A Nash-Cournot Equilibrium Model for the North American Natural Gas Sector*

Steven A. Gabriel^{1,2}, Jifang Zhuang¹, Supat Kiet¹

 ¹ Project Management Program, Dept. of Civil & Env. Engineering
 ² Applied Mathematics and Scientific Computation Program University of Maryland, College Park, Maryland 20742

Presented at

National Institute of Standards and Technology Mathematical and Computational Sciences Division Feb. 16, 2005

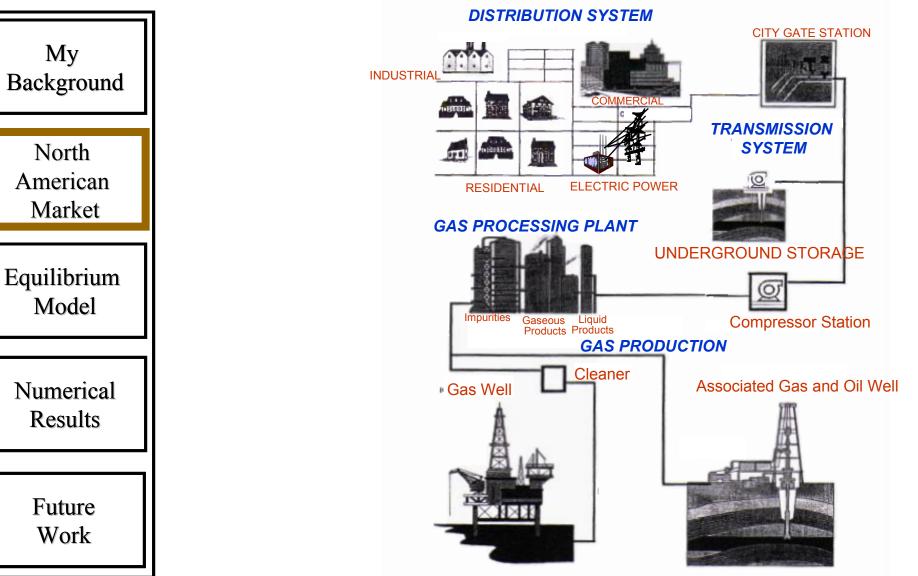
*National Science Foundation Funding, Division of Mathematical Sciences Awards 0106880 & 0408943

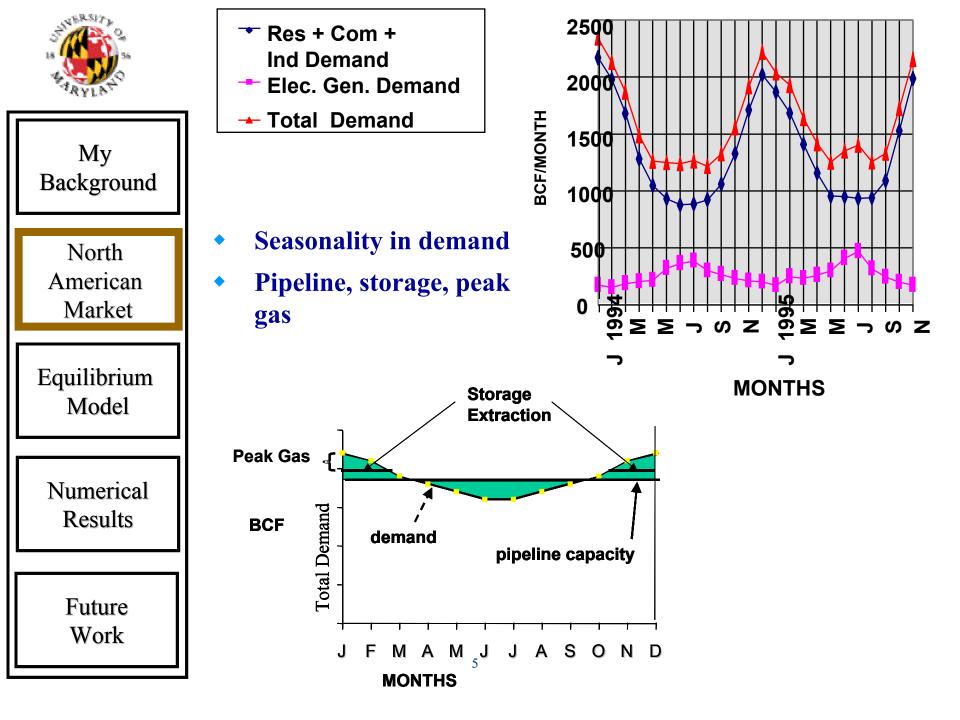
My Background
North American Market
Equilibrium Model
Numerical Results
Future Work

Outline of Presentation

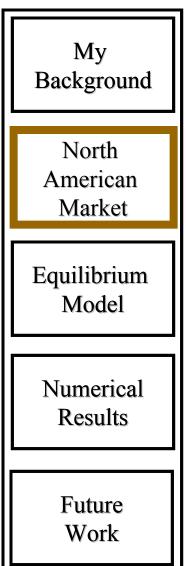
- My Background
- North American Market Background
- Equilibrium Model
- Numerical Results
- Future Work and References

My Background	
North American Market	
Equilibrium Model	
Numerical Results	
Future Work	

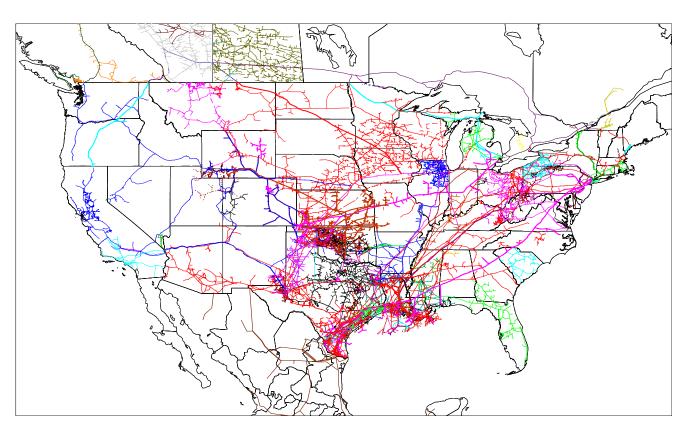

Overview of Research

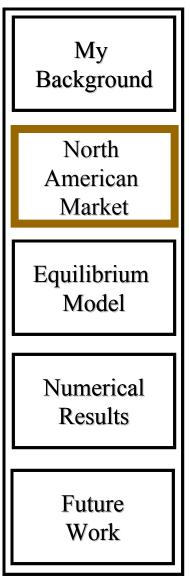

Research: Main Topics

- Mathematical modeling in engineering-economic systems using optimization and equilibrium analysis usually involving some infrastructural elements
 - Models of energy markets and risk (natural gas and electricity)
 - Transportation/traffic flow
 - "Smart Growth" land development
 - Wastewater treatment
 - Wireless telecommunications networks
- Development of algorithms for solving equilibria in energy & transportation systems
- Development of general purpose algorithms for equilibrium models (using the nonlinear complementarity format)
- Operations research areas: Multiobjective optimization, nonlinear programming, complementarity theory, statistics, integer programming

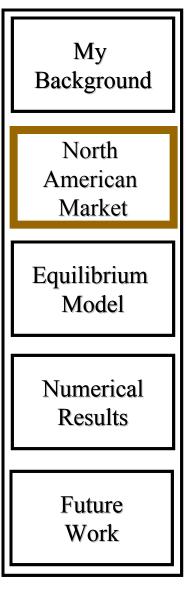


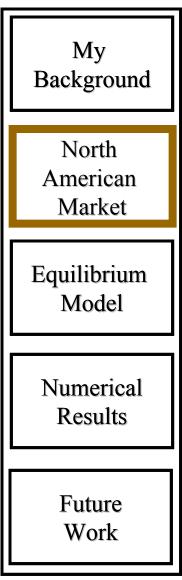
From well-head to burner-tip





- Pipelines
- 110 Interstate Pipelines, (51 classified as majors) with 190,000+ miles of Transmission Lines




- Key events (US) (Chambers, Sturm)
- Before 1985
 - regulated interstate gas pipelines provided a bundled service that included
 - transportation
 - transportation-related services (e.g., storage)
 - the natural gas itself
 - Customers paid the cost of gas based on longterm contracts between the pipelines and unaffiliated gas producers
 - Customers paid on a "pass-through" basis, i.e., no return on the commodity allowed for the pipelines (unlike electric power)
 - Thus, pipelines made no profit on the purchase and sale of gas

- Key events (US)
- Deregulatory FERC Orders 436 (1985), 500 (1989), 636 (1992) 888, 889 (1996)
 - Unbundling of services by interstate pipelines
 - Natural gas buyer can choose to buy gas from a supplier at one location, transport it along a pipeline a short distance (lower transportation rate), and receive the volumes
 - Promoting wholesale competition through open access, non-discriminatory transmission services by public utilities
 - Recovery of stranded costs by public utilities and transmitting utilities
 - Standards of conduct developed for pipelines and marketer affiliates

- Key events (US)
- This new marketplace may permit certain abuses of market power
 - Interstate pipelines have a natural monopoly but highly regulated by FERC
 - Production is more or less a perfectly competitive market due to the large volume of producers
 - Marketer/shippers are unregulated by FERC maybe they have some market power?
- Why straightforward system optimization will not work
- Need for a game-theoretic format (e.g., Nash-Cournot) for some players

My

Background

North

American

Market

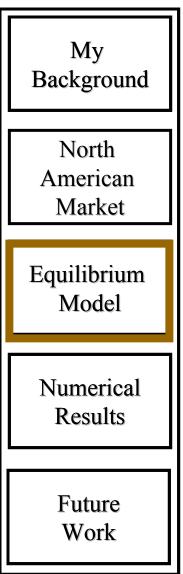
Equilibrium

Model

Numerical

Results

Future


Work

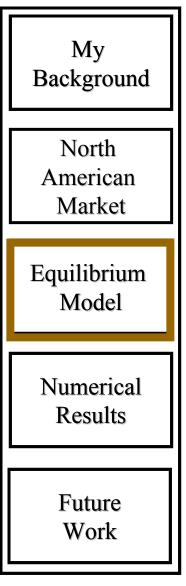
DISTRIBUTION SYSTEM

imperfect competition (e.g., oligopoly) to measure the influence of market power along the natural gas supply chain

• Develop short term model to characterize the new natural gas industry (no new capacity)

- Pipeline companies

• Maximize net revenues: regulated rate revenues + congestion revenues subject to capacity bounds


Production companies

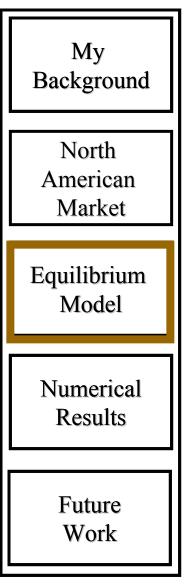
- Maximize net profits subject to drilling restrictions
- Perfect competition in the production market (reasonable for North America), price-takers

Storage reservoir operators

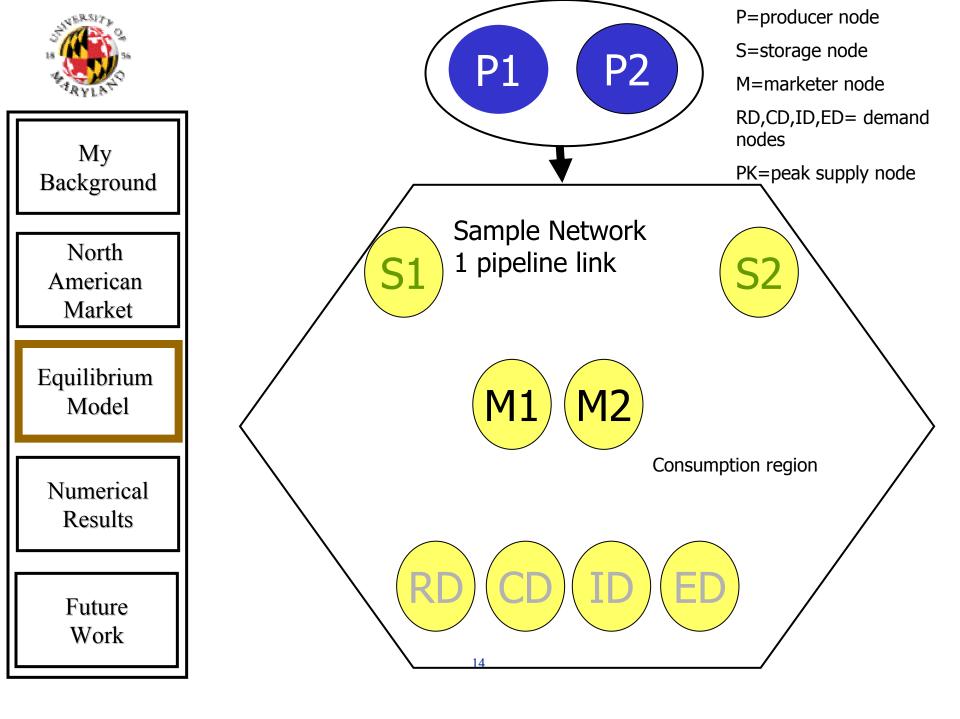
- Maximize net profits subject to extraction, injection, and volumetric restrictions
- Injection and extraction in different seasons
- Storage reservoir operators use "seasonal arbitrage"
- Perfect competition in the storage market, price takers for production and transportation

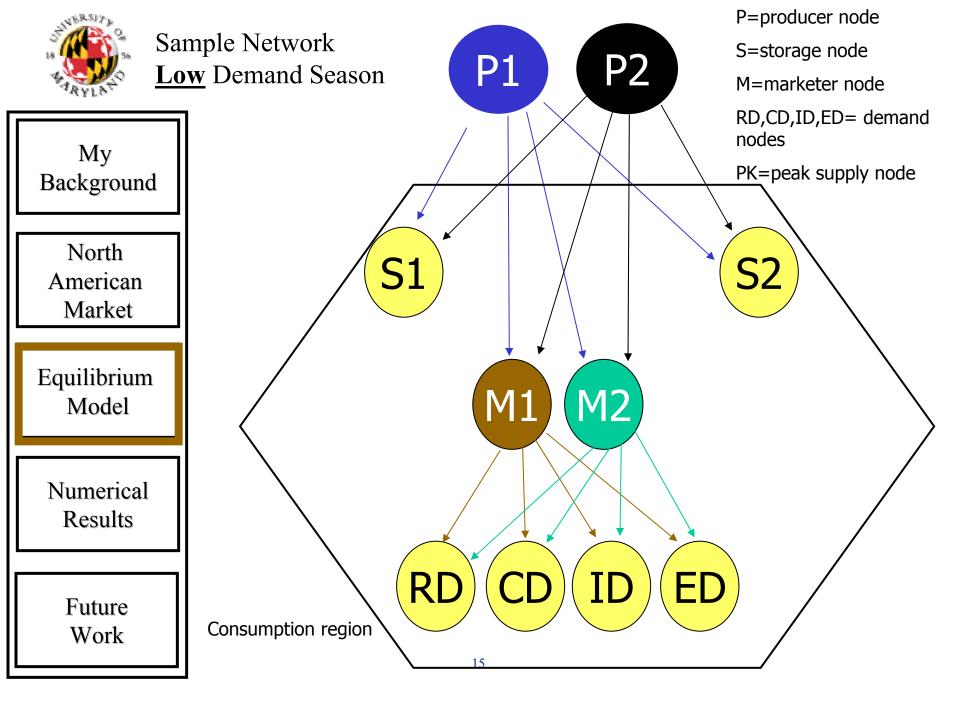
Marketers/shippers

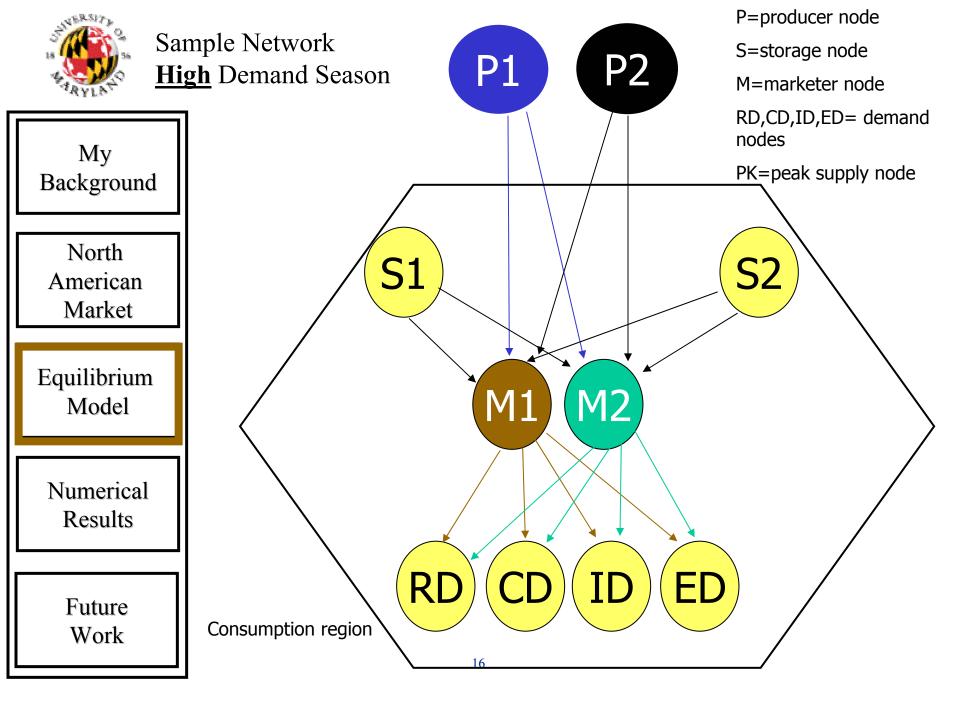
- Maximize net profits
- Nash-Cournot players in the "marketer market", thus marketers can exert market power via inverse demand functions
- Price-takers in the storage, production, peak gas, and transportation markets

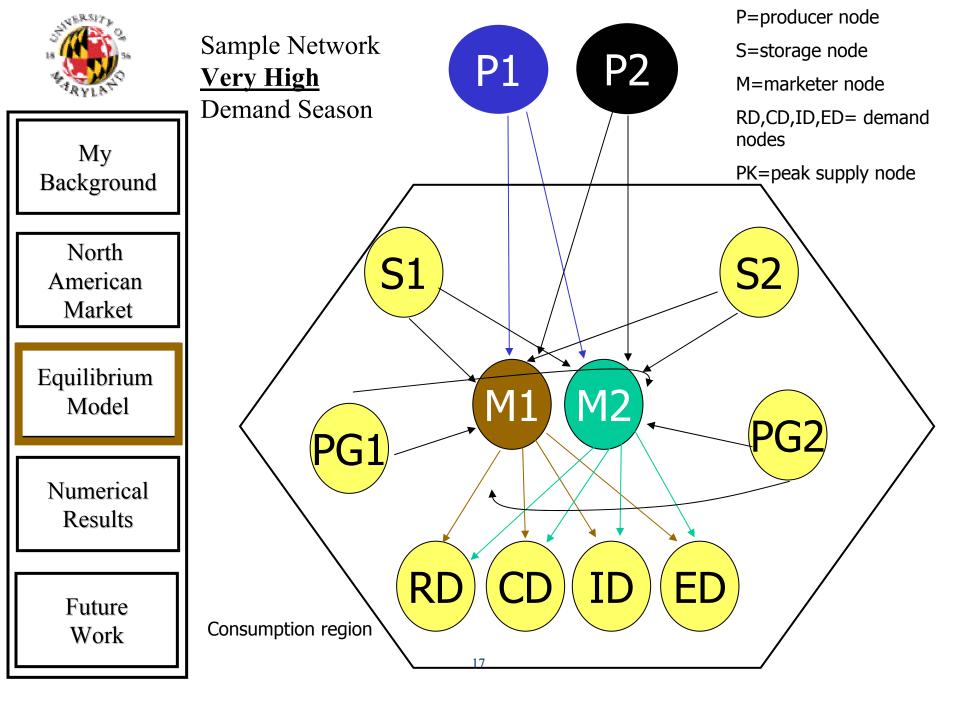

Peak gas suppliers

- Maximize net profits subject to peak supply capacity restrictions
- Perfect competition in the peak supply market
- Peak supply only in the high demand season, substitute for storage and pipeline gas

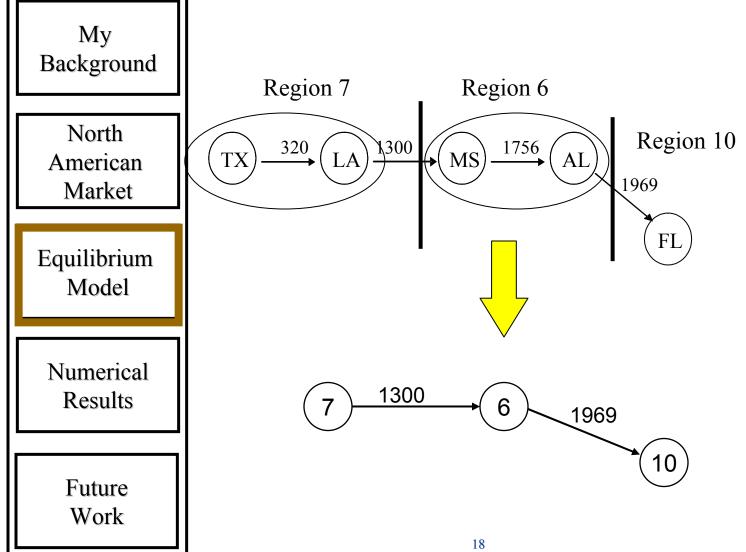

– Consumers

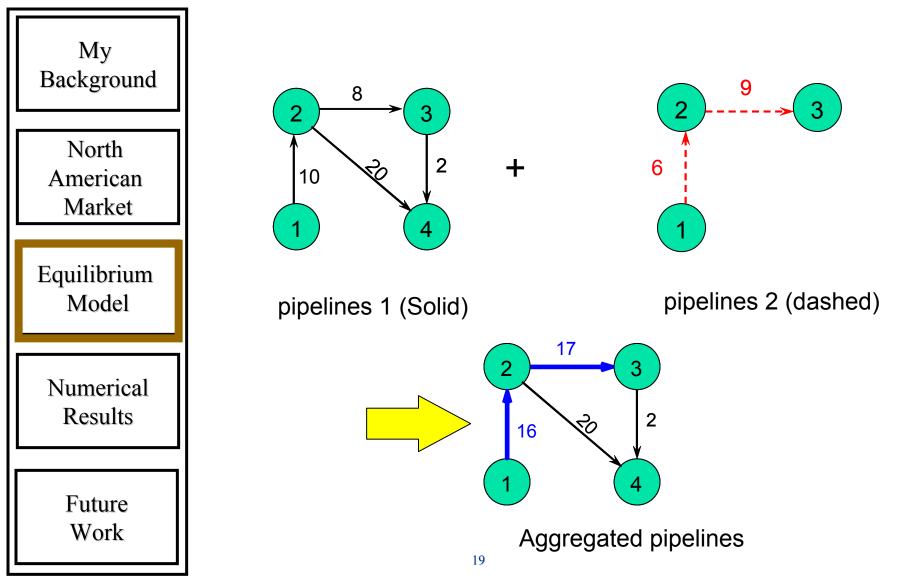

- Residential, commercial, industrial, electric power sectors
- Inverse demand functions as part of the marketer problems 12

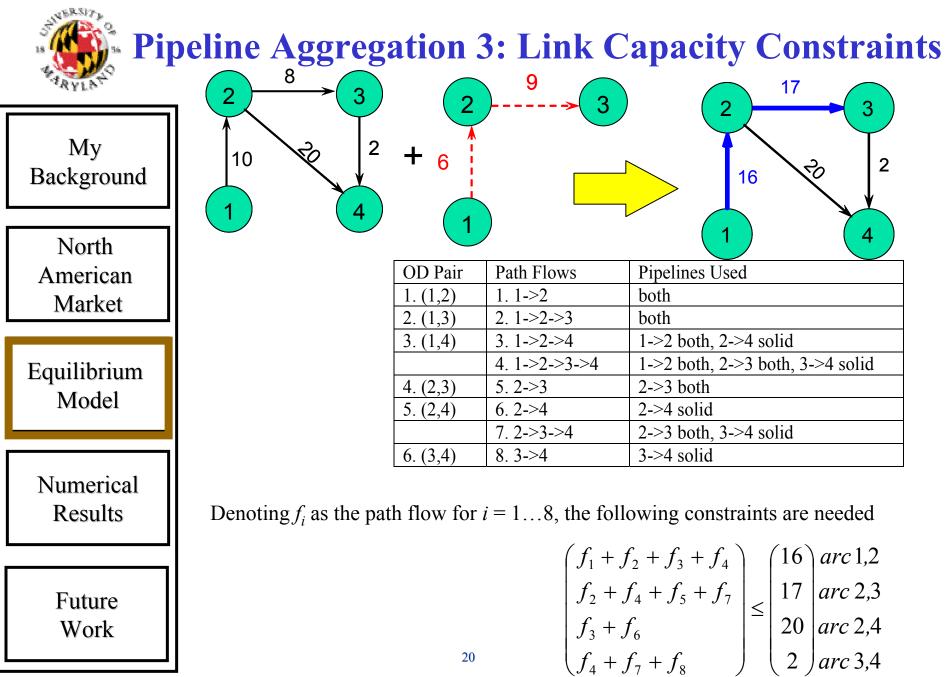


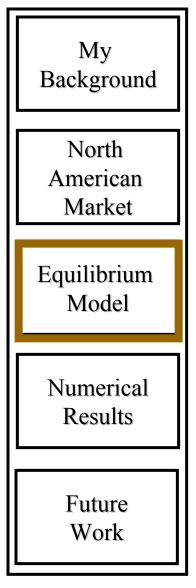


- Market clearing
 - Total supply = total demand in various markets
- Use multiple seasons
 - Season 1 (low demand), April-October, days₁=214
 - Season 2 (high demand), November-March, excluding January, days₂=120
 - Season 3, (very high or peak demand),
 e.g., January, days₃=31

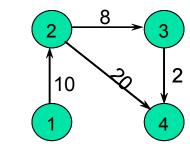


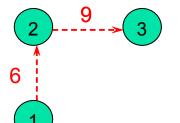


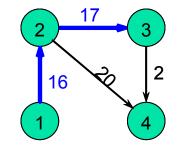

Pipeline Aggregation 1: Regional Aggregation


Pipeline Aggregation 2: Pipeline Combination

Pipeline Aggregation 4: Additional Restriction

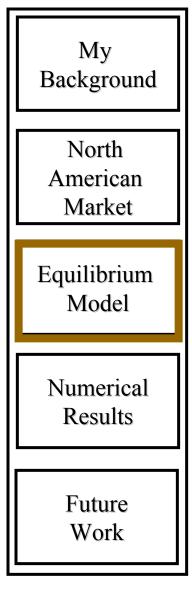

- Assume that gas cannot go back and forth between the two different pipelines, the flow on paths would have to stay on the same pipeline.
- Additional constraints are needed to capture pipeline specific information.

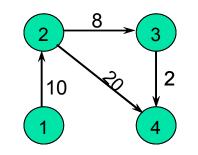


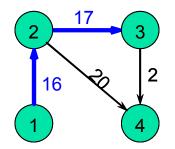

Pipeline Aggregation 5: Additional Restriction 1

My Background North American Market Equilibrium Model Numerical Results Future Work

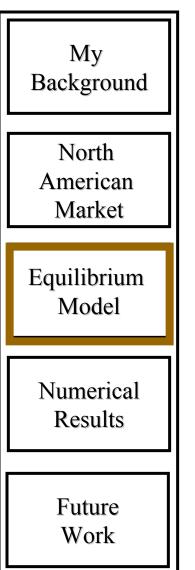
- f_2 : flow 1->2->3 use both pipelines
- For pipeline $1: f_{2-1} \le min (10,8)$
- For pipeline $2: f_{2-2} \le min$ (6,9)
- Hence, $f_2 \le 14$ instead of $f_2 \le 16$



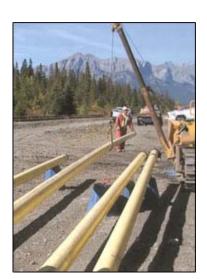




Pipeline Aggregation 5: Additional Restriction 2



- f₃ (flow 1->2->4) and f₄ (flow 1->2->3->4) would stay in pipeline 1 and use the arc (1,2) of pipeline 1 in common
- So $f_3 + f_4 \le 10$ would be used to enforce this condition

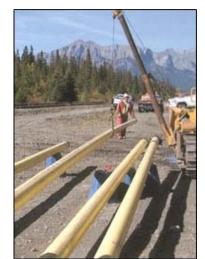


Pipeline Operator's Problem (Linear Program)

- Maximize congestion revenues s.t.
 - bounds on capacity
 - post-processor for regulated revenues

- Other constraints that are pipelinespecific (not shown here)

$$\operatorname{Max} \sum_{y \in Y} \sum_{s=1}^{3} days_{s} \tau_{asy} f_{asy}$$


s.t.

- $f_{asy} \leq \bar{f}_a \quad (\rho_{asy}) \qquad \forall s, y$
- $0 \le f_{asy} \qquad \forall s, y$

Pipeline Operator's Problem (Linear Program)

- KKT conditions are both necessary and sufficient for optimality
- These conditions are

$$0 \le -days_{s}\tau_{asy} + \rho_{asy} \perp f_{asy} \ge 0 \qquad \forall s, y$$
$$0 \le \bar{f}_{a} - f_{asy} \perp \rho_{asy} \ge 0 \qquad \forall s, y$$

Producer's Problem (Convex Program)

- Maximize production revenues less production costs s.t.
 - bounds on production rates
 - bounds on volume of gas produced

$$\operatorname{Max} \sum_{y \in Y} \sum_{s=1}^{3} days_{s} \pi_{nsy} q_{csy} - days_{s} c_{c}^{pr}(q_{csy})$$

s.t.

$$q_{csy} \leq \overline{q}_c \qquad \qquad \left(\lambda_{csy}\right) \quad \forall s, y$$

$$\sum_{y \in Y} \sum_{s=1}^{3} days_{s} q_{csy} \leq prod_{c} \qquad (\mu_{c})$$

y

$$0 \le q_{csy} \qquad \forall s,$$

My

Background

North

American

Market

Equilibrium

Model

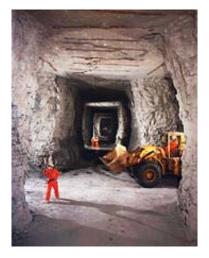
Numerical

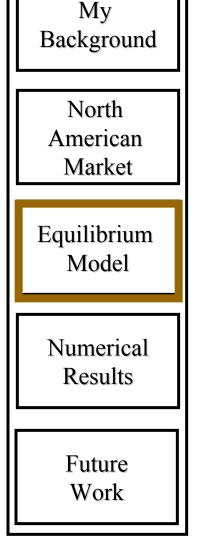
Results

Future

Work

Producer's Problem (Convex Program)


- If cost function is convex, KKT conditions are both necessary and sufficient for optimality
- Necessity since polyhedral constraints
- These conditions are


 $0 \leq -days_{s}\pi_{nsy} + days_{s}c_{c}^{pr}(q_{csy})' + \lambda_{csy} + days_{s}\mu_{c} \perp q_{csy} \geq 0 \quad \forall s, y$ $0 \leq \overline{q}_{c} - q_{csy} \perp \lambda_{csy} \geq 0 \quad \forall s, y$

$$0 \le prod_c - \sum_{y \in Y} \sum_{s=l}^{3} days_s q_{csy} \perp \mu_c \ge 0$$

Storage Reservoir Operator's Problem (Convex Program)

- Maximize net revenues from marketers less injection, long-distance transportation and congestion costs s.t.
 - volumetric bound on working gas
 - maximum extraction rate bound
 - maximum injection rate bound
 - annual injection-extraction balancing
 nonnegativity of injection and extraction

Storage Reservoir Operator's Problem (Convex Program)

- If cost function is convex, KKT conditions are both necessary and sufficient for optimality
- Necessity since polyhedral constraints

Max

$$\sum_{y \in Y} \left[days_2 \gamma_{n2y} x_{r2y} + days_3 \gamma_{n3y} x_{r3y} - days_1 c_r^{st} \left(\sum_{a \in A(n)} g_{ary} \right) - \sum_{a \in A(n)} days_1 \left(\tau_{a1y} + \tau_{a1y}^{reg} + \pi_{n_2(a)1y} \right) g_{ary} \right]$$

s.t.

 $0 \leq g_{arv} \forall a \in A(n), x_{r^2v}, x_{r^3v}$

$$days_2 x_{r2y} + days_3 x_{r3y} - days_1 \sum_{a \in A(n)} g_{ary} (1 - loss_a) (1 - loss_r) = 0 \quad (\delta_{ry}) \qquad \forall y$$

$$\begin{aligned} x_{rsy} \leq \overline{x}_{r} & (\omega_{rsy}) \quad s = 2, 3, \forall y \\ \sum_{a \in A(n)} g_{ary} \leq \overline{g}_{r} & (\xi_{ry}) \quad \forall y \\ \sum_{s=2,3} days_{s} x_{rsy} \leq \overline{k}_{r} & (\zeta_{ry}) \quad \forall y \end{aligned}$$

29

 $\forall y$

My

Background

North

American

Market

Equilibrium

Model

Numerical

Results

Future

Work

 Maximize net demand sector revenues less, local delivered costs from storage and peak supply, long-distance cost from producers, congestion costs (inverse demand equations by sectors used)

s.t.

- pipeline gas consistency
- storage gas consistency
- nonnegativity of gas supplies (pipeline, storage, peak)

Marketer/Shipper's Problem (Convex Program)

- If revenue functions concave, KKT conditions are both necessary and sufficient for optimality
- Necessity since polyhedral constraints

$$\begin{aligned} &Max \sum_{y \in Y} \sum_{k \in K} \left[days_{1} \theta_{n1y}^{k} \left(h_{m1y}^{k} + h_{-m1y}^{k*} \right) h_{m1y}^{k} + days_{2} \theta_{n2y}^{k} \left(h_{m2y}^{k} + h_{-m2y}^{k*} + u_{m2y}^{k} + u_{-m2y}^{k*} \right) \right) \\ &days_{3} \theta_{n3y}^{k} \left(h_{m3y}^{k} + h_{-m3y}^{k*} + u_{m3y}^{k} + u_{-m3y}^{k*} + v_{my}^{k} + v_{-my}^{k*} \right) \left(h_{m3y}^{k} + u_{m3y}^{k} + v_{my}^{k} \right) \\ &- \sum_{y \in Y} \left[\left(\sum_{s=1}^{3} \sum_{a \in A(n)} days_{s} \left(\tau_{asy} + \tau_{asy}^{reg} + \pi_{n_{2}(a)sy} \right) h_{amsy} \right) + days_{2} \gamma_{n2y} u_{m2y} + days_{3} \gamma_{n3y} u_{m3y} + days_{3} \beta_{ny} v_{my} \right] \end{aligned}$$

 $0 \leq v_{mv}^k$, $0 \leq v_{my}$

$$\sum_{k \in K} days_{s} h_{msy}^{k} - \sum_{a \in A(n)} days_{s} (1 - loss_{a}) h_{amsy} = 0 \qquad (\alpha_{msy}) \quad \forall s, y$$

$$\sum_{k \in K} days_{s} u_{msy}^{k} - days_{s} u_{msy} = 0 \qquad (\phi_{msy}) \quad \forall s = 2, 3, \forall y$$

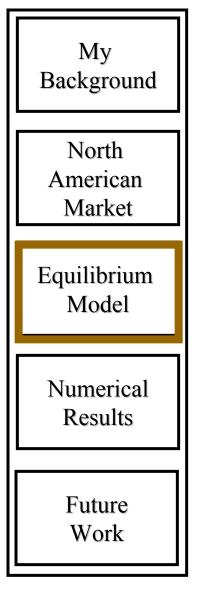
$$\sum_{k \in K} days_{3} v_{my}^{k} - days_{3} v_{my} = 0 \qquad (\phi_{my}) \qquad \forall y$$

$$0 \le h_{msy}^{k} \qquad \forall k, s, y$$

$$0 \le h_{amsy} \qquad \forall k, s = 2, 3, y$$

$$0 \le u_{msy} \qquad 31 \qquad \forall s = 2, 3, y$$

 $\forall v$



My Background	
North American Market	
Equilibrium Model	
Numerical Results	
Future Work	

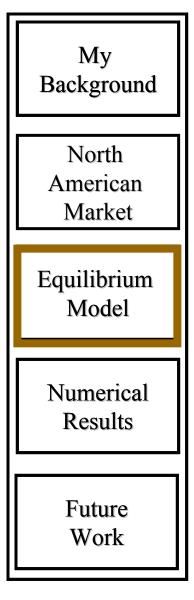
Peak Gas Operator's Problem (Convex Program)

- Maximize net revenues from marketers less peak gas costs s.t.
 - maximum peak gas supply upper bound
 - nonnegative peak gas supply and deliveries

Peak Gas Operator's Problem (Convex Program)

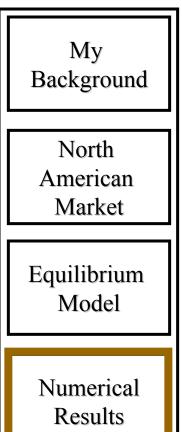
 $\forall y$

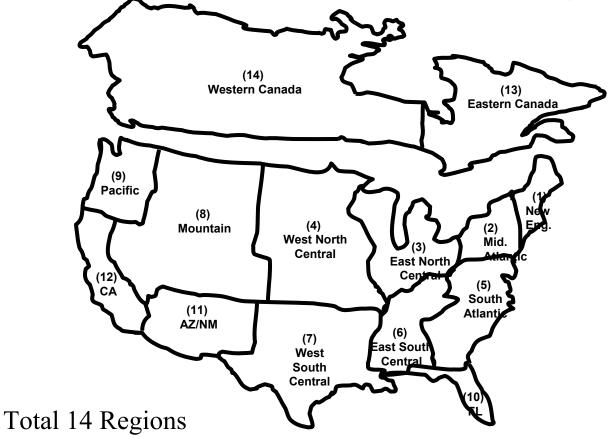
 $\forall y$


Max $\sum_{y \in Y} days_3 (\beta_{ny} w_{py} - c_p^{pg} (w_{py}))$

s.t.

$w_{py} \leq \overline{w}_p$	(σ_{py})
------------------------------	-----------------

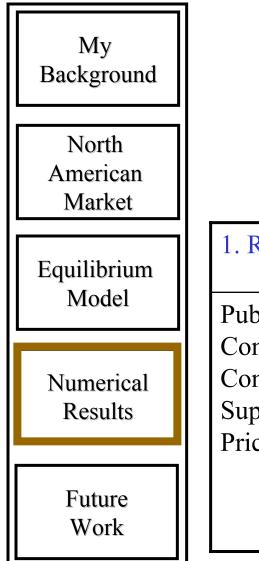

$$0 \le w_{py}$$


- Apply Karush-Kuhn-Tucker Optimality conditions for the optimization problems faced by the
 - Pipeline operators, producers, storage operators, marketers, peak gas suppliers
 - Market clearing conditions
 - Existence & uniqueness results for mixed NCP version as well as model formulation discussion
 - S. A. Gabriel, <u>S. Kiet, J. Zhuang</u>. (2003) "A Competitive Equilibrium Model for the Natural Gas Market Based on a Mixed Complementarity Formulation," *forthcoming, Operations Research*.
 - For numerical study, convex, quadratic cost functions+ Linear demand equations → mixed linear complementarity problem
 - S. A. Gabriel, <u>J.-F. Zhuang</u>, <u>S. Kiet</u>. (2004) "A Nash-Cournot Model for the North American Natural Gas Market," IAEE Conference Proceedings, Zurich, Switzerland.
 - S.A. Gabriel, J.-F. Zhuang, S. Kiet. (2004) "A Large-Scale Linear Complementarity Model of the North American Natural Gas Market," <u>in review.</u>

Future Work

North American Numerical Study

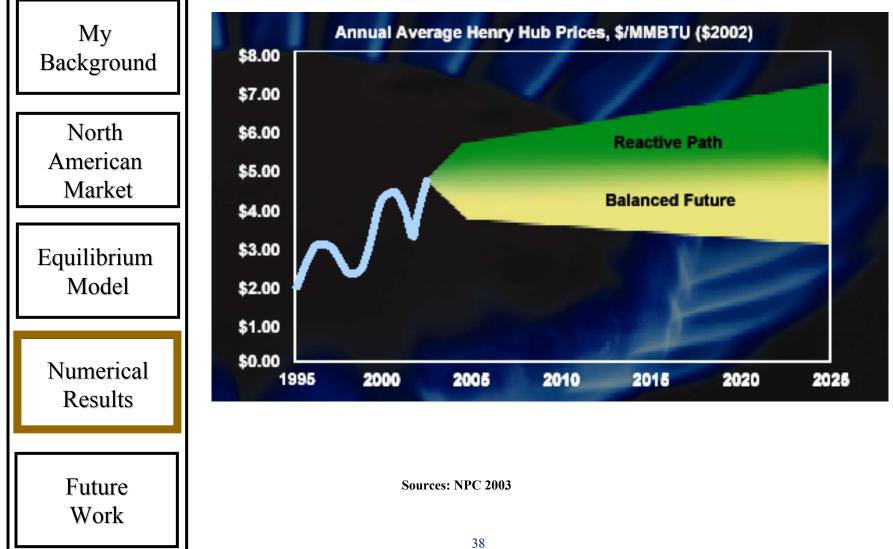
• US portion based on US DOE natural gas regions


1	2	3	4	5	6	7	8	9	10	11	12
New England	Mid Atlantic	E. North Central	W. North Central	South Atlantic	E. South Central	W. South Central	Mountain	Pacific	Florida	AZ/NM	CA
СТ	NJ	IL	IA	DE	AL	AR	co	OR	FL	AZ	CA
ME	NY	IN	KS	DC	KY	LA	ID	WA		NM	
MA	PA	MI	MN	GA	MS	ок	MT				
NH		ОН	MO	MD	TN	тх	NV				
RI		WI	NE	NC			UT				
VT			ND	SC			WY				
			SD	VA							
				wv							

National Petroleum Council (NPC) Study http://www.npc.org/

- Investigations of the ongoing and future operations
- Requirements of the U.S. oil and gas industries
- Statistical studies descriptive of these industries
- Delineations of the U.S. oil and gas resource base
- Comprehensive analyses of the domestic energy
- Supply/Demand Situation
- Examine other evolving market conditions that may affect the potential for natural gas demand, supplies and delivery through 2025
- The current policy direction unaltered will likely lead to difficult conditions in the natural gas market, but industries, government, and consumers will react
- Therefore, this study assumes action beyond the status quo

Two Paths Beyond Status Quo



1. Reactive Path Scenario	2. Balanced Future Scenario
Public Policies Remain in Conflict, Encouraging Consumption while Inhibiting Supply Resulting in Higher Prices and Volatility.	Public policies aligned: alternate fuels and new natural gas supply sources compete to ensure lowest consumer cost.

NPC Study

NPC Study Potential Price Ranges

NPC Study Interpretation

Summary of Demand and Supply Annual Percentage Changes for Each Case

My Background		Demand	Sectors	Supply Growth				
North	Reactive Path	Res.	Com.	Ind.	Elec. Power	Prod.	LNG	
American Market		0.75%	0.81%	-1.00%	1.90%	0.80%	25.99%	
Equilibrium	Balanced Future	Res.	Com.	Ind.	Elec. Power	Prod.	LNG	
Model		0.51%	0.89%	-0.74%	1.70%	0.93%	28.49%	
Numerical Results	* Demand percentage changes are actual figures from the NPC study, supply values are estimated based on graphs.							
icosuits	 Base Cases, 2002: Nash-Cournot and Perfectly Competitive Marketers Balanced Future Cases, 2008: Nash-Cournot & Perfectly Competitive Marketers 							
Future Work	 Reactive Pa Marketers 	• Reactive Path Cases, 2008: Nash-Cournot & Perfectly						

Market Participants by Region

М	Region	Production	Storage	Marketers	Peak Gas
My Background	1. New England	No	No	2	Yes
	2. Mid Atlantic	Yes	Yes	2	Yes
North	3. East North Central	Yes	Yes	2	Yes
American	4. West North Central	Yes	Yes	2	Yes
Market	5. South Atlantic	Yes	Yes	2	Yes
Equilibrium	6. East South Central	Yes	Yes	2	Yes
	7. West South Central	Yes	Yes	2	Yes
Model	8. Mountain	Yes	Yes	2	Yes
	9. Pacific	Yes	Yes	2	Yes
Numerical	10. Florida	Yes	No	2	No
Results	11. Arizona/New Mexico	Yes	Yes	2	No
itesuits	12. California	Yes	Yes	2	Yes
]	13. Eastern Canada	Yes	Yes	2	Yes
Future	14. Western Canada	Yes	Yes	2	Yes

My Background
North American Market
Equilibrium Model
Numerical Results
Future Work

Model Calibration Accuracy

- Investigations of the calibration dataset used
 - Gas Demand Quantity for all 4 sectors
 - Gas Price (Production, City Gate and End User)
 - Capacity (Pipeline, Production, Storage, and Peak Gas)
 - Transportation Costs
 - Sources of Calibration Information Used (Yr. 2002):
 - Energy Information Administration (EIA) of the U.S. Department of Energy (DOE)
 - Natural Resources Canada (NRCAN)

American

Market

Equilibrium

Model

Numerical

Results

Future

Work

Calibration Accuracy for Base Case 2002*

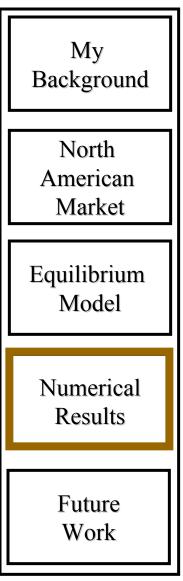
Calibration Price Accuracy Table:

					J		
My Background	Region	Production	City Gate	Res. Demand	Comm. Demand	Ind. Demand	Power Demand
	USA	7.49 %	1.50 %	0.10 %	0.62 %	0.44 %	2.47 %
North	Canada	10.49 %	N/A	N/A	N/A	N/A	N/A
American							

Calibration <u>Quantity</u> Accuracy Table:

Region	Production	Res. Demand	Comm. Demand	Ind. Demand	Power Demand
USA	4.66 %	-0.55 %	-0.62 %	-0.90 %	-0.63 %
Canada	-2.22 %	0.72 %	0.22%	0.14 %	0.69 %

* Calibration Accuracy Based on Comparison Between Base Case and **EIA & NRCAN Data**



1.

Supply and Demand Functions Used

My			
Background	Function	Function Forms	Example
North			
American Market	Producer Costs (Producer c for season s and year y)	Quadratic	$\alpha_0 + \alpha_1 x + \frac{1}{2} \alpha_2 x^2$
Equilibrium Model	Storage Operator Costs (Operator <i>r</i> for season <i>s</i> and year <i>y</i>)	Quadratic	$\beta_0 + \beta_1 x + \frac{1}{2}\beta_2 x^2$
Numerical	Peak Gas Operator Costs (Operator <i>p</i> for season <i>s</i> and year <i>y</i>)	Quadratic	$\gamma_0 + \gamma_1 x + \frac{1}{2} \gamma_2 x^2$
Results	Inverse Demand (Sector k for season s and year y)	Linear	$A - B\theta$
Future Work		43	

Computational Statistics

- Computational and Modeling Aspects
 - LCP with 4298 variables all together
 - Solver: GAMS/PATH
 - Computer: 2.80 GHz Intel® Pentium® 4 Processor and 1.0GB of memory
 - Typical solution times for each case
 - About 25 seconds to read the input from an EXCEL file
 - 10 to 100 seconds for GAMS/PATH to solve the model depending on the parameter settings and cases solved
 - About 8 seconds to write the output to another EXCEL file
 - About 3-4 months to calibrate the Base Case!

Base Case- Nash Cournot (NC) vs. Base Case Perfect Competition (PC)

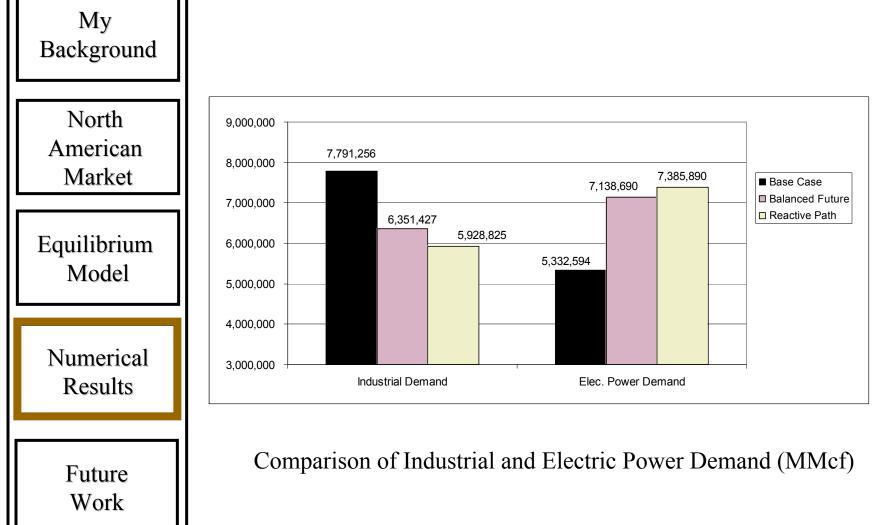
Background			BC-NO		BC	- PC	% diff.
Duckground	Producers	Wellhead Prices (\$/Mcf)	\$	3.49	\$	4.39	-20.62
		Production (MMcf)		21,449,980		22,410,085	-4.289
		Profits (1000\$)		40,999,255		64,320,640	-36.269
North	Storage Operators	Gas Prices (\$/Mcf)	\$	3.96	\$	5.08	-22.059
		Extraction (MMcf)		1,806,400		2,854,332	
American		Profits (1000\$)		70,325		159,069	
Market	Peak Gas Operators	Gas Prices (\$/Mcf)	\$	4.22	\$	5.20	-18.859
Market		Supply(MMcf)		241,644		241,644	0.009
		Profits (1000\$)		673,754		908,682	-25.859
	Marketers	Profits (1000\$)		39,050,713		0	n/a
quilibrium							
÷	End-user Prices	RD	\$	7.98	\$	5.22	52.709
Model		CD	\$	6.79	\$	5.18	30.999
		ID	\$	4.54	\$	4.46	1.769
		ED	\$	3.88	\$	4.11	-5.66
	Consumption	RD		5,070,051		6,752,150	-24.91
Numerical	(MMcf)	CD		3,359,012		4,326,044	-22.35
vuillericai		ID		7,791,256		7,666,899	1.62
Results		ED		5,332,594		3,744,228	42.42
		_					
	Pipeline	Regulated Income (1000\$)		,477,208.21		9,395,139.17	-9.77
		Congestion Income (1000\$)	7	,896,513.94		6,611,806.11	19.439

Balanced Future Nash Cournot (NC) vs. Balanced Future Perfect Competition (PC)

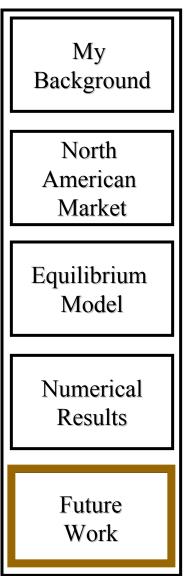
Mar			BF-N	C	BF	- PC	% diff.
My	Producers	Wellhead Prices (\$/Mcf)	\$	3.60	\$	4.45	-19.10%
Background		Production (MMcf)		21,596,952		22,834,094	-5.42%
Baenground		Profits (1000\$)		42,648,106		64,262,676	-33.63%
	Storage Operators	Gas Prices (\$/Mcf)	\$	4.03	\$	5.10	-20.98%
		Extraction (MMcf)		1,532,182		2,478,187	-38.17%
North		Profits (1000\$)		48,105		152,930	-68.54%
	Peak Gas Operators	Gas Prices (\$/Mcf)	\$	3.57	\$	4.72	-24.36%
American		Supply(MMcf)		1,076,855		1165085.298	-7.57%
Market		Profits (1000\$)		1,514,677		2,827,067	-46.42%
Market	Marketers	Profits (1000\$)		42,832,340		0	n/a
	End-user Prices	RD	\$	8.06	\$	5.26	53.39%
Equilibrium		CD	\$	7.03	\$	5.22	34.60%
-		ID	\$	4.56	\$	4.52	0.97%
Model		ED	\$	4.19	\$	4.20	-0.15%
	Consumption	RD		5,330,381		7,169,293	-25.65%
	(MMcf)	CD		3,712,096		4,871,733	-23.80%
		ID		6,351,427		5,438,908	16.78%
		ED		7,138,690		6,358,119	12.28%
Numerical							
Results	Pipeline	Regulated Income (1000\$)	3	3,504,341.30		9,594,763.95	-11.36%
ittosuits		Congestion Income (1000\$)	ę	9,120,153.98		9,030,300.89	1.00%

Future Work

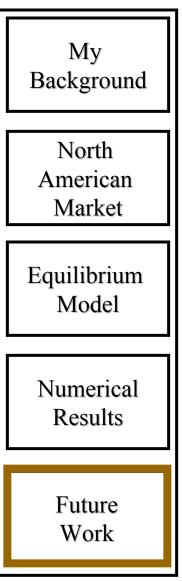
Base Case, Balanced Future, and Reactive Path Nash Cournot Cases


My Background
North American Market
Equilibrium Model
Numerical Results
Future Work

		E	Base Case	Balanced Future	Reactive Path
Producers	Wellhead Prices (\$/Mcf)	\$	3.49	3.21%	3.50%
	Production (MMcf)		21,449,980	0.69%	0.66%
	Profits (1000\$)		40,999,255	4.02%	4.46%
Storage Operators	Gas Prices (\$/Mcf)	\$	3.96	1.77%	1.77%
	Extraction (MMcf)		1,806,400	-15.18%	-13.87%
	Profits (1000\$)		70,325	-31.60%	-25.52%
Peak Gas Operators	Gas Prices (\$/Mcf)	\$	4.22	-15.40%	-12.09%
	Supply(MMcf)		241,644	345.64%	311.45%
	Profits (1000\$)		673,754	124.81%	136.36%
Marketers	Profits (1000\$)		39,050,713	9.68%	10.88%
End-user Prices	RD	\$	7.98	1.11%	2.55%
	CD	\$	6.79	3.48%	3.32%
	ID	\$	4.54	0.52%	0.04%
	ED	\$	3.88	8.15%	9.26%
Consumption	RD		5,070,051	5.13%	7.78%
(MMcf)	CD		3,359,012	10.51%	9.11%
	ID		7,791,256	-18.48%	-23.90%
	ED		5,332,594	33.87%	38.50%
Pipeline	Regulated Income (1000\$)		8,477,208.21	0.32%	0.55%
	Congestion Income (1000\$)	7,896,513.94	15.50%	16.35%


Case Comparison, % diff. with Base Case

Balanced Future and Reactive Path Cases Not Much Different for ID, ED



Future Work and References

- Adding stochasticity to the market player problems
 - Model formulation and solution (Denver 2004 INFORMS meeting, marketers have chance constraints, ongoing work to consider recourse with the spot market)
 - Mathematical analysis including existence & uniqueness results (some improvements for deterministic case, stochastic case ongoing)
 - Decomposition methods (e.g., Benders, Dantzig-Wolfe)
- Using micro-level approach for demand and/or supply functions
 - Certain modules are "black boxes", hard to generate data
 - US DOE NEMS model, ICF Consulting's GSAM model
 49

٠

Future Work and References

Related Papers: North American market

- S.A. Gabriel, S. Kiet, J.-F. Zhuang. (2003) "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," forthcoming, *Operations Research*
- S. A. Gabriel, <u>J.-F. Zhuang</u>, <u>S. Kiet</u>. (2004) "A Nash-Cournot Model for the North American Natural Gas Market," IAEE Conference Proceedings, Zurich, Switzerland.
- S.A. Gabriel, J.-F. Zhuang, S. Kiet. (2004) "A Large-Scale Linear Complementarity Model of the North American Natural Gas Market," <u>in review</u>

Related Papers: European market

- M.G. Boots, F.A.M Rijkers, and B.F. Hobbs. (2004) "Modelling the role of trading companies in the downstream European gas market: a successive oligopoly approach," *The Energy Journal*, 25, July 2004.
- F. van Oostvoorn. (2003) "Long-term gas supply security in an enlarged Europe: Final Report ENGAGED Project," www.ecn.nl/library/reports/2003/c03122.html
- R. Egging and S.A. Gabriel. (2004) "Examining Market Power in the European Natural Gas Market," <u>in review</u>
- S.A. Gabriel, Y. Smeers. (2004) "Complementarity Problems in Restructured Gas Markets," <u>in review</u>