as a
function of initial monomer concentrationf1

o for the F, I, Alow , Ahigh , and
Aint models.~c! The averaged degree of polymerizationLp at the polymer-
ization temperatureTp as a function off1

o for the same models as in Figs
1~a! and 1~b!.
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gradually over a very wide range ofT, as found in the
A model with a rather high equlibrium constantKa

5exp(2Dfa /kBT).
The concentration dependence ofL at a fixedT @see Fig.

1~b!# is likewise sensitive to the mode of association. T
commonly noted23–25(f1

o)1/2 scaling ofL emerges from Fig.
1~b! as a representative feature of the F, Aint , and Ahigh mod-
els. On the other hand,L is nearly linear in f1

o ~over an
appreciable range off1

o) for both the I and Alow models.41

The ‘‘critical polymerization concentration’’~cpc! (f1
o)* ,

defined as the value off1
o at which L21 extrapolates to

zero,1 does not appear at any finiteT for either the F and
Ahigh models. In contrast, this critical concentration exists
both the I and Alow models, where we find (f1

o)* .0.06 at
T5275 K. The absence of a well-defined cpc in the F a
Ahigh models arises from the extremely broad nature of
polymerization transition in these two models. Figures 1~a!
and 1~b! clearly indicate that the presence of activation a
initiation processes can dramatically influence not only
rate dL(T)/dT at which chains grow withT, but also the
magnitude of the variation ofL with f1

o ~see also Paper I!
and the sharpness of the polymerization transition.

The average chain lengthL is not large at the polymer
ization transition temperatureTp ~defined by the maximum
in the specific heatCV as a function ofT) and is sensitive to
the details of the equilibrium polymerization model. Figu
1~c! displaysL at Tp @Lp[L(Tp)# as a function of the initial
monomer concentrationf1

o for the models compared in Figs
1~a! and 1~b!. Lp is remarkably insensitive tof1

o and remains
close to unity in all the models considered, except for th
model whereLp.3. We expect this near constancy ofL at
Tp to be a general feature of systems undergoing equilibr
polymerization. Thus, it should be possible to locate the tr
sition by comparingL to these characteristicLp values. The
use of this procedure requires knowledge of which polym
ization model applies to a given physical system, but it
sometimes unclear whether or not activation processes
involved.

The extent of polymerizationF plays the role of an ‘‘or-
der parameter’’ describing the degree to which the polym
ization transition is completed~in general, these transition
are ‘‘rounded transitions’’ as described in Paper III!. Figure
2~a! presentsF for fixed f1

o50.1, showing thatF changes
sharply withT for the I, Alow , and Aint models, but varies in
a more gradual manner for the F and Ahigh models. Interest-
ingly, F in the Ahigh model does not approach unity at lowT
because of the presence of a large concentration of activ
monomersM1* . For low T, the large negative value o
D f a5Dha2TDsa in the Ahigh model implies that the activa
tion reaction in Eq.~36! proceeds almost to completion, lea
ing only a very small concentration of nonactivated spec
M1 . Consequently, this large concentration of activa
monomers cannot be significantly diminished through
dimerization and polymer propagation processes, despi
favorable free energy of polymerizationD f p (D f p5Dhp

2TDsp!0) since the unactivated monomersM1 are reac-
tants in both these processes@see Eqs.~37! and ~38!#. The
small F(T!Tp).0.3 for the Ahigh model is consistent with
the minimal degree of polymerizationL occurring at lowT
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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in this model, L(T!Tp).1.2 @see Fig. 1~a!#. The F(T)
curves in Fig. 2~a! exhibit inflection points (]2F/]T2)uf

1
o

50 at nearly the sameT for the I and Alow models, and the
inflection points shift gradually to higher temperatures
the Aint , F, and Ahigh models~in this sequence!. The shift
does not scale uniformly with the magnitude ofDha , how-
ever. The free association model yields a very broad po
merization transition in which polymerization occurs even
T@Tp , and, hence,F for the F model exceedsF in the I and
Alow models over a wide range ofT andf1

o @see Fig. 2~a!#.
Decreasing the magnitude ofDha introduces a nontrivial

competitionbetween the polymerization and activation pr
cesses that may lead to unique behaviors. Figure 2~b! shows
that this competition produces a maximum inF(T) for fixed
f1

o as a function ofT that is more pronounced as the ma
nitude of (Dha2Dhp) becomes more negative. Additiona
calculations indicate that the height of a maximum inF(T)
also grows whenuDsau exceedsuDspu. Equation~59! pro-

FIG. 2. ~a! Extent of polymerizationF as a function of temperatureT for
the F, I, Alow , Ahigh , and Aint models. The initial monomer monomer con
centrationf1

o is fixed at 0.1.~b! Extent of polymerizationF as a function of
temperatureT for the activated association model A. Different curves co
respond to different values of the enthalpyDha of monomer activation. The
initial monomer concentrationf1

o is fixed as 0.1.F(T) exhibits a maximum
when uDhau.uDhpu. ~c! Extent of polymerizationF at a fixed temperature
T5275 K as a function of initial monomer concentrationf1

o50.1 for the F,
I, Alow , Ahigh , and Aint models of equilibrium polymerization.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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vides general conditions for the vanishing of the tempera
derivative ofF, i.e., for the maximum inF(T). A maximum
for F(T) has been observed recently for the polymerizat
of G-actin.42 A nonmonotonic variation ofF with T is a
good indicator of the presence of activation processes in
polymerization.

Figure 2~c! depictsF(T5275 K) as a function of the
initial monomer concentrationf1

o , exhibiting F from a dif-
ferent perspective than in Fig. 2~a!. The sameT is chosen in
Figs. 1~b! and 2~c! for consistency. The extent of polyme
ization F(T5275 K) increases sharply withf1

o when f1
o

exceeds (f1
o)* in the I and Alow models, but grows from a

vanishing concentration (f1
o50) for the F, Aint , and Ahigh

models. The changes ofF(f1
o) are more gradual in the hig

activation Ahigh model, while the rise ofF is sharp for the F
model. As discussed earlier,3 transition rounding is respon
sible for the absence of a cpc in the F, Aint , and Ahigh models.

B. Specific heat CV and polymerization
temperature Tp

The specific heatCV provides another characteristic si
nature of the polymerization transition. The polymerizati
transition in the I and A models, respectively, is known
reduce to a second-order phase transition asr→01 or as the
activation equilibrium constant approaches zero.17–19 Figure
3 depicts the specific heatCV at a fixed initial monomer
concentrationf1

o50.1 as a function ofT for the I, F, and for
several A models~specified by values ofDha), including
those defined previously as Alow and Ahigh. All the other free
energy parameters are the same as in Figs. 1 and 2. The
polymerization transition for the Alow and I model in Fig. 3
contrasts with a very broad maximum inCV for the Ahigh and
F model. WhenDha is less than220 kJ/mol, a significant
broadening of the transition appears~and increases with a
more negativeDha). Moreover, the polymerization tempera
tureTp @corresponding to the maximum ofCV(T)] increases
substantially asDha becomes more negative@see also Fig.
4~a!#. For instance, a change inDha from 220 to
240 kJ/mol produces an increase ofTp by almost 100 K. On
the other hand,Tp changes slightly whenDha becomes less
negative than220 kJ/mol, but these slight shifts inTp with
an increase inDha beyond220 kJ/mol are accompanied b
significant sharpening of the transition and theCV maximum.

FIG. 3. Temperature dependence of the specific heatCV in various models
of equilibrium polymerization for the fixed initial monomer concentrati
f1

o50.1. The curves forCV(T) corresponding to activation models othe
than Alow and Ahigh are labeled by the enthalpy of activationDha .
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In summary, Fig. 3 demonstrates that both the activation
initiation processes can also substantially influence
breadth of the polymerization transition and its location.

The sensitivity ofTp to the mode of equilibrium poly-
merization has important ramifications on methods for de
mining the free energy parameters from the experimental
pendence ofTp on the initial monomer concentrationf1

o .
Figure 4~a! displays the polymerization transition line
Tp(f1

o) for the F and I models and for a few activatio
models, including those designated as Alow and Ahigh. The
sameDha values are used in Figs. 3 and 4~a!, while all the
other energy parameters are fixed as in Figs. 1 and 2. T
and Alow model polymerization lines are almost indistin
guishable on the scale of Fig. 4~a!, lying close to the well-
known Dainton–Ivin~DI! equation line. On the other hand
the F model transition curve is located, on average, at le
50 K belowthis ‘‘classical’’ estimate ofTp . DecreasingDha

from Dha50 strongly shifts the transition curve to highe
temperatures over the whole range off1

o , and thef1
o depen-

dence ofTp becomes weaker for more negativeDha .
There is a common view that the DI equation provide

good estimate ofTp for equlibrium polymerization system
~subject to the assumption of ideal solution conditions!,33,43

and indeed this classic estimate toTp proves to be accurate
for the I and Alow models. For example, Paper I demonstra
that the DI estimate ofTp differs by only 10–15 K from the
actual Tp for the I model systems withr as large asr
50.1. On the other hand, Eq.~24! can be grossly in error for
other equilibrium polymerization models. Figure 4~b! delin-
eates this failure for the F model by displaying the polym
ization line, the inflection point (]2F/]T2)uf

1
o50 line, and

the DI equation line for this model. As mentioned before, t

FIG. 4. ~a! Concentration dependence of the polymerization tempera
Tp . Models are the same as in Fig. 3.~b! The saturation~S!, polymerization
~P!, Dainton–Ivin equation~DI!, inflection point (]2F/]T2)uf1

o50 ~I!, and
crossover~C! lines for the free association F model.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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first two curves become identical for both the Alow and I
models@see also Eq.~84!# and coincide with the third curve
provided thatr !1, while this correspondence is absent f
the F model or the activation model with a rather high ac
vation equilibrium constantKa . As shown in Fig. 4~b!, large
differences~on the order of 60–80 K over almost the fu
range off1

o) emerge in the F model between the polym
ization temperature~corresponding to the maximum ofCV)
and the temperature at which the derivative (]2F/]T2)uf

1
o

vanishes. The inflection point line, which is sometimes u
to estimate38 Tp , lies relatively close to the DI curve for th
F model@see Fig. 4~b!#. For completeness, Fig. 4~b! depicts
two additional characteristic curves. The lower~‘‘saturation
line’’ ! corresponds to the loci of temperatures where the c
figuration entropyS(T) ~fluid entropy apart from the vibra
tional contribution! of the free association system approach
within 5% its low temperature limiting value, and the upp
~‘‘crossover line’’! denotes the loci where the extent of p
lymerization is 5% greater than its highT limiting value
F(T→`).1 For systems that polymerize upon cooling, the
transition lines roughly delineate where the polymerizat
transition region effectively ends and begins, respectively
large difference between the crossover and saturation
peratures reflects the broadness of the polymerization tra
tion for the F model. The elevated crossover temperatures
the F model are consistent with a long highT tail for the
extent of polymerizationF(T) in Fig. 2~a!.

The difficulties in determining the true free energy p
rameters governing the polymerization process from exp
mental data forTp are mitagated by our finding that the D
equation often can be forced to ‘‘fit’’ polymerization lines a
in Fig. 4~b!, provided that the free energy parameters
‘‘rescaled’’ from their true values. This ‘‘renormalization’’ o
parameters seems to exhibit regularities that we are curre
studying and that should allow acorrect estimationof Dhp

and Dsp from data forTp . Our findings also explain the
apparent phenomenological ‘‘success’’ of the DI equation
situations where it actually fails to apply. Since the behav
of these ‘‘shifts’’ in the polymerization model paramete
~between those representing the actual systems and thos
ferred by application of the DI equation to data forTp) are
rather involved, we defer discussion of this important pro
lem to a separate paper.

C. Competition between polymerization
and phase separation

Papers II and III indicate the existence of a strong c
pling between equilibrium polymerization and phase sepa
tion for ‘‘living polymerization’’ systems~I model!. These
papers demonstrate that a decrease in the enthalpy of p
merizationDhp generally leads to an increased critical te
peratureTc , a more asymmetric phase diagram, and a
creasing critical compositionfc . These general trends ar
obtained for afixed strengtheFH of the effective van der
Waals interactionx and for a fixed entropy of polymerizatio
Dsp , and are illustrated in Fig. 1 of Paper II. A differen
behavior forTc and fc emerges for the I model, howeve
when the enthalpyDhp and entropy of polymerizationDsp
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are fixed, buteFH is instead varied.@See Fig. 5~a!, which
extends the studies from Paper II#. The critical temperature
Tc grows monotonically witheFH in a nontrivial fashion. In
the low eFH regime@0,eFH,eFH

(1)5(1/2)Dhp /Dsp#, Tc lies
below Tp and nearly coincides with theTc for high molecu-
lar weight polymer solutions, i.e.,Tc52eFH. For intermedi-
ate eFH @(1/2)Dhp /Dsp,eFH,2Dhp /Dsp#, Tc approaches
the DI estimate of the polymerization temperatureTp

(o) .
When eFH exceeds another ‘‘critical’’ value eFH

(2)

52Dhp /Dsp , the critical temperatureTc surpassesTp and
becomes linear ineFH with a proportionality coefficient of
1/2, thus following the critical temperatureTc for a
monomer–solvent system in which no polymerization
present, i.e.,Tc5(1/2)eFH. These two critical values ofeFH,
eFH

(1)5(1/2)Dhp /Dsp and eFH
(2)52Dhp /Dsp , correspond to

the intersections of the absolute polymerization transit
temperature@i.e., Tp(f1

(o)51)] with Tc and with the theta
temperatureTu , respectively, as described in Papers II a
III and in the following. The variation offc ~for constant
Dhp and Dsp) with eFH is also instructive@see Fig. 5~b!#.
The critical composition is independent ofeFH when eFH

,(1/2)Dhp /Dsp ~and depends only onr ), but then fc

grows with eFH and finally exceeds the monomer solutio
value of 1/2. After achieving a maximum (.0.7 for r
50.0044),fc drops sharply to a limiting value departin
slightly from 1/2 ~due to a nonzeror ) when eFH

.2Dhp /Dsp . Moreover, a more careful examination of Fi

FIG. 5. ~a! The critical temperatureTc ~solid line! as a function of the
strength of effective monomer–solvent interactioneFH (x5eFH /T) for the I
model. The dashed line denotes the ideal Dainton–Ivin polymerization t
perature calculated at the critical composition (f1

o)(c)[fc . The dot-dashed
lines indicate the asymptopic behavior ofTc for infinite molecular mass
polymer solutions (Tc52eFH) and for monomer–solvent systems (Tc

5eFH/2). ~b! The critical temperaturefc as a function of the strength o
effective monomer–solvent interactioneFH (x5eFH /T) for the I model.
Two critical points are present over the narrow range 611 K,eFH

,634 K.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 6. ~a! The reduced critical temperatureTc,R[Tc /Tc(Dhp50) as a function of the dimensionless interactionhe[(uDhpu/R)/(2eFH) for the F, I, Alow ,
and Ahigh models.~b! The reduced critical temperatureTc,R[Tc /Tc(Dhp50) as a function of the dimensionless interactionhe[(uDhpu/R)/(2eFH) for the I
model in ther→01 limit. The inset illustrates the variation of the reduced critical compositionfc,R[fc /fc(Dhp50) with he . ~c! Illustrative example of
a phase diagram~spinodal curve! with two critical points for the I model in ther→01 limit for a fixed dimensionless interactionhe[(uDhpu/R)/(2eFH)
52.5. The dashed curve indicates the polymerization line which coincides with the spinodal over certain ranges off1

o and passes through a second critic
point. ~d! A representative spinodal~solid curve! with two critical points in the Alow model (Ka53.2831026) for the dimensionless interactionhe

[(uDhpu/R)/(2eFH)52.5. The dashed curve represents the polymerization line which intersects the spinodal at the second critical point occurrif1
o

.1/2. The inset shows the reduced critical temperatureTc,R[Tc /Tc(Dhp50) as a function ofhe for the same model. The black dot is placed at t
termination of the second critical point.
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of
5~b! reveals that there aretwo critical points over the narrow
range 611 K,eFH,634 K for r 50.0044. The two critical
points have similar values ofTc , but quite differentfc . The
occurrence of thesecondcritical point is just apparent in Fig
5~b!, but in other instances~see the following!, the bifurca-
tion into two distinct critical points is quite evident.

While Fig. 1 of Paper II and Figs. 5~a! and 5~b! of the
present paper illustrate the coupling between polymeriza
and phase separation from two different perspectives~i.e.,
for fixed eFH and for fixed Dhp , respectively!, our more
recent analysis indicates that these two perspectives ca
combined by considering the reduced critical parame
Tc,R[Tc /Tc(Dhp50) and fc,R[fc /fc(Dhp50) which
do not depend separately onDhp andeFH, but only on their
combination (Dhp /R)/eFH ~where R is the gas constant!.
This finding is valid forall the models investigated in th
present paper. The normalization offc by the corresponding
value in the absence of polymerization is, however, red
dant sincefc is itself ~in contrast toTc) a function of
Dhp /eFH ~andDsp), but a reducedfc is introduced for con-
sistency with the normalization ofTc . Figures 6~a!–8 com-
pare the critical properties between the different models
scribed in Secs. II–IV as functions of this dimensionle
‘‘sticking energy’’ he[(uDhpu/R)/(2eFH). All other adjust-
able parameters~i.e., Dsp , Dha , Dsa , andr ) are fixed as in
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former figures, andDhp,0 is chosen since we constrain th
discussion to polymerization upon cooling.

Figure 6~a! presents the relative critical temperatureTc,R

as a function ofhe for the I, Alow , Ahigh, and F models. All
the curves forTc,R(he) in Fig. 6~a! exhibit two plateau re-
gions in whichTc,R(he) is independent ofhe . While these
plateaus represent a characteristic feature of equilibrium
lymerization, their magnitudes vary between the differe
models. The critical temperatureTc(he) increases substan
tially from its ‘‘bare’’ value Tc(Dhp50), or, in other words,
Tc,R departs from unity whenhe exceeds a critical valuehe,1

that depends rather weakly on the model. Ashe surpasses
another ‘‘critical’’ value he,2 , the critical temperatureTc is
found to saturate. Apparently,Tc cannot exceed the thet
temperatureTu

(0)[Tu(Dhp50) in the absence of polymer
ization ~the T at whichA2 vanishes!. Moreover, the second
‘‘critical’’ reduced ‘‘sticking energy’’ he,2 is strongly model
dependent. WhileTc,R approaches the relative theta tempe
ture Tu,R

(0) [Tu(Dhp50)/Tc(Dhp50)54 for the Alow and F
models~albeit in a much slower fashion in the latter cas!,
the limiting value ofTc,R differs from 4 by less than 10% fo
the I model~due to nozeror ), but it is significantly lower
(Tc,R.1.35) for the Ahigh model. This different behavior for
the Ahigh model accords with the small average degree
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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polymerizationL at Tc @see Fig. 1~a!#, precludingTc,R from
being close toTu,R

(0) for large he . ~These trends are compa
rable with FH theory predictions for polymer solution
whereTu,R ranges monotonically from 4 in the unpolyme
ized monomer–solvent system to unity for an infinite m
lecular weight polymer solution.! Figure 6~a! also shows that

FIG. 7. ~a! The reduced critical temperatureTc,R[Tc /Tc(Dhp50) as a
function of the dimensionless interactionhe[(uDhpu/R)/(2eFH) for the I
model with a nonvanishingr 50.0044. Different curves correspond to di
ferent values of the polymerization entropyDsp . @The long-dashed, solid
and short-dashed curves refer toDsp5275, 2105, and2135 J/(mol K),
respectively.# Also displayed is the reduced theta temperatureTu,R

[Tu /Tc(Dhp50) to emphasize thatTc never exceedsTu . The thin solid
lines represent the absolute polymerization temperaturesTp* divided by
Tc(Dhp50) for consistency with the other curves.~b! The reduced critical
temperatureTc,R[Tc /Tc(Dhp50) as a function of the dimensionless inte
actionhe[(uDhpu/R)/(2eFH) for the F model. Different curves correspon
to different values of the polymerization entropyDsp . @The long-dashed,
solid, and short-dashed curves refer toDsp5275, 2105, and
2135 J/(mol K), respectively.# Also displayed is the reduced theta tempe
ture Tu,R[Tu /Tc(Dhp50) for the same values ofDsp . ~c! The reduced
critical temperatureTc,R[Tc /Tc(Dhp50) as a function ofhe /he,1 where
he,15(1/4)(uDspu/R). The long-dashed, solid, and short-dashed curves r
to Dsp5275, 2105, and2135 J/(mol K), respectively. The sensitivity o
Tc,R to Dsp diminshes significantly whenTc,R is plotted vshe /he,1 .
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
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two critical points coexist for the low activation model ov
a small range ofhe (2.31<he<3.29). As mentioned earlier
two critical points also appear for the I model (r 50.0044),
but the range ofhe is small (3.32<he<3.44), so that the
presence of both critical temperatures is almost indis
guishable on the scale of Fig. 6~a!. Indeed, we did not even
notice these multiple critical points in our previous Papers
and III.44

This fascinating multiple critical point phenomenon b
comes pronounced in the limit of a very low activation eq
librium constant or of a low concentration of chemical in
tiatiors, where the polymerization transition approache
second-order phase transition.17 Figure 6~b! displays Tc,R

and fc,R as a function ofhe for the I model in ther→01

limit. Both Tc,R(he) and fc,R(he) are double-valued forhe

,he* , and these critical parameters become unique ab
the bifurcation point. This behavior can be understood
analyzing the coupling between polymerization and ph
separation in the ‘‘weak sticking energy’’ regime (he,he*
.3.3195).45

Figure 6~c! presents a representative spinodal curve
he52.5 andr 5131027 ~solid curve! and the corresponding
polymerization transition lineTp,R ~dashed line!. The Tp,R

curve is a line of second-order phase transitions in thr
→01 limit.17 The critical point above the polymerizatio
line (Tc,R51) has its origin in the monomer–solvent pha
separation in the absence of polymerization. The polymer
tion transition that occurs atTp,Tc(Dhp50) apparently
distorts the phase boundary and leads to the appearan
the second critical point in the high concentration regim
More specifically, the polymerization line intersects t
rightmost branch of the spinodal at a critical point.19–21,46

The intersection of the polymerization line with the righ
most branch of the spinodal curve occurs at a tempera
lower that the critical temperatureTc(Dhp50) for the
monomer–solvent mixture and at a composition larger th
the critical compositionfc51/2 of this reference system
explaining the trends in the variation offc andTc with he .
At the critical sticking energyhe* , the second critical point
finally ‘‘absorbs’’ the remnants of the monomer–solve
critical point and shifts to temperatures higher thanTc(Dhp

50) and to compositions smaller that 1/2, as would be
pected for a polymer solution of increasing molecular weig

r

FIG. 8. The reduced critical compositionfc,R[fc /fc(Dhp50) as a func-
tion of the dimensionless ‘‘sticking energy’’he[(uDhpu/R)/(2eFH) for the
F, I, Alow , and Ahigh models.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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@see Fig. 6~b!#. Essentially, the same trends are found for
A model in the limit of a vanishing activation equilibrium
constant, where the polymerization line is also a line
second-order phase transitions.17–19 Figure 6~d! provides an
illustrative spinodal curve in the Alow model (Ka53.28
31026) for the same value ofhe52.5 as in Fig. 6~c!, while
the inset depictsTc,R as a function ofhe for this model.
Increasingr ~or Ka) leads to the ‘‘rounding’’ and finally to
the disappearance of the second critical point. This sec
critical point ceases to existbelow a critical value ofhe

~dependent onr or Ka), where the polymerization transitio
becomes too ‘‘weak’’ to perturb the monomer–solvent ph
separation@see inset to Fig. 6~d!#.

The entropy of polymerizationDsp has been treated s
far as afixed parameter. This quantity, however, exerts
large influence on the critical behavior of associating flui
and we now briefly discuss some essential aspects of
dependence. The entropyDsp significantly affects the rate a
which Tc,R(he) varies between the two plateaus at large a
small he[(uDhpu/R)/(2eFH). This phenomenon is illus
trated in Figs. 7~a! and 7~b! for the I and F models, respec
tively, whereTc,R and Tu,R[Tu /Tc(Dhp50) are presented
for three different values of Dsp ranging from
275 J/(mol K) to 2135 J/(mol K). A smaller~i.e., more
negative! Dsp in Figs. 7~a! and 7~b! produces a weaker de
pendence of bothTc(he) andTu(he) on he , and this appar-
ently general trend extends to all the models considered.
ure 7~a! also includes the absolute polymerization
temperature Tp* @reduced byTc(Dhp50) for consistency
with the other transition curves# as the thin solid lines in Fig
7~a!. The importance of this reference polymerization te
perature can be realized by noticing that the intersection
the Tp,R* (he)[Tp* /Tc(Dhp50) line with theTc,R(he) curve
coincides with the first ‘‘critical’’ interactionhe,1 . This inter-
section point also corresponds to the end of the first plat
in Fig. 7~a!. Recall that the DI equation becomes exact in
r→01 limit and remains a good approximation even forr
50.0044 in the I model, so thatTp* .Dhp /Dsp @see Eq.
~24!#. Thus,he,1 is determined exclusively by the polyme
ization entropyDsp and equalshe,15(1/4)(uDspu/R) for the
I model in the limit of small initiator concentration (r
→01). More generally, this estimate ofhe,1 provides a
rough approximation for the other equilibrium polymeriz
tion models@see Fig. 6~a!#. Figure 7~c! demonstrates tha
rescalinghe by he,1 reduces theTc,R(he) data of Fig. 7~a! to
nearly a ‘‘universal’’ curveTc,R(he /he,1) that is even rela-
tively insensitive toDsp . An accurate extension of the sam
type of analysis to estimatehe,1 for the F and A models
requires a tedious calculation ofTp to determine an appro
priate expression to replace the DI equation.47

Differences in the variation ofTc(he) between diferent
equilibrium polymerization models in Figs. 6 and 7 a
supplemented with a description of the correspond
changes infc to fully elucidate the physics of the compet
tion between polymerization and phase separation. Figu
depicts the variation of the reduced critical compositi
fc,R[fc /fc(he50) with the dimensionless interactionhe

for the F, I, Alow , and Ahigh models. The variablefc,R does
not depart appreciably from unity for all the models whenhe
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is small. In the F model,fc,R slowly and monotonically
aproaches zero ashe increases, but it drops rapidly to a con
stant.0.92 in the Ahigh model. As already noted, the limite
polymerization in the Ahigh model is responsible for the satu
ration of the reduced critical temperatureTc,R to a value of
1.35. The same feature leads to a minimal decrease ofc

from its symmetric mixture value of 1/2 in the absence
polymerization. A much more complicated dependence
fc,R on he emerges, however, from Fig. 8 for the I and Alow

models. As discussed earlier and indicated in Figs. 6~b!–
6~d!, these two models exhibit two critical points over a r
stricted range ofhe , which effectively results for a nonvan
ishing r ~or for a small activation equilibrium constant! in
the apparent ‘‘jump’’ offc,R in Fig. 8. The main difference
between the I and Alow models lies, however, in the behavio
of fc,R in the range of largehe , where fc,R of the Alow

model approaches zero, whereasfc,R for the I model satu-
rates to a constant.0.09, according well with the estimatio
of fc based on our asymptotic analysis forr !1. @Equation
~88! for r 50.0044 yieldsfc.0.0447 which, in turn, implies
fc,R[fc /fc(Dhp50).0.0894.]

D. Osmotic pressure P and the second osmotic virial
coefficient A 2

Substantial particle clustering is intrinsically reflected
a slow variation of the osmotic pressureP with the concen-
tration of the associating particle speciesf1

o . Notably, pecu-
liarly ‘‘flat’’ curves describing the concentration dependen
of P in the one phase region have been found for th
model.3 Calculations for the other polymerization models e
hibit the same trend, except that the absence of a sha
defined cpc in the F and Ahigh models induces a more gradu
increase inP with f1

o , rather than the abrupt ‘‘transition’’ to
a regime whereP is slowly varying withf1

o . Apart from the
abruptness of the transition, the ‘‘flattening’’ ofP is qualita-
tively similar in all the models. This crossover in the beha
ior of P affects, however, the osmotic compressibility.3 The
abrupt transition ofP to a plateau inf1

o near the cpc in the
I model translates into a peak in the osmotic compressib
coefficient,3 but the rounded nature of the polymerizatio
transition in the F and Ahigh models diminishes this effect
The particle clustering also exerts a particularly strong infl
ence on the second virial coefficientA2 , whose magnitude
reflects a strong interplay between the short-range van
Waals interaction~characterized byeFH) and the association
interaction~specified byDhp , Dsp , Dha , Dsa). As shown
in Paper III, even the sign ofA2 cannot be determined from
knowledge ofeFH alone, so that substantial renormalizatio
of the ‘‘solvent quality’’~as measured byA2) may arise from
association. The present paper analyzes howDhp and the
details of polymerization model influence theT dependence
of A2 .

A decrease ofDhp is found to produce a successive
increased nonlinearity ofA2(T) as a function of 1/T. This
behavior is common to all the models considered and is
lustrated for the example of the F model in Fig. 9~a!. @In the
absence of polymerization,A2 is strictly linear in 1/T—see
Eq. ~30!—and this case is included for reference in F
9~a!.# The sensitivity of the T dependence ofA2 to the model
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of polymerization is displayed in Fig. 9~b!, which presents
A2 as a function of the ratioTu /T for the F, I, Alow , and
Ahigh models.~The theta temperatureTu corresponds to the
temperature at whichA250). The enthalpy of polymeriza
tion Dhp is chosen in Fig. 9~b! asDhp5270 kJ/mol in or-
der to enhance the differences between these four mo
while all other free energy parameters are the same as in
prior figures. A strong and nonlinear variation ofA2 with 1/T
~both above and belowTu) for the F and Ahigh models con-
trasts with the weaker and linear 1/T behavior ofA2 for the
Ahigh and I models. As a matter of fact,A2 in the I model
varies linearly with 1/T only for T.Tu , while noticeable
deviations from linearity appear forT,Tu . This finding ac-
cords with our prior results for the I model.3 No deviations
from linearity are found for the Alow model for which theT
dependence ofA2 resembles that for a monomer–solve
system. The explanation of this behavior ofA2 for the Alow

model follows simply from Eqs.~51! and ~60!. Substituting
Dha50, Dsa5Dsp52105 J/(mol K), andDhp5270 kJ/
mol into Eq. ~60! implies that the termCGp

2/(11Ka)2,
which is the association contribution toA2 in Eq. ~60!, be-
comes negligible at high temperatures~say, within620% of
Tu). The sensitivity ofA2 and other solution properties~e.g.,
P, compressibility factor, etc.! to the model type and
strength of the interactions can potentially be used to iden
the mechanism of polymerization and the interaction para
eters governing the polymerization process.

FIG. 9. ~a! The dimensionless second osmotic virial coefficientA2 as a
function of the reciprocal of the reduced temperatureTu /T ~whereTu is the
theta temperature! for the F model. Different curves correspond to differe
values of the polymerization enthalpyDhp and are labeled by values o
Dhp . The strengtheFH of effective van der Waals monomer–solvent inte
action is fixed aseFH.302 K. ~b! The temperature dependence ofA2 for the
F, I, Alow , and Ahigh models. The same polymerization enthalpy (Dhp5
270 kJ/mol) and the same strength of effective van der Waals monom
solvent interaction (eFH.302 K) are used for these models.
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VI. DISCUSSION

While the thermodynamics of solutions undergoing eq
librium polymerization exhibit broadly similar patterns, th
constraints of thermal activation and chemical initiation ex
an appreciable influence on the sharpness and location o
polymerization transition. To gain insights into thediffer-
ences between these basic models of molecular se
organization, we consider many thermodynamic proper
of experimental interest, including the average chain len
L, extent polymerizationF, Helmhotz free energyF, con-
figurational entropyS, specific heatCV , polymerization
transition temperatureTp , osmotic pressureP, the second
and third osmotic virial coefficientsA2 andA3 , and the criti-
cal temperatureTc and critical compositionfc . In addition,
activation and initiation significantly affect the competitio
between the phase stability and polymerization and regu
the mass distribution of the polymer clusters. The polym
ization transition becomes broad for the ‘‘free associatio
model where all monomerscanassociate without restriction
but the transition is narrow at low initiator concentrations
when the activation equilbrium constant is small near
polymerization transition temperatureTp . Chain stiffness al-
ters the position of the transition, but the dominant influen
of stiffness can generally be absorbed into the definition
the entropy of polymerization. While chemically initiate
living polymerization occurs exclusively by adding ind
vidual monomers, chains can also form~or break! through
chain coupling~or scission! in both the free association an
activated association systems, and the thermodynamic p
erties of these systems arecompletely insensitiveto the de-
tails of the chain scission and fusion processes. The loca
of the polymerization transition is found to be highly mod
dependent and often greatly different from the commo
used Dainton–Ivin equation classical estimate of the po
merization transition temperature. Thus, the maximum in
specific heatCV and the inflection point in the extent o
polymerizationF can occur at quite different temperatur
for some of the models. In particular, we find that the dev
tions between these two characteristic temperatures provi
direct measure of the extent of transition rounding in t
activated polymerization model, while these temperatu
coincide generally for the chemical initiation model.

The competition between phase separation and polym
ization is examined by analyzing the influence of the e
thalpy Dhp and entropyDsp of polymerization and the
strength eFH of the effective monomer–solvent van d
Waals interaction (x5eFH/T) on the critical temperatureTc

and critical compositionfc . For a given polymerization
model, bothTc and fc , normalized by their values in the
absence of polymerization, are functions of the dimensi
less ‘‘sticking energy’’he[(uDhpu/R)/(2eFH) and of Dsp .
In general,Tc(he)/Tc(he50) increases monotonically an
sigmoidally withhe and the rate of this increase is controlle
by Dsp . The variation of the reduced critical temperatu
with he is characterized by two critical values ofhe : at the
first (he,1) this ratio starts growing from unity, and it satu
rates at the second (he,2) to a limiting value related to the
theta teperatureTu (A250) of the polymer fluid. When the
polymerization transition is ‘‘close’’ to being second orde

r–
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two critical points are present over a certain range ofhe .
Transition rounding in the thermally activated and chem
cally initiated models, however, causes the disappearanc
these multiple critical points.

Our analysis of various thermodynamic properties
Sec. V is designed to compare and contrast the three b
models of equilibrium polymerization: the free associatio
chemical initiation, and thermally activated association m
els. While the first two models are completely characteriz
by the enthalpyDhp and entropyDsp of polymerization~and
by r in the case of the I model48!, several variants of the
activated association model are possible, depending
whether activated or unactivated monomers participate in
chain propagation steps. Thus, two different activated po
merization mechanisms are considered in Sec. III. In the
reaction scheme, the activated speciesM1* reacts only with
unactivated monomersM1 ~to form dimers!, but does not
react with other species Mi ( i .2) to form higher order poly-
mers @see Eqs.~36!–~38!#. Alternatively, in the second
scheme, the activated monomersM1* participate in both the
dimerization and chain propagation processes@see Eqs.~40!
and ~41!#. As noted earlier, these two activation models a
mathematically isomorphic, i.e., become identical upon
troducing an appropriate redefinition of the correspond
free energy parameters@see Eqs.~62! and ~63!#. Hence, our
comparison of basic models of equilibrium polymerization
performed for the first activation model defined by Eq
~36!–~38!. Since the behavior of the activation model vari
strongly with the activation free energy, we distingush th
activation models Alow[A(Ka53.2831026), Ahigh[A(Ka

53.2831026 exp(4210/T)), and Aint[A(Ka53.28
31026 exp(2105/T)) corresponding to a low, high, and in
termediate values of the activation equilibrium constantKa ,
respectively, atT5Tp . Other mechanisms than those illu
trated by Eqs.~36!–~38! and~39!–~41! are also possible@for
instance, a mechanism based on a combination of Eqs.~36!
and ~37! with Eq. ~41!#. In addition, different equilibrium
constants may be assigned to the dimerization and the c
propagation steps, as is necessary, for instance, to des
experimental data for the polymerization of G-actin.38 How-
ever, to keep the number of free energy parameters to a m
mum, these processes are assumed here to be govern
the sameDhp andDsp .

The comparison of the equilibrium polymerization mo
els in Sec. V is carried out for the same enthalpyDhp5
235 kJ/mol and entropyDsp52105 J/(mol K) of polymer-
ization. The choice of negativeDhp andDsp restricts atten-
tion to systems that polymerize upon cooling. The theory
course, also applies to systems that polymerize upon hea
(Dhp.0, Dsp.0) and their behavior is somewhat rich
due to the presence of multiple~lower and upper! critical
points in the phase diagrams for some of these systems1,49

Some of the thermodynamic characteristics of the po
merization models are quite specific for the model involv
For instance, the rate at which the average degree of p
merizationL varies with temperature and even the limitin
low temperature value ofL(T) are model dependent. Th
concentration dependence ofL is not universal either, rang
ing from a linear dependence for the I and Alow models to a
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(f1
o)1/2 scaling for the F, Aint , and Ahigh models. The mag-

nitude ofL at the polymerization transition temperatureTp is
nearly insensitive tof1

o and remains close to unity in all th
models considered, except for the F model whereLp.3.
Both L and the extent of polymerizationF may become
nonmonotonic functions of temperature and exhibit maxi
due to the competition between polymerization and acti
tion processes. Substantial deviations ofTp from the
Dainton–Ivin equation emerge for the F and Ahigh model and
imply that this simple and widely used equation is genera
unreliable for estimating the polymerization paramet
(Dhp , Dsp) from experimental data forTp . The specific
heat CV(T) curves ~see Fig. 3! and polymerization lines
Tp(f1

o) @see Fig. 4~a!# confirm the similarity between the
and Alow models as evidenced by Figs. 1 and 2 and char
terized by a sharp polymerization transition for these mod
On the other hand, the polymerization is very broad in th
model.

All these particular characteristics of the polymerizati
models are helpful in discriminating the type of polymeriz
tion process that occurs in any given physical system.
example, it has been suggested that equilibrium polymer
tion describes the formation of worm-like micelles in no
ionic surfactants, such as lecithin water–oil microemulsio
and hexaethylene glycoln-hexadecyl monoether in
water.24,50,51 In both of these model nonionic systems, t
average chain length scales in near proportion to the mo
mer concentration rather than the ‘‘expected’’ 1/2 powe50

Moreover, these systems exhibit evidence of a well-defin
maximum in the inverse osmotic compressibility~and in the
static and dynamic correlation lengths at nearly the sa
‘‘overlap’’ concentations!.50,51 The near linear concentatio
dependence ofL(f1

o) and the maximum in the ‘‘osmotic
modulus’’ are characteristic features of equilibrium polyme
ization with thermal activation. Although the formation o
spherical micelles proceeds by a self-assembly process
differs from those considered here because of geome
packing constraints, the aggregation of spherical mice
into worm-like polymers can perhaps be treated as an a
vated equilbrium polymerization process. At any rate,
experimental observations50,51 strongly suggest that the F
model is inadequate to describe worm-like micelle form
tion, while the Alow model seems to be quite compatible. T
F model might be quite useful, however, for treatments
surfactant systems in which the degree of thermal activa
is high. Our generalized thermodynamic models of equil
rium polymerization thus point the way toward formulatin
physically more accurate models of polymerization p
cesses that occur in real complex fluid systems.

As already mentioned, the dependence of the critical
rameters (Tc andfc) on the enthalpy of polymerizationDhp

and on the strengtheFH of the effective monomer–solven
van der Waals interaction also differs between the vari
models@see Figs. 6~a! and 8#. A limited extent of polymer-
ization in the Ahigh model causesTc andfc to become prac-
tically insensitive to the dimensionless interactionhe

[(uDhpu/R)/(2eFH). The gradual polymerization transitio
in the F model is responsible for a slower variation ofTc and
fc with he than in the I and Alow models. Remarkably,Tc in
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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all the models never exceeds the theta temperatureTu for the
unpolymerized monomer–solvent systems, thereby pro
ing a fundamental limit to the critical temperature for arb
trary he . Another interesting aspect of critical phenomena
equilibrium polymerization solutions lies in the presence
two critical points in the phase diagram for the I and Alow

models @see Fig. 6~b!#. The first critical point (Tc

5eFH/2, fc51/2) is evidently reminiscent of the critica
point for an unpolymerized monomer–solvent syste
whereas the second critical point emerges due to the p
ence of a sharp polymerization transition. Two critical poin
do not occur in the F, Aint , or Ahigh models where the tran
sition is highly ‘‘rounded.’’52 A similar pattern of critical
behavior to those described here for the I and Alow models
has been found in theoretical studies of associating fluids
form branched polymers.53 Specifically, the mean field~Cay-
ley tree! calculations of Tanaka and Matsuyama53 indicate
the occurrence of a sharp polymerization transition and
critical points for a limited range ofDhp . Thus, it may be
concluded that the formation of branched structures lead
a ‘‘sharpening’’~decreased rounding! of the clustering tran-
sition since the polymerization transition is very broad in t
F model ~corresponding to bifunctional association in t
model of Tanaka and Matsuyama53!. We plan to investigate
equilibrium branched polymers using the lattice model
proach of the present paper to understand this nonintu
phenomenon. An extension of the F model to branched p
mer systems might also be relevant to descriptions of th
moreversible gelation.54
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APPENDIX: LOW TEMPERATURE SCALING OF L
AND fc IN THE FREE ASSOCIATION MODEL

The relationship betweenL and F is specified by Eq.
~27! as

L5
22A

22A2F
, 0,F,1, 0,A,1, ~A1!

whereF andA are defined as

F512f1 /f1
o , A5f1G, ~A2!

G[a exp(2Dfp /kBT), D f p is the free energy of polymeriza
tion, and the coefficienta equals (z21) and 1 for fully
flexible chains and for stiff chains, respectively.

Consider polymerization upon cooling, i.e., limit our di
cussion toDhp,0, Dsp,0. In the low temperature regim
(T!Tp) whereG@1, the concentration of unreacted mon
mersf1→0, the fraction of polymerized monomersF→1,
and the average chain lengthL becomes large (L@1). Con-
sequently,A approaches unity@see Eq.~A1!# and may be
formally expressed as

A~T!Tp!512e, e→01, ~A3!
Downloaded 22 Dec 2003 to 129.6.154.32. Redistribution subject to AI
d-

f

,
s-

s

at

o

to

-
e

y-
r-

-
e

where e is positive and small. Substituting Eqs.~A2! and
~A3! into Eq. ~A1! yields

L~T!Tp!5
1

e
1O~e22!. ~A4!

On the other hand,e can be determined from the mass co
servation Eq.~19!,

f1
o5f11

CA2~22A!

~12A!2 , C5
z

2aG
. ~A5!

Replacingf1 in Eq. ~A5! by A/G and A by (12e) and
ignoring cubic terms ine in the resulting equation lead to th
quadratic form,

@11~Gf1
o21!~2a/z!#e21e2150, ~A6!

which can be solved fore,

e5
211A114@11~Gf1

o21!~2a/z!#

2@11~Gf1
o21!~2a/z!#

.A 1

Gf1
o~2a/z!

5AC

f1
o. ~A7!

Thus, the asymptotic average polymerization index is

L~T!Tp!.
1

e
.AGf1

o~2a/z!5Af1
o

C
. ~A8!

The critical compositionfc for the free association sys
tem is defined through the condition,

]3F/~NlkBT!

]~f1
o!3 U

Nl ,T5Tc

50. ~A9!

Reexpressing the third derivative ofF with respect tof1
o in

terms ofe5(C/f1
o)1/2 @see Eq.~A7!# transforms the condi-

tion in Eq. ~A9! into a simple polynomial,

bfc
5/22fc

212fc2150, ~A10!

whereb[4/(3ACcr) andCcr5z/(2a exp@2Df/kBTc#). Since
fc!1 andb@1, the linear and quadratic terms infc can be
neglected in Eq.~A10!, leading to the solution,

fc.S 3

4D 2/5F z

2a exp@2D f /~2kBeFH!#G
1/5

,

Dhp,0, Dsp,0, Tc!Tp . ~A11!
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