Summary of PTRANSP Client-Server Communications—Version 2.0, Based on the Plasma State Software.
As a part of the PTRANSP project, TRANSP has been modified to run in server mode.  In this mode, TRANSP acts as a server to a separate predictive transport model, the “client” code.  The services provided by this PTRANSP server are: (a) computation of heating, current drive, momentum and particle sources due to neutral beams, fusion product fast ions, RF, and neutral gas inflow from the plasma periphery, and (b) analysis of the results of the client predictive code, with output produced in standard TRANSP archive format.  The files produced by part (b) are the same as those produced by a traditional TRANSP experimental data analysis run, for which many useful physics post-processors exist.

This document describes work in progress – D. McCune, 19-Jan-2007.  It has been evolved from the original document which described an implementation based on the NTCC XPLASMA module.  This version describes the implementation using the SWIM SciDAC Plasma State software for inter-component communications.  The document is in two parts.  The first part describes the PTRANSP Client-Server communications scheme at a file level without going into details about the plasma state; the second part describes in detail how the client code will need to use the plasma state in order to communicate with the PTRANSP server.
The client-server communications methods described have been tested using a program “test_client.f90” in the TRANSP source distribution; this source code contains examples of some of the methods described herein.

A related working document [1] describes the plasma state software.

[1] http://w3.pppl.gov/~dmccune/SWIM/Plasma_State_V0.2.doc 
Part I:  TRANSP Client-Server Communication:

The client and server processes are separate programs running simultaneously on a common system.  Client-server communication is managed by files using tools developed in the earlier NTCC project.  Plasma equilibria and profiles are passed back and forth using plasma state files.  The plasma state software, layered over XPLASMA and other NTCC libraries, has been developed as part of the SWIM SciDAC Fusion Simulation Project as a means of exchange of plasma data between independently coded simulation model components. In addition to plasma state files, small ascii “signaling files” are used to coordinate and serialize the computation.  At any given point in time, either the client is actively computing with the server waiting for a signal file, or, the server is active and the client is waiting.

The client controls the time step advance.  It is presumed that sources will be updated on a fairly coarse time step (perhaps 5-25 msec) while the client code advances fluid equations, poloidal field, and MHD equilibrium on as fine a time step as it requires.  A single coarse time step is to be applied for all types of heating sources.
Shell script files fsp_runtr and fsp_rstr are provided to launch the PTRANSP server for a new run, or to restart the server for an existing run, respectively.  These will be described below.

The following signal files are recognized and expected by the PTRANSP server:

· transp_init.dat is provided at the start of a run.  It specifies a plasma state file containing the initial equilibrium, plasma profiles, start time and the first time step for sources.

· transp_step.dat is provided as the run progresses.  It specifies a sequence of one or more plasma state files defining the evolution of the plasma equilibrium and profiles.

· transp_save.dat requests that PTRANSP save its internal state in a restart file.

· transp_kill.dat requests that PTRANSP halt immediately with an error status code.

When these files are detected and acted upon, they are renamed, so that attempts to repeat actions will not occur.  Although the contents of the transp_save.dat and transp_kill.dat files are immaterial, the PTRANSP server does read the contents of the transp_init.dat and transp_step.dat files.  These files are expected to contain ascii text records of the form:


<time-value>  <state-file-path>  [<keyword>]

Where:

· <time-value> is the time associated the corresponding plasma state data;

· <state-file-path> gives the plasma state filename (relative paths are resolved from the client’s working directory);

· [<keyword>] (optional) can specify an additional request.  At present, and only in the transp_step.dat file, the <keyword> “END” means: end the TRANSP run, shut down the server, and archive the run results.  (Note dmc June 2006:  Additional keywords are likely to be added later, e.g. to specify events such as sawteeth or pellet injection).

The transp_init.dat file contains exactly one such record; transp_step.dat can contain multiple such records in ascending order of time—with the last time matching the end of the previous source time step and the last state file containing a list specifying the next source time step (details on state file contents will be explained below).
A technical note is in order.  To avoid a race condition when writing either transp_init.dat or transp_step.dat, it is recommended to first write the entire file contents in a temporary file, and then rename the file with such a call such as:


istat=jsystem(“mv “//trim(tmpfile)//” transp_step.dat”)

only when the file contents are complete.  It has been observed that writing data records directly into transp_init.dat or transp_step.dat is hazardous, as the PTRANSP server may attempt to read the file before it has been completely written.

When the server is active, the client code is expected to wait for:

· transp_ready.dat which will contain either the path to a modified plasma state file containing source calculation results, or the single word “ERROR”.

(PTRANSP follows the procedure of writing a temporary file and renaming it on completion).

The PTRANSP server uses subroutines wait_for_file or wait_for_file_list which are available in the portlib NTCC library; it is recommended that the client do the same.  The routine includes a timeout argument which makes it possible for the client or server code to exit if too much time passes without the expected file or files being received.
Invocation of the PTRANSP Server:

In the past, use of TRANSP required a separately prepared namelist with identification of time dependent data inputs from an experimental database.  Now, in server mode, PTRANSP instead receives all of its time dependent input data from the client code via the plasma state interface.  In fact, the entire control of the PTRANSP server can be driven from a named “standard configuration namelist template” which will vary from tokamak to tokamak but not from run to run when dealing with simulations of the same tokamak configuration.  The namelist template contains such information as neutral beam geometries and RF antenna information for a specific tokamak experiment.  The client code need only know the namelist template filename and be able to provide a time series of plasma states, in order to use the PTRANSP server.  The client code controls the evolution of powers and voltages on the various neutral beams, powers and frequencies on RF antennas; the PTRANSP server provides the resulting heating, fueling, momentum and current drive source profiles.  The client also has access to PTRANSP namelist numerical controls which are likely to need to vary from run to run—indeed a flexible mechanism for PTRANSP namelist modifications is provided.
The client and server codes will launch from a script in a controlling process which must include an environment sufficient for both the client code and the PTRANSP server to run.  Launching the PTRANSP server requires three steps:  (1) selection of a TRANSP run identifier {<tokamak>, <yy>, <runid>} (<yy> denotes a 2 digit “year” code; all fields are explained below); (2) adaptation of the PTRANSP namelist template to create a full TRANSP namelist, and augmentation of plasma state with basic auxiliary heating and fast ion species information, and (3) actually starting the PTRANSP server process.  After launch, the PTRANSP server can be halted and restarted.  Each of these steps is described in detail.
1.  TRANSP Run Identifier:

The TRANSP run identifier controls the disposition of TRANSP output data—names of files produced by TRANSP and the directory in which they will be archived.  The server process itself runs in the subdirectory <runid> of the directory in which the client is run; <runid> is a prefix for all files produced by the TRANSP run.  The two fields <tokamak> and 2-digit year code <yy> determine the directory in which the completed run results will be archived.  The <tokamak> ID is a 3- or 4-character identifier selected from an extensible list of known tokamaks; the most commonly used tokamak identifiers (as of January 2007) are: AUGD, CMOD, D3D, HL2A, ITER, JET, JT60, KSTR, MAST, NHTX, NSTX and TFTR.  New tokamak identifiers can readily be added by a TRANSP maintainer. The two digit year code <yy> is one of {“00”, “01”, … , “99”}.
In experimental analysis TRANSP runs, <runid> is usually a shot-try combination, with user-defined semantics, e.g. TFTR experimentalist practice was that the runid 37065A06 would indicate the 6th analysis of TFTR shot number 37065.  The <yy> would then be the last two digits of the calendar year of the shot, e.g. “88” in the case of  TFTR 37065.
For predictive simulations, there is no shot year nor is there a set shot numbering scheme.  Therefore, it is recommended to use an alternative available <runid> format—simply a four digit number.  The <yy> instead should be the calendar year of the start of a predictive study, i.e. a series of related runs involving the PTRANSP server.
The client must provide a <tokamak> and <yy> code, but the <runid> selection can be made automatic.  The PTRANSP environment defines an executable shell script:


get_4digit_runid_file  <tokamak>  <yy> [<base_id>]

This produces a file runid.dat containing a single record specifying the first 4 digit integer <runid> greater than <base_id> that has not already been archived in the TRANSP results directory associated with the given <tokamak> and <yy>.  If <base_id> is omitted, a value of “5000” is assumed.

This procedure can be used from fortran code as follows.  The fortran code needs to be linked against the NTCC portlib library:

integer :: jsystem,istat


character*4 :: tok     ! <tokamak>


character*2 :: yy      ! 2-digit-year-code in ascii

character*10 :: runid  ! PTRANSP <runid> (generated)

character*100 :: cmd   ! shell script command


integer :: lunio = 99  ! LUN for fortran file i/o



…   ! client code gets tok


…   ! client code gets yy

cmd = “get_4digit_runid_file “//tok//” “//yy

istat = jsystem(cmd)   ! execute shell script

if(istat.ne.0) then



write(6,*) “ ? automatic RUNID fetch failed “



exit


endif


open(unit=lunio,file=”runid.dat”,status=”old”)


read(unit=lunio,’(A)’) runid   ! read generated RUNID

close(unit=lunio)

Upon successful completion, the PTRANSP server will archive its results.  If the normal PPPL TRANSP run production facility is used, this archive will also cause an MDS+ tree to be written, allowing the TRANSP data to be accessible over the network at: MDS+::transpgrid.pppl.gov:TRANSP(<tokamak>.<yy>,<runid>)  via the MDS+ data service.  There are many useful physics post-processors that know how to access TRANSP data stored in this form.
2. Creation of TRANSP Namelist with Augmentation of Plasma State:
The TRANSP namelist must be adapted from a template namelist, because certain time invariant plasma state data, such as plasma species lists, can only be entered into the PTRANSP server through the namelist.  In addition, certain critical numerical controls that strongly affect PTRANSP server performance will need to be controlled by the client on a run-by-run basis— number of model particles for Monte Carlo fast ion simulation for example.  Because of these requirements, a namelist adaptor is provided with the PTRANSP server.  The adaptor takes as input (1) a namelist template filename; (2) the name of a file containing run-specific namelist modifications; and (3) an initial plasma state to be generated by the client code, from which the PTRANSP server can take the thermal plasma species list and into which it can write neutral beam and RF antenna information.  For output it writes both an augmented version of the plasma state and a complete namelist ready for use by the PTRANSP server.

The client will need to execute the following program to invoke the namelist adaptor:

namelist_adapt  <template-file>  \



<modifications-file>  <state-file>  <runid>TR.DAT
The program can be invoked from fortran code by the same method as shown for generating a <runid> in the previous section.  It reads the first 3 files, writes a modified version of <state-file>, and creates and writes the full PTRANSP server namelist <runid>TR.DAT.
The plasma state can be built up in stages—details are given in the section “Creation of Plasma States”, below.  The initial plasma state provided by the client at this stage should be very simple, containing only the species lists for thermal electrons and ions and possibly a list of RF minority species.
When namelist_adapt executes, it augments the state by inserting the number and “name” for each neutral beam and each RF antenna available to the tokamak configuration described in the <template-file>; it also creates the complete fast ion species list and merged list of all plasma species.  It checks that the thermal species list meets PTRANSP requirements—for example, each beam injected species needs to be included on the thermal ion species list.  

The client code will likely have to know in advance about the number of beams and RF antennas, since it will be responsible for controlling their powers, voltages, and frequencies time dependently throughout the simulation.  The client will need to read back the augmented state and verify that the number of neutral beams, etc., match its own internally specified data.
The <modifications-file> contains critical numerical controls for the PTRANSP server that vary from run to run and need to be set by the client code.  Such controls determine the resolution and computational cost of the PTRANSP server simulation.  Examples are:  numbers of Monte Carlo model ions to use for fast species simulations, numbers of radial and/or poloidal zones to use in various heating models, numbers of Fourier modes to use in RF full wave solvers, etc., etc., depending on the models being invoked.

Editorial note (Jan. 2007):  At this stage in the project, neither a library of template files, nor a document describing common modifications exist.  Early users will have to work with PTRANSP experts to define and create these resources.  Also, it may be that certain types of error detection will need to be added to namelist_adapt.
There is separate documentation [1] (from the SciDAC SWIM project) describing plasma state files <state-file> and the means for their creation (also, more information below).
3.  Activation of the PTRANSP Server.

The client script will start the PTRANSP server for a new run by invoking the command:


fsp_runtr <runid> <tok> <yy> <runid>TR.DAT [<cmt-path>]


set fstat = $status
This script can also be run from inside a fortran program, using the method shown in a preceding section.  The script arguments have the following interpretation:

· <runid> -- TRANSP runid (see section on TRANSP run identifiers).
· <tok> -- a 3- or 4- character “tokamak id” (see TRANSP identifiers section).
· <yy> -- a 2 digit “shot-year code” (see TRANSP identifiers section).

· <runid>TR.DAT -- specifies the path to the namelist used to control the server job.  This is the namelist file produced by namelist_adapt as described in the preceding section.
· [<cmt-path>] – (optional) path to an ascii text file containing a few comments describing the run, comments which will be inserted in the TRANSP archives.

This script should execute in the directory where the client code will execute.  It will create a subdirectory <runid> in which the PTRANSP server will execute.  The PTRANSP server will initialize itself.  The client script must check the status code returned; any value other than zero indicates that the TRANSP server failed to start.  The fsp_runtr script will write summary information (including error messages) to stdout and/or stderr; in addition, files *.log in the <runid> subdirectory may be left with useful debugging information.  Also, generally, sufficient files are left in place so that a PTRANSP expert can debug the server without requiring the client code to run.
If fsp_runtr exits with normal status, the TRANSP server is running, and waiting for the appearance of transp_init.dat, in either the parent directory (working directory of the client) or in the <runid> subdirectory.

4.  Halting and Restarting the PTRANSP Server.

In predictive simulations, it is not unusual for calculations to be halted and restarted with modified input data.  The PTRANSP server can also be shut down and restarted at any time; data modifications would be passed through subsequent exchanges of plasma state.
To shut the TRANSP server down cleanly for restart, the client code should first write the transp_save.dat file followed by transp_kill.dat.  The content of these files is immaterial; it is merely their existence that is tested by the server.  So, simple NTCC  portlib calls could be used by the client (fortran-90 example):

integer :: istat, jsystem


istat = jsystem(“date > transp_save.dat”) ! save state

call gosleep(1)       ! 1 second pause


istat = jsystem(“date > transp_kill.dat”) ! kill
When TRANSP sees transp_kill.dat, it exits with a status code, so that its controlling script keeps all temporary files and does not attempt to archive run results files—i.e. leaving the server in a restartable state.
When all is ready, the PTRANSP server can be restarted by invoking the script:


fsp_rstr <runid>


set fstat = $status

This can also be launched from fortran with a portlib jsystem call.  The client driver should check the exit status—a non-zero value indicates a failure of TRANSP to restart, which would need to be debugged.
To halt the TRANSP server at the very end of a run, the keyword “END” should be appended to the record in a transp_step.dat file specifying the halt time and the final equilibrium of the run.  Although not strictly required for the client to complete its calculation, the TRANSP server expects the client to tell it when to shut down cleanly.  This is necessary to signal the archival of TRANSP output.  The transp_kill.dat signal file should not be used for this purpose.
Part II:  Detailed description of use of Plasma State

Access to Plasma State Softaware:
The Plasma State software consists of three fortran-95 libraries:  plasma_state.a, ps_xplasma2.a, and plasma_state_kernel.a—the API, XPLASMA implementation, and the “kernel” routines and state derived data type definition, respectively.  These libraries are available in TRANSP binary distributions and in the NTCC binaries as well.  At PPPL as of Jan. 2007, the “pshare” production version TRANSP binary libraries are located on cluster file systems in:


/p/transpgrid/transp_platform/RHEL/lib (Linux, lf95 fortran)

/p/transpgrid/transp_platform/SGI/lib (SGI, ifc fortran)
and public modules are located in:


/p/transpgrid/transp_platform/RHEL/mod (Linux, lf95 fortran)

/p/transpgrid/transp_platform/SGI/mod (SGI, ifc fortran)
Codes which load in the plasma state libraries will also need to load in its dependencies—the xplasma software, NetCDF, etc.  An up-to-date list of dependencies can be provided by a PTRANSP expert.

Source codes which use plasma state modules will need to be compiled with the appropriate directory included in their module path.  To import the plasma state interface and data type definition, such source codes should:

use plasma_state_mod.

This module instantiates several plasma state data structures as summarized in table 1:

	Name of state object
	Default filename
	Usage

	ps
	cur_state.cdf
	Current working plasma state

	psp
	prev_state.cdf
	Committed prior working plasma state

	saw0
	saw0_state.cdf
	State at start of sawtooth event

	saw1
	saw1_state.cdf
	State at end of sawtooth event

	pel0
	pel0_state.cdf
	State at start of pellet event

	pel1
	pel1_state.cdf
	State at end of pellet event


Table 1:  Names of state objects and associated files.

The client code will interact primarily with the ps state.  Generally, state member data elements are publicly accessible.  For example, ps%t0 and ps%t1 will define the time step for heating sources; these are directly settable by the client code.  The client and server codes exchange plasma states as disk files.
The elements of the plasma state are created by a python code generator.  The state specification file (input to the code generator) defines all of the state elements.  An alphabetized list of all plasma state elements can be found in plasma_state_index.txt, a file written by the code generator.  As of January 2007 copies of these files could be found at PPPL on:


/p/pshare/codesys/source/plasma_state/swim_state_spec.dat


/p/pshare/codesys/source/plasma_state/plasma_state_index.txt
The following sections describe the plasma state elements and calls that will need to be used in order to provide input data to the PTRANSP server, and receive output.  This involves procedures both for initialization of state at the start of a new simulation, and, updates to an established state which will be carried out as the simulation advances in time.
The Initial Plasma State for the PTRANSP Namelist Adaptor.

As described in a separate document [1], plasma state arrays can be built up incrementally.  An empty state contains a set of unallocated arrays and corresponding array dimension sizes all set to zero.  As array dimension sizes are given non-zero values, 

call ps_alloc_plasma_state(ier)

results in allocation of the ps state arrays for which all dimension sizes have non-zero values.  Note, however, that array dimension sizes can only be set once.  Once an array has been allocated to a certain size, an attempt to reallocate with any changed dimension size will be reported (by ps_alloc_plasma_state) as an error.  Therefore, this routine is generally used only during the initialization of a simulation, and “dynamic resizing” of state arrays is not presently supported by the plasma state software.

The call to ps_alloc_plasma_state does not specify the state object explicitly—there is an implicit reference to the ps state.  Although some routines allow the state object to be named, others (including this one) can only refer to the ps state.  States other than ps will be created by copying the ps state and then applying modifications.

When using the PTRANSP server, the first initialization step is to define the list of thermal plasma species (including electrons and impurities), and a separate list of RF minority species if applicable.

The PTRANSP namelist_adapt program will build the complete list of fast ion species based on the namelist template data provided.  To be compatible with PTRANSP, the fast ion species list has to be built in a specific order; therefore it is necessary to leave completion of the fast ion species list to PTRANSP.

Species lists can only be defined once at the start of the simulation.  Although species with zero density can be created and maintained, adding an entirely new specie part way through a simulation is not supported.  Therefore, all “possible” thermal species for a simulation should be specified at initialization of the simulation.
The Plasma state contains 4 species lists, dimensions for which are shown in table 2:
	State Elements
	Description
	Procedure…

	ps%nspec_th
	Number of thermal ions
	Set directly by client code

	ps%nrfmin
	No. of RF minority ions
	Set directly by client code

	ps%nspec_nonMax
	Total no. all fast ions
	Set by PTRANSP namelist_adapt

	ps%nspec
	Total no. all ions
	Set by PTRANSP namelist_adapt


Table 2:  Species List Sizes.

Table 3 shows the actual state elements which constitute the species lists.  For each specie there are: atomic charge (C), ion charge 
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 (C), mass 
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 (kg), CHARACTER*32 label, and INTEGER type code.  Except for label and type, these items are stored as arrays of 64 bit floating point real numbers.  For all fully stripped ions, the atomic charge and the ion charge are the same.  The thermal species list and the “all” species list include electrons at index 0;  RF and fast ion lists do not include electrons and their 1st element index is 1.  As with the list sizes, the list elements for the thermal species and RF minority species should be set by the client code; the complete fast ion list and combined list of all species will be set by namelist_adapt.

	Thermal species (0:ps%nspec_th)
	RF minority ions (1:ps%nrfmin)
	All fast ions (1:ps%nspec_nonMax)
	All species (0:ps%nspec)

	ps%qatom_s
	ps%qatom_rfmin
	ps%qatom_nonMax
	ps%qatom_all

	ps%q_s
	ps%q_rfmin
	ps%q_nonMax
	ps%q_all

	ps%m_s
	ps%m_rfmin
	ps%m_nonMax
	ps%m_all

	ps%s_name
	ps%rfmin_name
	ps%nonMax_name
	ps%all_name

	ps%s_type
	ps%rfmin_type
	ps%nonMax_type
	ps%all_type


Table 3:  Species List Contents—singly dimensioned arrays with the dimensioning as indicated: atomic charge (C), ion charge (C), mass (kg), CHARACTER*32 name, and INTEGER type code.
The plasma​​_state module defines a number of fortran-90 PARAMETER constants (these can be found in the state specification file swim_state_spec.dat).  Among these are the floating point constants ps_xe (unit electron charge in C), and ps_mp (proton mass in kg).  Thus, the following expressions find the atomic number and mass (AMU) of element j of the “all species” list:

Z = ps%qatom_all(j)/ps_xe


A = ps%m_all(j)/ps_mp.

Species type codes are defined by a set of integer constants: 

	Name
	Value
	Interpretation

	ps_electron
	-1
	Electrons

	ps_therm_ion
	1
	Thermal ions

	ps_impurity
	2
	Impurites with set charge and mass

	ps_tokamakium
	3
	Tokamakium impurity, radially varying charge and mass

	ps_beam_ion
	4
	Beam ions

	ps_rf_minority
	5
	RF Minority ions 

	ps_fusion_ion
	6
	Fusion Product ions


Table 4:  Species Type Codes.
It is recommended to use a plasma_state module subroutine to set species list elements.  This insures that appropriate and unique labels are generated for each species, as is required by the software (arguments are integer input scalars except as noted):

SUBROUTINE ps_label_spectype( &



iZatom, &
   ! atomic number (-1 for electrons)


iZcharge, &  ! atomic charge (-1 for electrons)


iAMU, &
   ! atomic weight (2 for Deuterium)


itype, &
   ! plasma_state species type code
       
label, &
   ! label (character*32, output)


qatom, &
   ! atomic charge (real*8, C, output)


qcharge, &   ! ion charge (real*8, C, output)


mass)
   ! mass (real*8, kg, output)
The proper use of this routine is shown in the client sample code, below.  For the “Tokamakium” impurity put iZatom = iZcharge = iAMU = 0; for electrons put iAMU = 0; the correct mass will be output.  As will be shown in the sample code below, it is recommended to explicitly set elements of the array specifying the species type, and use the subroutine to set all other species list array elements.
Concerning the species definitions to be set by the client code, the following rules should be noted (and are checked by namelist_adapt):

· Thermal species specification order: electrons, then non-impurity ions, then impurity ions.  Non-impurities are isotopes of H and He.
· If the tokamakium impurity is present, it must be the only impurity present.  But: it is recommended to use multiple conventional fixed A and Z impurities instead.
· Any specie in the RF minority ion list must not be in the thermal species list.  RF minority species can only be specified as a fraction of the total electron density.
Tokamakium is the name for an optional model impurity with a variable average charge and mass.  It is used in some simulations as a simple and efficient way to represent an amalgam of multiple impurities and charge state distributions. (Note: as of Jan 15, 2007, the PTRANSP server allows time dependent non-integer values of Tokamakium A and Z, but radial variation is not supported.  Therefore, it is recommended to use multiple fixed A and Z impurities instead).

Putting it all together, the client code will need a subroutine to initialize the plasma state species lists, which will look something like this:

subroutine init_species

   use client_mod

   ! client input data (hypothetical):


   !   nmain = #non-impurity thermal ion species


   !   nrfmin= #minorities


   !   nimp = #impurity thermal ions


   !   mass(…), mass_rf(…), … – ion masses, kg


   !   charge(…), charge_rf(…), … – ion charges, C


   !   frac_rf(…) – minority ion density fractions


   use plasma_state_mod


   implicit NONE


   integer :: j,imp,ierr,iZ,iZatom,iA

   ps%nspec_th= nmain+nimp  ! no. of thermal ions

   ps%nrfmin= nrfmin    ! no. of RF minority species


   call ps_alloc_plasma_state(ierr) ! allocate lists


   if(ierr.ne.0) <handle error…>


   ! electrons:


   ps%s_type(0)= ps_electron


   call ps_label_spectype(-1,-1,0,ps%s_type(0), &


        ps%s_label(0), ps%qatom_s(0), &


        ps%q_s(0), ps%m_s(0))


   ! main plasma ions:


   do j = 1,nmain


      iZ = charge(j)/ps_qe + 0.01  ! integer Z

      iA = mass(j)/ps_mp + 0.01    ! integer A


      ps%s_type(j)= ps_therm_ion


      call ps_label_spectype(iZ,iZ,iA,ps%s_type(j), &


           ps%s_label(j), ps%qatom_s(j), &


           ps%q_s(j), ps%m_s(j))


   end do


   ! impurities


   Do j = nmain+1, nmain+nimp


      imp = j – nmain   ! impurity index


      ! ** partially stripped impurity: iZ < iZatom


      iZ = charge_imp(imp)/ps_qe + 0.01  ! integer Z

      iZatom = charge_imp_atom(imp)/ps_qe + 0.01

      iA = mass_imp(imp)/ps_mp + 0.01    ! integer A


      ps%s_type(j)= ps_impurity


      call ps_label_spectype(iZatom, &

                iZ,iA,ps%s_type(j), &


           ps%s_label(j), ps%qatom_s(j), &


           ps%q_s(j), ps%m_s(j))


   end do


   ! RF minority ions:


   ps%kdens_rfmin = 1   ! Minority density = 

                             ! frac*[electron density]


   do j = 1,nrfmin   


      iZ = charge_rf(j)/ps_qe + 0.01  ! integer Z


      iA = mass_rf(j)/ps_mp + 0.01    ! integer A


      ps%rfmin_type(j)= ps_rf_minority


      call ps_label_spectype(iZ,iZ,iA,ps%s_type(j), &


           ps%rfmin_label(j), ps%qatom_rfmin(j), &


           ps%q_rfmin(j), ps%m_rfmin(j))


      ps%fracmin(j)= frac_rf(j)  !** density fraction


   end do


   ! write “ps” state in file “cur_state.cdf”:


   call ps_store_plasma_state(ierr)

   if(ierr.ne.0) <handle error…>


end subroutine init_species
Note that the plasma state allows specification of minority ion specie densities as fixed fractions of electron density (ps%kdens_rfmin = 1).  At present (Jan. 15 2007) this is the only option for specification of minority RF ion density.
Note also that the initial plasma state (just the species lists) is written to cur_state.cdf; this file name will be provided as an argument to namelist_adapt.  A different file name could have been chosen by using the optional filename argument of the ps_store_plasma_state subroutine—see the next section.
A Note on File Names and State I/O Subroutines.
(D. McCune 16 Jan 2007 – this section under development, subject to change).

Since the PTRANSP server (as currently configured) executes in a subdirectory of the client code, the client and server have different paths to shared disk files.

Each state object has associated with it a default filename, as shown in table 1 above.  However, each code runs with its own copy (in memory) of the plasma state module:

use plasma_state_mod

The module contains a public variable (character*256) state_path which allows each executable code to set its own default path to all state files—as needed to reflect the fact of two programs running from separate directories sharing files.

The default value of state_path is blank, denoting the executing program’s current working directory.  The PTRANSP client code can leave this value unmodified, in which case it will write all state files into its own current working directory.  PTRANSP, running in a subdirectory of the client, will set this variable to “..”, UNIX syntax for the path to the parent of its current working directory.
The plasma state module’s main I/O routines provide an optional argument filename that allow the state object’s default filename and file path to be overridden.  If this is used, it is the caller’s responsibility to provide a full path to the correct state file.

The main I/O routines (with optional arguments shown) are as follows:


SUBROUTINE ps_store_plasma_state(ierr, filename, state)


     INTEGER, INTENT(OUT) :: ierr  ! completion code (0=OK)


     CHARACTER*256, INTENT(IN), OPTIONAL :: filename


         ! if specified: full file path


         ! if omitted: state_path/(default filename) used.


     TYPE (plasma_state), OPTIONAL :: state


         ! if specified, state object to be WRITTEN

         ! if omitted: call refers to current state (ps)

SUBROUTINE ps_get_plasma_state(ierr, filename, state)


     INTEGER, INTENT(OUT) :: ierr  ! completion code (0=OK)


     CHARACTER*256, INTENT(IN), OPTIONAL :: filename


         ! if specified: full file path


         ! if omitted: state_path/(default filename) used.


     TYPE (plasma_state), OPTIONAL :: state


         ! if specified, state object to be READ from file

         ! if omitted: call refers to current state (ps)

SUBROUTINE ps_commit_plasma_state(ierr, filename)


     INTEGER, INTENT(OUT) :: ierr  ! completion code (0=OK)


     CHARACTER*256, INTENT(IN), OPTIONAL :: filename


         ! if specified: full file path to WRITE

         ! if omitted: state_path/(default filename) used.


         ! current state copied to prior state: ps ( psp

         ! psp is written (no optional state argument).
Plasma State Data Input for PTRANSP Time Steps.
The most crucial information that PTRANSP needs to find is the plasma MHD equilibrium geometry, field, and plasma boundary location.  If the client code computes a free boundary tokamak equilibrium and is able to generate an EFIT-style g-eqdsk file describing this equilibrium, then, a plasma state dataset containing the equilibrium can be easily generated.
The first time this is done, the client code needs to decide on the number of radial and poloidal grid points needed to adequately represent the inverse representation of the equilibrium, which is used by the PTRANSP heating and current drive source calculations.  This resolution can only be set once, and will be determined by considerations of the resolution of the client code’s equilibrium solver, possibly balanced with the (fairly modest) resolution requirements of PTRANSP source calculations.  Plasma state data exchanges will be more efficient, if overly fine grid resolutions are avoided.  The following code, for example, specifies a radial grid of 51 points and a poloidal angle grid of 101 points:

use plasma_state_mod


integer :: ierr  ! status code


… …


! initialize equilibrium (inverse representation)


! grid sizes (first time only):

ps%nrho_eq = 51


ps%nth_eq = 101
Then, the following code actually updates the plasma state equilibrium data from the g-eqdsk file:


! g-eqdsk file should be placed in the same directory

! as the plasma state file itself…


! R & Z grids, grid sizes, and Psi(R,Z) will be read…


ps%eqdsk_filename  =  <EFIT g-eqdsk filename>


call ps_update_equilibrium(ierr)


if(ierr.ne.0) <handle error> ! important to check ***
To explain the equilibrium data generated in the plasma state as a result of this powerful call, it is necessary to introduce some notation.  Both PTRANSP and portions of the plasma state software use a normalized radial coordinate defined in terms of the enclosed toroidal flux of an axisymmetric tokamak equilibrium:
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 designates toroidal magnetic flux.  Generally, the plasma state specification allows a separate 
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 grid for each major simulation “component”.  All 
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 precisely.  The 
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 grid values need not be evenly spaced, but for each grid a fixed grid size needs to be selected, and the grid point values can only be set once at the start of the simulation, and cannot subsequently be changed.  (Note D. McCune 16 Jan 2007: complexity of handling of time dependent quantities will be considerably increased if these restriction are removed; it is not impossible, but I recommend avoiding these complications at least for the early phases of the SWIM SciDAC effort).
Plasma state equilibrium representations contain a sizable number of data items, grids and profiles of data and metric information, summarized in the following table 5.  This is a partial list; the complete list can be found in swim_state_spec.dat:
	Symbol
	Element name in Plasma State
	Description
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	rho_eq
	Equilibrium
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grid, nrho_eq grid points.
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	th_eq
	Equilibrium 
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	R_grid
	Major radius grid (
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); nR grid points from g-eqdsk.
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	Z_grid
	Vertical coordinate grid (
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); nZ grid points from g-eqdsk file.

	
[image: image18.wmf](,)

RZ

j


	PsiRZ
	Poloidal flux function (bicubic spline, 
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	R_geo
	R of flux surfaces (bicubic spline, 
[image: image24.wmf]m

).

	
[image: image25.wmf](,)

Z

qr


	Z_geo
	Z of flux surfaces (bicubic spline, 
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	Psipol
	Poloidal flux function (cubic spline, 
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	g_eq
	Toroidal field function (cubic spline, 
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	P_eq
	Equilibrium scalar pressure, (cubic spline, Pascals).
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	q_eq
	Rotational transform (cubic spline, dimensionless).
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	kccw_Bphi
	Orientation* of toroidal field (integer, +/- 1)
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	kccw_Jphi
	Orientation* of toroidal current (integer, +/- 1).
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	vol
	Enclosed plasma volume (cubic spline, 
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	area
	Enclosed plasma cross section area (cubic spline, 
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	surf
	Surface area of plasma flux surface (cubic spline, 
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	Lpol
	Poloidal path length (cubic spline, 
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).
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	gr2
	Differential volume flux surface average of 
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	gr2i
	Differential volume flux surface average of 
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	B_axis
	
[image: image52.wmf]B

f

 at magnetic axis of plasma (scalar, 
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	B_axis_vac
	Vacuum field 
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 at magnetic axis (scalar, 
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.)
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	R_axis
	Major radius of magnetic axis (scalar, 
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).
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	Z_axis
	Elevation of magnetic axis (scalar, 
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).


Table 5.  MHD equilibrium data elements in the plasma state (partial list).  Elements are public members of the plasma state object, e.g.  ps%R_axis  is the major radius of the magnetic axis.  *Interpretation of orientation signs: +1 means “counter-clockwise viewed from above the tokamak”.
(Note – D. McCune Jan. 19, 2007:  ps_update_equilibrium(ier) is suitable for mapping an evolving equilibrium into the state on an occasional basis, using 
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 only, for communication with codes external to the client.  BUT: it will be too slow to use to evolve the state equilibrium on a fine time scale, and also, this code selects a boundary for the inverse equilibrium representation that may not match exactly a corresponding boundary that may already have been chosen in the client code.  If it becomes necessary to evolve the state equilibrium on a fine time scale, a method which makes more direct use of the client code’s own inverse equilibrium representation will need to be invented.  This may raise other issues, as the ps_update_equilibrium boundary selection method is “tuned” to meet requirements of source models used in PTRANSP, whereas the client code’s boundary selection method might not be).
In addition to setting up the equilibrium data, the client code needs to provide profiles giving the temperatures, densities, and flow velocities of the thermal plasma species, the time step over which PTRANSP heating sources are to be computed, and, certain scalar quantities such as plasma surface voltage.  
A separate 
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 grid needs to be specified for plasma profiles.  This can be the same as the equilibrium 
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 grid, but it doesn’t have to be.  But as with the equilibrium grid, the size of the grid and the grid point values can only be specified once at the start of the simulation:


use plasma_state_mod


integer :: irho,ierr


ps%nrho = <plasma grid size>


! allocate plasma grid and profile arrays:

call ps_alloc_plasma_state(ierr)


if(ierr.ne.0) <handle error>

do irho = 1, ps%nrho



ps%rho(irho) = <irho’th grid point value>


end do

Any 
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 grid must be in strict ascending order and the first grid value must be zero and the last grid value one exactly.  This requirement, and the requirement that grid values not change in time, is enforced on each ps_store_plasma_state or ps_update_plasma_state call.
In a plasma state with species lists, the call to ps_alloc_plasma_state, after definition of the plasma 
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 grid size, allocates the plasma parameter profile arrays ps%ns, ps%Ts, and ps%v_pars, which will contain the evolving thermal plasma densities, temperatures, and flux surface averaged parallel velocities, respectively.  All profile values are initialized to zero at allocation time.  Note that these are defined in the plasma state specification as step functions, i.e. zone-oriented quantities, which means that the profile arrays’ radial grid dimensions are actually ps%nrho  - 1, and that e.g. ps%Ts(7,0) is the electron temperature in zone 7, spanning ps%rho(7) to ps%rho(8).
The following table lists the profile data items to be set by the client as input for the PTRANSP server:

	Symbol
	Element name in Plasma State
	Description
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	ps%ns(:,is)
	Electron density and thermal ion density profiles, 
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	ps%Ts(:,is)
	Electron and thermal ion temperature profiles, keV.
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	ps%v_pars(1:is)
	Flux surface averaged parallel ion velocities, 
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	ps%Zeff_in(:)
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; dimensionless.  The summation also covers fast specie densities, set by PTRANSP.
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	ps%prad(:)
	Total radiated power, Watts per zone.
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	ps%prad_br(:), ps%prad_cy(:), ps%prad_li(:)
	(Optional) Bremsstrahlung, Cyclotron, and Line Radiation contributions to radiated power, Watts per zone.


Table 6.  Profile inputs to PTRANSP.  The index is denotes species index; is=0 for electrons.
Some explanatory notes are appropriate here:  (1) 
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 is used by PTRANSP to renormalize the impurity density, preserving quasineutrality while taking account fast ion specie densities.  The client code is not required to take thermal ion depletion due to presence of fast ion species into account, although it would be desirable for it to do so.  (2) PTRANSP uses a single toroidal angular velocity, assumed constant on flux surfaces, to approximate the plasma flow.  This is converted by PTRANSP from a density weighted average 
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The profile 
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 and numerical flux surface average 
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 are available from the equilibrium component.

In addition to the above, there are several time dependent scalar inputs expected by PTRANSP:

	Symbol
	Element name in Plasma State
	Description
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	ps%t0
	Start of time step for PTRANSP sources, sec.
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	ps%t1
	End of time step for PTRANSP sources, sec.
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	ps%vsur
	Surface voltage (in toroidal direction), Volts.
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	ps%gasfl(is)
	Time averaged plasma source due to gas puffing, for each ion species*, ions/sec.
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	ps%recyc(is)
	Time averaged plasma source due to recycling neutral gas, for each ion species*, ions/sec.


Table 7.  Scalar inputs to PTRANSP.  The index is denotes species index; is=1 for the first thermal ion specie. *Integrated sources time averaged since the prior call to PTRANSP; not required on first call; not required for electrons nor impurities.
All of the above scalar and profile quantities are provided to PTRANSP via the plasma state.  The quantities provided should all be associated with time ps%t0; PTRANSP is going to compute the sources and evolution of fast ion profiles for the time period ps%t0 to ps%t1.  To do this, PTRANSP will be advancing its plasma simulation from the time ps%t0 of a preceding plasma state to the ps%t0 of the new state.
Finally, the client code must specify the powers and related quantities for each neutral beam and each RF antenna, which are to be applied over the time step ps%t0 to ps%t1. The PTRANSP server will compute heating, fueling, and current drive sources based on these specifications:

	Symbol
	Element name in Plasma State
	Description
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	ps%power_nbi(ik)
	Injected power on neutral beam #k, Watts.
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	ps%kvolt_nbi(ik)
	Lab frame full energy of injected neutrals, keV.
Many neutral beams inject fractions of neutrals at 
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as well.  These fractions are set in the PTRANSP namelist template.
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	ps%power_ic(ik)
	Power at ICRF antenna #k, Watts.
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	ps%freq_ic(ik)
	Frequency at ICRF antenna #k, MHz.
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	ps%power_ec(ik)
	Power at ECRF antenna #k, Watts.
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	ps%freq_ec(ik)
	Frequency at ECRF antenna #k, MHz.

	
[image: image93.wmf]k

LHantenna

P

-


	ps%power_lh(ik)
	Power at Lower Hybrid antenna #k, Watts.
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	ps%freq_lh(ik)
	Frequency at Lower Hybrid antenna #k, MHz.


Table 8.  Neutral beam and RF antenna powers, and related quantities input to PTRANSP.  The index (ik) refers to a specific neutral beam or RF antenna as required.
After setting the time step, the client code need only fill in the appropriate plasma state array values as indicated in the tables shown above, then call ps_store_plasma_state(ierr) to write the state file cur_state.cdf.  Then, the client code writes the file transp_init.dat (first call) or transp_step.dat (subsequent calls) containing the simulation time and state filename, in order to invoke a time step of the PTRANSP server, as described in Part I above.  When PTRANSP is called, the plasma profiles and equilibrium and 
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 should correspond to ps%t0.  The gas flow and recycling sources should be time averaged from the time of the preceding call to the time ps%t0 of the current call.  The beam and RF powers, voltages, and frequencies apply for the upcoming time step ps%t0 to ps%t1.
Plasma State Output Data Returned from PTRANSP Time Steps; Interpolation (General Information).
The PTRANSP server will compute heating, fueling, and current drive source profiles that will apply throughout the time step ps%t0 to ps%t1, and it will compute fast ion densities and information related to the fast ion pressures that are to apply at time ps%t1.  It is expected that the sources will be treated by the client as step functions in time, and that the density and pressure information will be linearly interpolated in time, using data from current and prior plasma states, as illustrated in figure 1:
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Figure 1.  Basic time interpolation scheme for PTRANSP output profiles.

Codes that use plasma_state_mod  can create a prior state object (psp) from a completed current state object (ps) by executing call ps_state_commit(ierr).  This is to be done when the current step is complete, i.e. everything being maintained in the state has been updated to the time ps%t1.  The call copies the current state ps to psp; the current state structure ps is then ready to be used for the next time step cycle.  The time step variables in the current state are updated and PTRANSP is called.  After the call, profiles from both the current state and the prior state can be referenced (i.e. interpolated).  In the time range ps%t0 (equal to psp%t1) to ps%t1, fast ion density can be linearly interpolated between states, creating a strictly continuous 1st order time interpolation of these quantities, as would be needed to continuously evolve thermal species densities (partially depleted w.r.t. electron density by fast ions), and fast ion contributions to plasma pressure as needed for input to the MHD equilibrium component.
The effects of sources, on the other hand, are time integrated in the advance of fluid equations, and can therefore be treated simply as step functions, to be taken from the current state (ps) after the PTRANSP call, without the need for interpolation in time.
The radial flux coordinate (
[image: image97.wmf]r

) grid used by PTRANSP sources will not be identical to the grid on which the plasma thermal fluid equations are solved.  Therefore, radial interpolation or rezoning is needed.  The sources are stored as binned step functions on a radial grid that is likely to be coarse compared with the grid used by the client code.  (The client code can set nzones in the PTRANSP namelist to control the resolution PTRANSP source profiles, but, for Monte Carlo models, finer grids require more particles and therefore more computational expense to control temporal noise in the simulation output).  If the data is interpolated or rezoned directly, the step function structure of the source profiles will be manifested if the target grid is finer than the source grid.  If this is undesirable, a smoothing option can be used during rezoning.  The smoothing option preserves total power (or other volume- or area-integrable source quantity) while rearranging power density locally with a spatial effect on integrated power guaranteed to be less (usually much less) than half a zone width of the coarse grid of the original source calculation.
PTRANSP sources are binned and written into the state in “un-normalized” units—Watts/zone for powers, (ptcls/sec)/zone for fueling sources, (Nt-m)/zone for torques, and Amps/zone for driven currents.  The values on the PTRANSP grids are directly visible in the state object, e.g. ps%pbi(j) is the beam heating to thermal ions, in Watts, in PTRANSP’s j’th radial zone.  Interpolation or rezoning is readily done with subroutine calls in the plasma state module, using the target profile’s interpolation handle: e.g. ps%id_pbi, in the case of the beam ion heating profile.  For sources, a rezoning call is usually the best choice.  By default, rezoning converts to “normalized” units, e.g. 
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, but this can be controlled by means of the optional argument nonorm.  Routines exist to rezone a single profile, a “vector” of profiles, or a 2d array of profiles:

interface ps_rho_rezone


    module procedure ps_rho_rezone1, &


        ps_rho_rezone_arr1, ps_rho_rezone_arr2


end interface

! the name ps_rho_rezone can be used for all 3 routines


subroutine ps_rho_rezone1(rho, id, ansv, ierr, &

     state, curdens, nonorm, zonesmoo, zonediff)


real*8, dimension(:), intent(in) :: rho  ! target grid*

integer, intent(in) :: id  ! profile handle (1 profile)


real*8, dimension(:), intent(out) :: ansv  ! the result


integer, intent(out) :: ierr  ! exit status code (0=OK)


Type (plasma_state), OPTIONAL :: state  ! source state


!  for interpolation (default is ps, the current state)


logical, intent(in), OPTIONAL :: curdens  ! T to apply 


!  area normalization for current density (default F)


logical, intent(in), OPTIONAL :: nonorm   ! T to suppress


!  density normalization (default F)


logical, intent(in), OPTIONAL :: zonesmoo ! T to invoke


!  (1/2) zone width integral smoothing operator—may be

!  desirable going from coarse to fine grids (default F)


real*8, dimension(:), intent(out), OPTIONAL :: zonediff


!  if present, the zone volumes (or areas if curdens=T)


! *NOTE: size(rho) = size(ansv) + 1 = size(zonediff) + 1


!    the input target rho grid gives zone boundaries;


!    the data returned is oriented to zone centers.


!    rho(:) MUST be monotonic increasing and MUST span


!    span [0:1] precisely.


subroutine ps_rho_rezone_arr1(rho, id, ansv, ierr, &


     state, curdens, nonorm, zonesmoo, zonediff)


…


integer, dimension(:), intent(in) :: id  ! profile


! handle vector (vector of profiles)


real*8, dimension(:,:), intent(out) :: ansa  ! the result


! ansa(:,1) for id(1), ansa(:,2) for id(2), etc.


…


… (other arguments as above)


subroutine ps_rho_rezone_arr2(rho, id, ansv, ierr, &


     state, curdens, nonorm, zonesmoo, zonediff)


…


integer, dimension(:,:), intent(in) :: id  ! profile


! handle 2d array (2d array of profiles)


real*8, dimension(:,:,:), intent(out) :: ansa  ! the result


! ansa(:,1,1) for id(1,1), ansa(:,1,2) for id(1,2), etc.


…


… (other arguments as above)

The state object provides handle ids (and handle vectors and 2d handle arrays) to enable easy rezoning not just of individual profiles but of such vectors and arrays of profiles as are defined by the state.  However, most of the profiles being returned from PTRANSP are just singletons.  The rezoning calls have been described in terms of their use for remapping step function profiles, but, they can in fact be applied to any profile function of 
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 for which rezoning based on conservation of a volume- or area-integral makes sense, whether the profile is defined as a step function, piecewise linear function, Hermite, or cubic spline.

The following section lists the specific profiles output by PTRANSP for the client code.
Catalog of PTRANSP Output Profiles.
The following tables list the PTRANSP output profiles, grouped according to type:  electron heating, ion heating, current drive, torques, and particle sources.  These profiles cover sources due to neutral beams, fusion products, and RF.  
Then, the table of profiles on fast ion densities and average lab frame energies is given.

Finally, for technical reasons, sources due to low energy edge fluxes of neutral atoms require special handling and are considered separately at the end of this section.
	Symbol
	Interpolation Handle
	Description – all in Watts/zone
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	ps%id_pbe
	Electron heating by beam ions.
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	ps%id_pfuse
	Electron heating by fusion product ions.

	
[image: image102.wmf]ICHe

P


	ps%id_picrf_totals(0)
	Direct electron heating by ICRF wave field.
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	ps%id_pmine
	Electron heating by ICRF minority ions.
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	ps%id_peech
	Electron heating by ECRF wave field.
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	ps%id_pelh
	Electron heating by Lower Hybrid wave field.


Table 9.  Electron Heating Profiles.
	Symbol
	Interpolation Handle
	Description – all in Watts/zone
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	ps%id_pbi
	Thermal ion heating by beam ions.
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	ps%id_pfusi
	Thermal ion heating by fusion product ions.
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	ps%id_picth
	Direct heating of all thermal ions by ICRF wave field.
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	ps%id_pmini
	Thermal ion heating by ICRF minority ions.
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	ps%id_pilh
	Thermal ion heating by Lower Hybrid wave field.

	
[image: image111.wmf]bth

P


	ps%id_pbth
	Heat carried in beam ion thermalization source.
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	ps%id_pfth
	Heat carried in fusion product ion thermalization source.
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	ps%id_psc_halo
	Heat sink/source due to beam neutral driven charge exchange neutralization of thermal ions, and recapture.
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	ps%id_pcx_halo
	Heat loss due to beam driven charge exchange (not associated with a net ion source).


Table 10.  Ion heating profiles.
	Symbol
	Interpolation Handle
	Description – all in Nt-m/zone

	
	
	(Torque profiles not yet defined in plasma state).


Table 11.  Torques (toroidal angular momentum source profiles).
	Symbol
	Interpolation Handle
	Description – all in (Ptcls/sec)/zone
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	ps%id_scfuel(0)
	Cold electron source due to neutral beam deposition.
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	ps%id_scfuel(1:ng)
	Thermal ion sources due to thermalization of beam and fusion product ions; ng = number of non-impurity thermal ions.


Table 12.  Fueling profiles (particle source profiles).

	Symbol
	Interpolation Handle
	Description – all in Amps/zone
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	ps%id_curbeam
	Beam ion driven current.
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	ps%id_curfusn
	Fusion product ion driven current (small).
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	ps%id_curmino
	RF minority ion driven current (currently zero, i.e. – not calculated).
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	ps%id_curich
	Current driven directly by ICRF wave field.
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	ps%id_curech
	Current driven by ECRF wave field.
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	ps%id_curlh
	Current driveh by Lower Hybrid wave field.


Table 13.  Current drive sources.

The following profiles describe the parameters of the fast ions themselves.  As described in the preceding section, these are associated with the time ps%t1 at the end of the source time step, and will need to be linearly interpolated in time using data from the prior time state state object.  When the average energies are rezoned to the client code’s 
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 grid, a density weighted averaging procedure is applied.
	Symbol
	Interpolation Handle
	Description – densities 
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; energies keV.

	
[image: image125.wmf]fi

n


	ps%id_n_nonMaxs(1:nf)
	Fast ion densities: beam ions, fusion ions, RF minority ions.
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	ps%id_eperp_nonMaxs(1:nf)
	Perpendicular energy per ion, averaged over the distribution (lab frame).
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	ps%id_epll_nonMaxs(1:nf)
	Parallel (to B) energy per ion, averaged over the distribution (lab frame).


Table 14.  Fast ion densities and average lab frame perpendicular and parallel energies.  The symbol nf represents the total number of non-Maxwellian ion species.

Another category of data provided by TRANSP relates to recycling or injection of low energy neutral atoms across the plasma boundary, and the charge exchange enhanced penetration of such neutrals into the plasma.  This data is prepared by a neutral gas model (The NTCC FRANTIC module).  Although this data is prepared on the same source time step as the heating data from the beams, fusion products, and RF sources, the treatment is modified.  The reason is that (particularly in density prediction applications) the client code may need to vary the neutral flux on a timescale finer than that of the source time step.  Therefore, the sources are given as normalized to neutral fluxes—a separate set of normalized sources for each (recycling) thermal plasma species.  Furthermore, for stability reasons between steps, charge exchange losses are expressed in terms of a coupling to a neutral population with an effective “charge exchange temperature” that is held constant through each source time step.  Table 15 shows the provided data.  The symbol 
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 denotes the number of non-impurity recycling ion species.  Generally, cross-species charge exchange reactions imply that if 
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 neutral sources are present, there are 
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 ion source/sink profiles.  The symbol th0* denotes the set of recycling neutral species; the symbol th* denotes the species of ion sources driven from the edge neutral sources due to charge exchange.  Formulas for converting these edge neutral gas model profiles into physical particle and energy sources are given below.
	Symbol
	Count
	Interpolation Handle
	Description
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	ps%id_qioniz(1:ig0)
	Ionization source power per unit influx, Watts/(n/sec).
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	ps%id_t0cx(1:ig0)
	Effective charge exchange neutral temperature, keV.
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	ps%id_qqcx(1:ig0)
	Charge exchange loss power per unit influx per unit temperature difference, Watts/(n/sec)/keV.
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	ps%id_sflx0(0,1:ig0)
	Electron source per unit influx, (n/sec)/(n/sec) or dimensionless.
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	ps%id_sflx0(1:ig,1:ig0)
	Ion source per unit influx, (n/sec)/(n/sec) or dimensionless.


Table 15:  Neutral gas model profiles from TRANSP.  Index symbols ig0: neutral species; ig: ion species.
It should be noted that the neutral gas sources are defined in such a way that each unit of neutral influx results in a full unit of ion source.  Charge exchange neutrals that escape across the plasma boundary are “reflected” back into the plasma at low energy.  This allows the client code to define the magnitude of neutral influxes in a simple way from global particle balance considerations.  However, such procedures may need to be modified when coupling to a realistic scrape off plasma model.
To construct physical sources from the TRANSP neutral gas data, the client code must specify the set of edge neutral fluxes 
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for all species, in units of atoms/second.  Then, the following formulas can be used:

· Electron source:
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· Ion sources {th*}:
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;
· Ionization power source:
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;
· Charge exchange power loss:
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Although these profiles are normalized to unit neutral influxes, the same rezoning procedures are available as are for other source profiles.  When the 
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are rezoned, the rezoning average is weighted using 
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Note that the charge exchange power also depends on the current ion temperature
[image: image148.wmf]i
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; therefore, it may require implicit treatment by the client predictive model.  (Note: dmc Jan 2007: data exists for the momentum source carried by neutral ionization, and for the momentum loss associated with charge exchange, but it has not yet been placed in the Plasma State).
D. McCune – last update Jan 2007
Pending work:  (1) inclusion of torque profiles in TRANSP output; (2) definition and documentation of state file exchanges needed to accommodate sawtooth events. 
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