Lecture #2

Mathematical Methods

Summary of Lecture #1

Plasmas are composed of ensembles of charged (and neutral particles) which may, or may not, be in charge and thermal equilibrium. ( Maxwellian distribution.

As a result of the free motion of charged particles, Debye shielding will occur ( Debye length.

The fields produced by density perturbations cause a restoring force, which leads to plasma oscillations (plasma frequency.

Overview of Lecture #2

Mathematical fundamentals

Distribution function

Vlasov/Boltzmann equation

Methods of solution

Moments

Recall the definition of a distribution function from lecture #1:

f(x,v) = probability density that particles exist between x, v, and x + dx, v + dv
This concept is actually based on a more formal expansion of the probabilities of finding clusters of particles, i.e. correlations between particles, which we shall mostly ignore in these notes.

The most probable distribution is the Maxwell / Boltzmann, given by (lecture #1)
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though frequently the actual plasma distribution is not in equilibrium and may, for instance, exhibit multiple temperatures.
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Free Energy of a Plasma

It is conceptually useful to consider the concept of free energy, which is the energy of a system available to effect changes in the system.  For instance, the Maxwell-Boltzmann distribution is the one that occurs at a minimum of the free energy.  The free energy of a plasma is defined by




F = W – TS

energy                               entropy

                                          temperature

F is defined by 
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Wik is the interaction energy, which for the Coulomb interaction is
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Note: for an interaction free ensemble F=Fo
Important note:  Neglecting correlations is not the same as neglecting interactions entirely.  The potential at a point x is given by the collective potential due to all other particles in the system.
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this can be approximated by (using the smoothness criterion)
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In order to handle the plasma medium as a continuum, it is necessary to have many particles within a Debye sphere.

A brief (and superficial) summary of Plasma Statistical Mechanics.

We have already introduced the concept of a distribution function.
Formally, this is the probability that a system occupies a given state in 6-D (3-p/3-q) phase space.

Actually, it is the joint probability that the system falls within an infinitesimal volume in phase space, namely that particle 1 is the volume dx1 dv1, and particle 2 is in dx2 dv2, and so on.  We will ignore higher-order terms and just consider the reduced probability that is given by
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This is what we have been calling our distribution function.

We will actually only care about average values, such as
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ensemble average

Now the number of particles in phase space must be conserved (apart from specific sources and sinks).

Thus in a differential volume, we consider first motion along the q1 axis.
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The number of systems passing q0 per unit time is
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and at the 
[image: image12.wmf]1

0

q

q

D

+

 surface, the number leaving the volume per unit time is
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which means, to lowest order in 
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But the same result is true for every pi and qi coordinate, thus
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But recall that for any system, Hamilton’s equations are given by
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where H is the Hamiltonian.

Thus, we have
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and the first term on the RHS of the 
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But this equation implies that
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This is know as Liouville’s Theorem and may be stated 

· Systems of an ensemble are conserved along a trajectory of the system.
What does this mean?

· individual particles, and hence the system, must obey Newton’s laws

· as the system evolves, phase space is conserved

This is a very general result and describes the behavior, in all its complexity, of virtually all many-body systems.  But it is also why ‘plasma-like phenomena’ can be found throughout physics.

We note that all the features peculiar to a plasma are imbedded in the force term.

The general force on a charged particle is given by the Lorentz force law
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(we will neglect gravitational forces here), which has the equivalent (non-relativistic) Hamiltonian
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where p is the momentum, A is the vector potential, and ( is the scalar potential.  (note that q here means charge, not position coordinate)

So finally, we may write the general (non-relativistic) form of the Vlasov Equation as
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(= species

In general, this is a very difficult equation to solve, as it is manifestly nonlinear.  Moreover, it does not include any effects of particle interaction other than through the long-range fields E and B.

The simplest corrections to this picture are two-body collisions, and this can be written schematically as
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The primes correspond to distributions following a collision, the unprimed quantities to distributions before a collision.  B and ( are geometric parameters of the collision itself, which we will examine more in later detail.

This slightly more general result is known as the Boltzmann Equation.
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These equations contain virtually all the complexities of plasma physics.  To begin to understand their properties, the usual procedure is to linearize them, and then find solutions in some simple geometric configuration.  They are still hard to solve, and can involve infinite-order differential equations.  (what does that mean?)

We will find some simple linear solutions, and will find nonlinear solutions for some particular cases.  This is where the real interest of applying plasma physics concepts to beams is: in the detailed understanding of the Vlasov/Boltzmann equation and in methods of its solution.  There is a wealth of new understanding to be gained.

We note that, in general, the Vlasov equation is a statement of the constancy of the total derivative of the distribution function along a particle trajectory.  Thus if we construct a distribution function out of constants of the motion, we have found stationary, or equilibrium, solutions to the equation.

Example:

Equilibrium solutions when E=B=0

In this case the energy ½ mv2 and the momentum mv are constants of the motion.  Thus any function of velocity is an equilibrium solution.
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Equilibrium solutions when E=0, B=constant

In this case, the longitudinal momentum mvz and the transverse energy 
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 are constants of the motion.  Thus equilibrium solutions are of the form
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Equilibrium solutions when B=0   
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In this case, the longitudinal momentum and the transverse energy given by 
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 are constants of the motion.
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Example:   Electrostatic Waves

One of the immediate consequences of the Vlasov equation is the existence of electrostatic waves in a plasma.  These are waves which can exist which have no magnetic field and where energy is exchanged between the particles and the electric field, producing wave motion.

The general concept of linearization can be demonstrated by the following: 

Let the distribution be given by an equilibrium part, and by a fluctuating part that is assumed to be small, i.e.
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Then consider only small sinusoidal perturbations (equivalent to taking a Fourier transform of the Vlasov equation).
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In the product term of E and 
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 so that the term is of first order.

This can be solved for 
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 in terms of E as
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As before in these notes, we use Poisson’s equation to relate the field to the perturbation of the particle density which produced it
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Using this equation, we can eliminate E from the above equations, leading to the dispersion relation of electrostatic waves.
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This dispersion relation has many interesting properties, like Landau damping, which we shall examine more later.  For now, we note the similarity to the relation for longitudinal oscillations in a coasting beam.
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These look the same because they come from the same Vlasov equation.  The only difference is the force law that relates the density perturbation to the induced field.  In the case of the beam it is the wakefield, i.e. the wall currents and their retarded effect on the passing beam.  In the case of the plasma, (for this unmagnetized case), it is the space charge force of neighboring charges.

Note that the impedance in the beam case takes on the role of a mass, and can be negative, or complex.  Thus a beam can exhibit plasma oscillations, but the associated mass is complex.

The resonant denominator of the dispersion integral evokes a particular physical picture.  It suggests a resonance occurs when = kv namely when particles are just traveling with the velocity of a wave which has the phase velocity.  This is, in fact the resonant energy exchange which leads to Landau damping.

Moments of the Vlasov Equation

A connection to the classical theory of fluids can be drawn by considering moments of the Vlasov equation.  If we assume the equilibrium function is a known function, say a Maxwell-Boltzmann distribution, then we may define the following average over the distribution function:
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density
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momentum
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energy
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energy flux etc.

These are the elements of classical fluid theory and represent an approximation to the solution of the Vlasov equation.  Information about the internal structure of the distribution function is almost completely lost by the averaging process.

To derive the moment equations, we multiply the Vlasov equation, given by
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by a function 
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where ( is a species tag and 
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In the second term we get
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And in the third term we get
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but
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Thus, the general transport equation is given by
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And if we consider collisions, (Boltzmann equation), the RHS becomes
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Setting Q=m( give an equation for mass conservation
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where
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This is also known as the continuity equation.  At the next higher velocity moment, we find an equation for momentum (force) balance
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                 convective derivative                    pressure term
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pressure tensor 
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if the pressure is a scalar, then 
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For the case of electrostatic waves considered previously in the context of the Vlasov equation, a fluid model for electrostatic waves using velocity moments can also be found.  The corresponding dispersion relation is given by
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This, by the way, can also be derived directly from the previous general dispersion relation by integrating the dispersion integral by parts, and truncating the expansion at second-order.  The dispersion relation for electrostatic waves is shown below.
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Example:  Two-stream Instability – fluid model

We consider the simple case of a uniform plasma in which the ions are fixed, and the electrons have an average velocity 
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 with respect to the ions.  We assume the plasma is cold 
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[image: image72.jpg]




We take the Fourier transform of these equations, and look for electrostatic solutions, namely those where the electric field is purely longitudinal with respect to the drift
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We can readily solve for the first-order velocities
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The continuity equation for ions is given by
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And the continuity equation for electrons is
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And we use the good old Poisson equation to relate the field to the perturbed density
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Eliminating E leads to the following dispersion relation
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This is a fourth-order polynomial in 
[image: image79.wmf]w

 and is fairly tedious to solve exactly.  But a rough idea of the behavior of the roots can be found by examining just the RHS of the above dispersion relation.  A typical result is shown below.
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For this case, there are four real roots for 
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and no wave growth.  But if a slightly smaller 
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 is chosen, then the following picture can result.
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In this case two of the roots must be complex (conjugates), which means one of the modes is an unstable, growing wave.  This is the classical two-stream instability.

Physically, the plasma frequency of electrons in the moving frame is Doppler-shifted by the motion.  It can then appear in the lab-frame as the ion plasma frequency, and then coupling of the free-energy associated with the drifting motion of the electrons to the ions can occur.

Another way to interpret the instability is to realize that the waves generated have effectively negative energy.  If the energy of the drifting electrons alone is
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then the energy of the perturbed system is given by
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Due to the phase relation forced between n and v by the continuity relation, the cross-product actually can reduce the overall energy of the system relative to the unperturbed state.  This is a prerequisite for instability.
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Example:

Two-stream instability in a storage ring: trapped particle modes

In a nonneutral stored beam, particles of opposite charge can become trapped in the potential well of the beam.
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For instance, in a stored anti-proton beam, ions can accumulate in the negative potential well.  The trapped particles undergo bounce oscillations which can couple to the natural transverse (betatron) modes of the beam itself.

The Vlasov equations for the beam and trapped ion populations are
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where the coupling forces are given by
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is the particle’s betatron frequency and 
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w

 is the bounce frequency of the trapped ions.  
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F

 is the wake force given in terms of a wall impedance
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Assuming small amplitude oscillations, we linearize this set by taking
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The linearized equations become
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which leads to the following dispersion relation
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 form factor

Zi is the effective impedance presented by the trapped ions
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The ion impedance shows a maximum when the mode frequency ( is near the bounce frequency.  This collective mode becomes unstable when the bounce frequency overlaps with the beam’s betatron frequency (or its harmonics).

Beam Distributions

The distribution appropriate for a relativistic beam may be found in a similar fashion.  In the beam frame, the particle motion is given by the familiar Hamiltonian
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so that the time-independent distribution must be of the form




[image: image102.wmf](

)

÷

ø

ö

ç

è

æ

-

=

kT

H

f

H

f

exp

0


Using our relativistic scaling, we can write this in the lab frame as
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which in the general case can be written
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Let us assume the potential is made up of an externally-applied linear part
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where 
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k

 is the betatron wavenumber and 
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 is the mean transverse velocity, and 
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 is the self-potential.

The transverse distribution is then given by
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Integrating with respect to 
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 gives the Boltzmann relation for the transverse distribution
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Taking the limit as 
[image: image112.wmf]0

®

^

T

 yields a constant density with the constraint that





[image: image113.wmf]2

0

0

2

0

2

0

4

2

g

e

g

n

q

k

mv

=


This is the usual situation in a space-charge-dominated beam.

In the case where 
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, the space charge term is negligible and the distribution is given by
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For intermediate cases, the profile must be found numerically using Poisson’s equation to relate n and (s.
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Ref:  Reiser

Method of Multiple Scales

We now turn to a consideration of a formal solution of the full Vlasov equation.  Because it is a nonlinear equation, a common method is to solve by means of a perturbation expansion around the linear solution.  But this approach can run into problems.

As an example, consider the simple equation of the anharmonic oscillator.
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Assume a solution in the form of an expansion
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where each 
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 is assumed to be of higher order than the previous one, namely
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Substituting into the nonlinear differential equation and equating each order separately to zero gives
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To first-order, we have a simple harmonic oscillator.  The second-order particular solution is
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which shows a shift in the equilibrium position of the oscillator.  At third-order we have
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The critical new feature is that lower-order harmonics can beat together to produce a secular growth at the third harmonic
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The unlimited growth is a spurious result of our perturbation method.  To find the correct behavior valid for all times (to third-order in amplitude) we must use an expansion procedure that also permits the oscillation frequency to vary with amplitude.
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Following the same procedure as before, we find the additional conditions on the frequency terms at each order
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At third-order, we have
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Equating like coefficients of 
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 terms, we get for the frequency shift
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And for the third-order amplitude term
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The resulting solution
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is now valid for all time to order 
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.  This is the essence of the multiple-time-scale expansion method.

Therefore, one way to solve the Vlasov equation is to divide the motion into two different time scales: a slow time-scale over which the average quantities evolve, and a fast time-scale that describes fluctuations about the mean.  This looks similar to the linearization process, but it still includes features of the non-linearity of the equation.

To illustrate the analysis, we choose the case of a coasting beam in a storage ring and consider only the longitudinal degree of freedom.  The canonical variables which take the roles of x and v in this case are ( and .  The resulting Vlasov Equation is given by
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We note that the force term is represented by a voltage U.  This can be an external voltage, or one generated by the wall currents (wakes).  Recalling the discussion about the longitudinal oscillations, we note that the impedance of the ring plays the role of a complex mass, and that the wakefield is related to the impedance by the well-known definition
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We now Fourier analyze the Vlasov equation, which owing to the periodicity of the system, becomes a Fourier series
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The resulting Vlasov Equation now takes the form
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We now choose ( as an expansion parameter, defined to be the ratio of the time scales 
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The perturbations are considered to be small, but large enough to maintain next-order corrections to the linear dynamics.

Using the above assumptions, we substitute into the Vlasov equation, treating each time scale as an independent variable and find the following equations by equating each order of ( separately to zero.

First-order:
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This is the same as the linearized Vlasov equation we have already considered.  It leads to the dispersion relation for longitudinal oscillations quoted previously.
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Second-order:
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The second-order equation brings the first true nonlinear corrections to the dynamics as it involves products of first-order quantities.

For the purpose of this discussion, we have assumed that the equilibrium distribution function 
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 is unchanged by the high-frequency oscillations, and have dropped 
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 from the second-order equation.

The left-hand side represents the linear response at a given frequency, similar to the first-order result.  However, the product term on the RHS introduces frequency mixing components and allows for the coupling of multiple frequencies, a characteristically nonlinear process.

We note that when 
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 there is resonant driving of the equation which produces so-called secular growth.  The multiple-time-scale method allows a degree of freedom to remove this secularity.  (why does it matter?)

Setting the secular terms = 0 leads to the following equation for the slow change of the second-order amplitude
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  nonlinear susceptibility

The above formalism is the basis for the study of the wave-wave interaction in plasmas, and is equally applicable to a variety of possible couplings in both unbunched and bunched beams.

We will examine this behavior in the future lectures in more detail.

Example:  Two-=stream Instability – kinetic treatment

The mathematical formalism follows directly from that associated with longitudinal oscillations.  The relevant distribution function in this case has two parts, shown below
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Thus the dispersion relation is given by
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If we restrict our consideration to the case where the phase velocities are well removed from the thermal velocities, then integrating the integrals by parts (and throwing away higher-order terms) results in
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which is the same dispersion relation derived from the fluid theory.

There are many variants on this theme, but the basic concept is the same:

(1) solve for the perturbed density using the continuity equation (zeroth moment of the Vlasov Equation)

(2) solve for the perturbed fields in terms of the perturbed density using the force balance equation (first moment of the Vlasov Equation)

(3) relate the perturbed density to the perturbed fields with one (or all) of the Maxwell’s equations

Summary of Lecture #2

We have derived the Vlasov equation which governs the behavior of all systems composed of distributions of particles.  (the version including two-body interactions between the particles is known as the Boltzmann equation.)

We have derived a set of fluid equations, which are the velocity moments of f, that describe the behavior of the plasma.  These are appropriate when the internal structure of the distribution is unimportant.

We have found dispersion relations for longitudinal oscillations using the zeroth and first-order moments of the Vlasov Equation, in conjunction with a field equation (e.g. Poisson’s equation).

We have used the method of multiple scales to construct both the solution of the linearized Vlasov equation, and the next-order nonlinear corrections.  These will be used in a number of applications describing important nonlinear effects in plasmas (and beams).
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