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Abstract
This paper provides a simple unified framework for assessing the empirical linkages

between returns and realized and implied volatilities. First, we show that whereas
the volatility feedback effect as measured by the sign of the correlation between con-
temporaneous return and realized volatility depends importantly on the underlying
structural model parameters, the correlation between return and implied volatility is
unambiguously positive for all reasonable parameter configurations. Second, the lagged
return-volatility asymmetry, or the leverage effect, is always stronger for implied than
realized volatility. Third, implied volatilities generally provide downward biased fore-
casts of subsequent realized volatilities. Our results help explain previous findings
reported in the extant empirical literature, and is further corroborated by new estima-
tion results for a sample of monthly returns and implied and realized volatilities for
the aggregate S&P market index.

JEL Classification: G12, C51, C22.

Keywords: Leverage Asymmetry, Volatility Feedback, Implied Volatility Forecast,
Realized Volatility, Stochastic Volatility Model, Model Misspecification, Estimation
Bias.

∗The work of Bollerslev was supported by a grant from the NSF to the NBER. We have benefited from
discussions with Jim Clouse and Mike Gibson. Matthew Chesnes provided excellent research assistance. We
would also like to thank George Jiang, Neil Shephard, Rossen Valkanov, along with seminar participants in
the University of Arizona, and the Symposium of New Frontiers in Financial Volatility Modeling (Florence,
Italy) for their helpful comments and suggestions. The views presented here are solely those of the authors
and do not necessarily represent those of the Federal Reserve Board or its staff.

†Department of Economics, Duke University, Post Office Box 90097, Durham NC 27708 USA, Email
boller@econ.duke.edu, Phone 919-660-1846, Fax 919-684-8974.

‡Division of Research and Statistics, Federal Reserve Board, Mail Stop 91, Washington DC 20551 USA,
E-mail hao.zhou@frb.gov, Phone 202-452-3360, Fax 202-728-5889.

1



1 Introduction

Following the realization in the late eighties that financial market volatility is both time-

varying and predictable, empirical investigations into the temporal linkages between aggre-

gate stock market volatility and returns have figured very prominently in the literature. Of

course, volatility per se is not directly observable, and several different volatility proxies have

been employed in empirically assessing the linkages, including (i) model-based procedures

that explicitly parameterize the volatility process as an ARCH or stochastic volatility model,

(ii) direct market-based realized volatilities constructed by the summation of intra-period

higher-frequency squared returns, and (iii) forward looking market-based implied volatilities

inferred from options prices (see Andersen et al., 2003, for further discussion of the various

volatility concepts and procedures). Meanwhile, a cursory read of the burgeoning volatil-

ity literature reveals a perplexing set of results, with the sign and the size of the reported

volatility-return relationships differing significantly across competing studies and procedures.

The present paper provides a unified theoretical framework for reconciling these conflict-

ing empirical findings. Specifically, by postulating a relatively simple parametric volatility

model for the dynamic dependencies in the underlying returns, we show how the sign and

the magnitude of the linear relationships between (i) the contemporaneous returns and the

market-based volatilities, which we refer to as the volatility feedback effect, (ii) the lagged

returns and the current market-based volatilities, which we refer to as the leverage effect,

and (iii) the two different market-based volatilities, which we refer to as the implied volatil-

ity forecasting bias, all depend importantly on the parameters of the underlying structural

model and the stochastic volatility risk premium.

The classical Intertemporal CAPM (ICAPM) model of Merton (1980) implies that the

excess return on the aggregate market portfolio should be positively and directly proportion-

ally related to the volatility of the market (see also Pindyck, 1984). This volatility feedback

effect also underlies the ARCH-M model originally developed by Engle et al. (1987). How-

ever, empirical applications of the ARCH-M, and related stochastic volatility models, have

met with mixed success. Some studies (see, e.g., French et al., 1987; Chou, 1988; Campbell

and Hentschel, 1992; Ghysels et al., 2002) have reported consistently positive and signifi-

cant estimates of the risk premium, while others (see, e.g., Campbell, 1987; Turner et al.,

1989; Breen et al., 1989; Chou et al., 1992; Glosten et al., 1993) document negative val-

ues, unstable signs, or otherwise insignificant estimates. Moreover, the contemporaneous
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risk-return tradeoff appears sensitive to the use of ARCH as opposed to stochastic volatility

formulations (Koopman and Uspensky, 1999), the length of the return horizon (Harrison and

Zhang, 1999), along with the instruments and conditioning information used in empirically

estimating the relationship (Harvey, 2001; Brandt and Kang, 2002). As we show below, these

conflicting results are not necessarily inconsistent with the basic ICAPM model, in that the

risk-return tradeoff relationship depends importantly on the particular volatility measure

employed in the empirical investigations.1

The leverage effect, which predicts a negative correlation between current returns and

future volatilities, was first discussed by Black (1976) and Christie (1982). The effect (and the

name) may (in part) be attributed to a chain of events according to which a negative return

causes an increase in the debt-to-equity ratio, in turn resulting in an increase in the future

volatility of the return to equity.2 Empirical evidence along these lines generally confirms that

aggregate market volatility responds asymmetrically to negative and positive returns, but

the economic magnitude is often small and not always statistically significant (e.g., Schwert,

1989; Nelson, 1991; Gallant et al., 1992; Glosten et al., 1993; Engle and Ng, 1993; Duffee,

1995; Bekaert and Wu, 2000). Moreover, the evidence tends to be weaker for individual

stocks (e.g., Tauchen et al., 1996; Andersen et al., 2001). Importantly, the magnitude also

depends on the volatility proxy employed in the estimation, with options implied volatilities

generally exhibiting much more pronounced asymmetry (e.g., Bates, 2000; Wu and Xiao,

2002; Eraker, 2003)

A closely related issue concerns the bias in options implied volatilities as forecasts of

the corresponding future realized volatilities. An extensive literature has documented that

the market-based expectations embedded in options prices generally exceed the realized

volatilities resulting in positive intercepts and slope coefficients less than unity in regression-

based unbiasedness tests (see, e.g., Canina and Figlewski, 1993; Christensen and Prabhala,

1998; Day and M.Lewis, 1992; Fleming et al., 1995; Fleming, 1998; Lamoureux and Lastrapes,

1993, along with the recent survey in Poon and Granger, 2002). As formally shown in the

1More general multi-factor models also complicate the risk-return tradeoff relationship, as the projection
of the returns on the volatility must now control for other state variables (see, e.g., Abel, 1988; Tauchen and
Hussey, 1991; Backus and Gregory, 1993; Scruggs, 1998).

2Note, the volatility feedback effect, along with the well-documented persistent volatility dynamics, also
implies an observationally equivalent negative correlation between current returns and future volatility, as a
shock to the volatility will require an immediate return adjustment to compensate for the increased future
risk. We follow the convention in the literature of referring to the negative correlation between future
volatility and current returns as the leverage effect.
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recent studies by Bates (2002), Chernov (2002), and Pan (2002), this bias is intimately

related to the market price of volatility risk, and some of our theoretical results in regards to

the implied volatility forecasting bias parallel the developments in these concurrent studies.

Our theoretical results are based on the one-factor continuous-time stochastic volatility

model popularized by Heston (1993). This allows us to utilize various closed form expressions

for the conditional moments previously derived by Andersen et al. (2002b) and Bollerslev and

Zhou (2002). However, the same basic idea could in principle be generalized to other more

complicated model structures, including multiple volatility factors and jumps, at the expense

of notational and computational complexity (see, e.g. Andersen et al., 2002a; Eraker et al.,

2003; Chernov et al., 2003). Nonetheless, the relatively simple one-factor affine Heston model

is rich enough to explain our empirical findings in regards to the monthly return-volatility

regressions for the Standard & Poor’s aggregate market index.

The plan for the rest of the paper is as follows. Section 2 starts out by a discussion of

the basic model structure, followed by the theoretical predictions related to the volatility

feedback effect, the leverage effect, and the implied volatility forecasting bias, respectively.

Section 3 provides confirmatory empirical evidence based on a fifteen-year sample of monthly

returns, and high-frequency-based realized and implied volatilities for the Standard & Poor’s

composite index. Section 4 concludes. All of the derivations are given in a technical Ap-

pendix.

2 Theoretical Model Structure

Let pt denote the time-t logarithmic price of the risky asset, or portfolio. The one-factor

continuous-time affine stochastic volatility model of Heston (1993) then postulates the fol-

lowing dynamics for the instantaneous returns,

dpt = (µ + λsVt)dt +
√

VtdBt,
dVt = κ(θ − Vt)dt + σ

√
VtdWt,

corr(dBt, dWt) = ρ,
(1)

where the latent stochastic volatility, Vt, is assumed to follow a square-root process. A

negative instantaneous correlation between the two separate Brownian motions driving the

price and volatility processes, or ρ < 0, is directly associated with the leverage effect in the

raw returns; i.e., the tendency for contemporaneous returns and volatility to be negatively

correlated. Similarly, the volatility feedback effect is captured directly by the risk-return
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trade-off parameter, λs > 0. Other more complicated model structures, including multiple

latent volatility factors along with jumps in the price and/or volatility, could in principle be

analyzed by similar means. However, for expositional purposes we restrict our analysis to

the relatively simple model in equation (1).

Given this dynamics for the underlying price process, standard pricing arguments imply

the existence of the following equivalent Martingale measure, or “risk-neutralized” distribu-

tion,
dpt = (r∗t − dt)dt +

√
VtdB∗

t ,
dVt = κ∗(θ∗ − Vt)dt + σ

√
VtdW ∗

t ,
corr(dB∗

t , dW ∗
t ) = ρ,

(2)

where dt refers to the dividend payout rate and r∗t denotes the risk-neutral interest rate.

The value of any contingent claim written on the underlying asset is now readily evaluated

by calculating the expected payoff in this risk-neutral distribution.3 We will refer to this

expectation by the superscript ∗, as in E∗(·). The values of the risk-neutral parameters in

(2) are directly related to the parameters of the actual price process in equation (1) by the

functional relationships, κ∗ = κ + λv and θ∗ = κθ/(κ + λv). The λv parameter refers to the

stochastic volatility risk premium, which is generally estimated to be negative. Hence, the

degree of mean reversion for the risk-neutralized volatility process, as determined by κ∗, is

therefore slower (possibly even explosive) than the mean reversion for the actual volatility,

as determined by κ (for a more detailed discussion of the connection between the objective

and the risk-neutral distributions, see also Benzoni, 2001; Chernov, 2002; Wu, 2001; Pan,

2002).

We next turn to our discussion of the corresponding model-based implications for the

different return-volatility regressions, starting with the volatility feedback effect.

2.1 Volatility Feedback Effect

Empirical assessments of the relationship between returns and contemporaneous volatil-

ity have typically found the volatility feedback effect to be statistically insignificant, and

sometimes even negative. These results may appear at odds with the ICAPM and the cor-

responding one-factor model in equation (1). Thus, as discussed in the introduction, several

studies have resorted to more complicated multi-factor representations as a way to resolve

3Notice, that in the presence of stochastic volatility it is generally not possible to perfectly hedge contin-
gent claims payoff, and options are therefore no longer redundant assets.
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this apparent empirical puzzle (see, e.g., Scruggs, 1998, and the discussion therein). Mean-

while, consider the continuously compounded returns from time t to t+∆ implied by the

simple model in (1),

Rt,t+∆ = pt+∆ − pt = µ∆ + λs

∫ t+∆

t
Vudu +

∫ t+∆

t

√
VudBu. (3)

Although the “residual” defined by
∫ t+∆
t

√
VudBu is heteroskedastic, the population re-

gression of the returns on a constant and the integrated volatility would correctly un-

cover the volatility feedback effect (λs > 0), provided that the orthogonality condition

E
(∫ t+∆

t

√
VudBu × ∫ t+∆

t Vudu
)

= 0 holds true. However, with a non-zero “leverage” ef-

fect, or ρ < 0, the residual and the integrated volatility will be correlated, resulting in a

biased estimate for λs.

Specifically, consider the population regression,

Rt,t+∆ = α + β
∫ t+∆

t
Vudu + et,t+∆. (4)

Then as formally shown below, unless ρ = 0, the population feedback coefficient β will differ

from the true feedback coefficient λs. Of course, the integrated volatility is not directly ob-

servable, so the sample counterpart to the population regression in (4) isn’t actually feasible.

However, the integrated volatility may in theory be approximated arbitrarily well by the

corresponding realized volatility constructed by the summation of sufficiently finely sampled

high-frequency squared returns (see, e.g., Andersen et al., 2003). This approach, which is

now routinely employed in the literature, also underlies our empirical analysis in Section 3

below.

Alternatively, consider the corresponding implied volatility-return regression,

Rt,t+∆ = α∗ + β∗E∗
t

(∫ t+∆

t
Vudu

)
+ e∗t,t+∆, (5)

where the risk neutral expectation is taken under the distribution in (2). In this situation,

unless the stochastic volatility risk-premium equals zero, or λv = 0, the population feedback

coefficient will again differ from the true feedback coefficient in equation (3), that is β∗ 6=
λs. Hence, to correctly uncover the volatility feedback parameter from a contemporaneous

return-volatility type regression, either the leverage effect must be zero if the regression is

based on a realized volatility proxy, or the stochastic volatility risk premium must be zero
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when using options implied volatilities. Of course neither case is likely to hold empirically.

Proposition 1 characterizes the exact form of the resulting biases.4

Proposition 1 Assume that the parameters in (1) and (2) adhere to the standard sign

restrictions, κ > 0, θ > 0, σ > 0, ρ < 0, λv < 0, λs > 0, and that µ 6= 0. The population

feedback coefficient in the integrated volatility regression in equation (4) is then given by,

β = λs +
ρκ

σ
< λs. (6)

Let a∆ = (1 − e−κ∆)/κ and a∗
∆ = (1 − e−κ∗∆)/κ∗. The population feedback coefficient in the

implied volatility regression in (5) may then be expressed as,

β∗ = λs
a∆

a∗
∆

< λs. (7)

Moreover, assuming that 0 < λs < −ρκ
σ

, the two slope parameters are related by,

β < 0 < β∗ < λs, (8)

while for 0 < −ρκ
σ

< λs <
a∗
∆

a∆−a∗
∆

ρκ
σ

, we have

0 < β < β∗ < λs. (9)

The proof of the proposition is given in the technical Appendix A.

The implications of the proposition for empirical studies designed to uncover the volatility

feedback effect are immediate. First, regression-based procedures utilizing realized volatil-

ity proxies will invariably result in a downward biased slope estimate, with the sign and

magnitude depending on the underlying structural parameters. This, of course, is entirely

consistent with the extant literature discussed above reporting inconclusive and sometimes

even negative estimates for β. Only if the leverage, or asymmetry, effect is zero (ρ = 0) will

the regression be unbiased for estimating λs. Second, regression estimates based on implied

volatility will generally show less of a downward bias and remain positive under the most

general parameter setting. However, only if the stochastic volatility risk premium equals

zero (λv = 0) will the bias completely disappear. Again, this is directly in line with the

existing literature discussed above, as well as the new empirical results reported in Section

3 below.

4As shown in the appendix, the population intercepts α and α∗ will also generally differ from the true
drift in equation (3), that is µ∆. However, we will focus our discussion on the slope coefficients which are
typically associated with the volatility feedback effect.

7



This result also helps explain why various versions of filtered volatility (obtained by

projecting on lagged historical squared and/or absolute returns) may produce less biased

or even positive β estimates. Specifically, instead of the realized return - realized volatility

trade-off regression in (4), consider the realized return - expected volatility trade-off regression

Rt,t+∆ = α̃ + β̃Et

(∫ t+∆

t
Vudu

)
+ et,t+∆.

This regression explicitly purges the simultaneous correlation between the return and volatil-

ity innovations. As such, this regression corresponds more closely to the implied return-

volatility trade-off regression in (5) that obtain by replacing the expected integrated volatil-

ity, Et

(∫ t+∆
t Vudu

)
, with its risk neutral equivalent, E∗

t

(∫ t+∆
t Vudu

)
. Of course, the expected

integrated volatility will generally depend upon the underlying structural model, but may be

approximated empirically through the use of instrumental variables procedures. However, as

previously noted, the resulting estimates for the risk-return trade-off relationship are often

very sensitive to the particular ad hoc choice of instruments employed in the estimation (Har-

vey, 2001; Brandt and Kang, 2002). We shall return to this issue in the empirical Section

3.1 below.

At a more general level Proposition 1 clearly highlights the importance of the volatility

proxy used in the estimation of the risk-return trade-off relationship, and as such indirectly

explains the instability in the estimates reported in the extant literature in regards to the

model choice, instrument control, and return horizon. Similar issues arise in the empirical

estimation of the leverage effect, to which we turn next.

2.2 Leverage Effect

Several different parametric volatility models and volatility-return regressions have been

employed in the literature for empirically assessing the leverage effect (see e.g., the discussion

in Bekaert and Wu (2000), along with the surveys of the ARCH literature in Bollerslev et al.

(1992) and Bollerslev et al. (1994)). Although most estimates support the hypothesis that

aggregate stock market volatility responds asymmetrically to past negative and positive

returns, as discussed in the introduction, the magnitude and the statistical significance of

the estimated effect is quite sensitive to the return horizon and the particular volatility proxy

employed in the estimation.

At the most basic level the leverage effect is generally associated with a negative corre-

lation between current volatility and lagged returns. To formally quantify this correlation,
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consider the corresponding population regressions for the integrated volatility,5

∫ t+∆

t
Vudu = γ + δRt−∆,t + et,t+∆, (10)

and the option implied volatility,

E∗
t

(∫ t+∆

t
Vudu

)
= γ∗ + δ∗Rt−∆,t + e∗t−∆,t, (11)

where the expectation in equation (11) is again taken with respect to the risk-neutral dis-

tribution. Of course, the slope parameters in the simplified asymmetry regressions in (10)

and (11) do not correspond directly to the leverage, or asymmetry, parameter ρ determin-

ing the correlation between the two Brownian motions in (1). However, as the following

proposition makes clear, the population regression parameters may be expressed as explicit

nonlinear functions of the underlying structural parameters in (1) and (2). These functional

relationships in turn explain the stronger asymmetry observed empirically between implied

volatility and lagged-returns.

Proposition 2 Assume that the parameters in (1) and (2) adhere to the standard sign

restrictions, κ > 0, θ > 0, σ > 0, ρ < 0, λv < 0, and λs > 0. Let a∆ = (1 − e−κ∆)/κ,

a∗
∆ = (1− e−κ∗∆)/κ∗, and c∆ = (e−κ∆ +κ∆−1)/κ. The population slope parameters in (10)

and (11) may then be expressed as,

δ =
λs

θσ2

2κ
a2

∆ + ρσθa2
∆

θ∆ + λsσθ
κ

(
λsσ
κ

+ ρ
)

c∆

, (12)

and

δ∗ =
ρσθa∗

∆a∆

θ∆ + λsσθ
κ

(
λsσ
κ

+ ρ
)

c∆

. (13)

Moreover, assuming 0 < λs < −2ρκ
σ

it follows that,

δ∗ < δ < 0, (14)

while for 0 < −2ρκ
σ

< λs,

δ∗ < 0 < δ. (15)

5In the empirical section we also report the results from a longer regression in which we include the lagged
volatility along with different response coefficients for positive and negative returns.
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The proof of the proposition is given in Appendix B.

It is noteworthy that for the integrated volatility regression, the “leverage” coefficient,

δ, depends critically on both the volatility feedback parameter λs (positively), as well as

the “structural” leverage coefficient ρ (negatively). Thus, although most empirical studies

report strong realized volatility asymmetry for the aggregate market portfolio (δ < 0), this

may help explain the lack of statistical significance, and sometimes even reverse asymmetry

reported occasionally. For the implied volatility regression, the “leverage” coefficient δ∗

depends directly on ρ (negatively), and the stochastic volatility risk premium λv through a∗
∆

(magnitude). In contrast to the integrated volatility regression, the coefficient in the implied

volatility regression is unambiguously negative provided that ρ < 0. Moreover, provided that

the volatility feedback effect is positive (λs > 0), and the stochastic volatility risk premium is

negative (λv < 0), as it is commonly assumed in the literature, the magnitude of the implied

volatility asymmetry always exceeds that of the integrated volatility, that is δ∗ < δ.

Similar considerations help to explain the downward bias in the implied-realized volatility

forecasting regressions, to which we now turn.

2.3 Implied Volatility Forecasting Bias

The two previous subsections demonstrate how the use of realized or implied volatility prox-

ies can result in quite different population parameters in the contemporaneous and lagged

return-volatility regressions. A closely related question, concerns the extent to which im-

plied volatilities provide unbiased forecasts of the corresponding future realized volatilities.

The most common approach employed in the literature for assessing the forecasting bias is

based on regressing the ex-post realized volatility over some time period, say [t, t + ∆], on

a constant and the time t implied volatility for an option maturing at t + ∆ (for a recent

survey of this extensive empirical literature see Poon and Granger, 2002). In population,

∫ t+∆

t
Vudu = φ0 + φ1E

∗
t

(∫ t+∆

t
Vudu

)
+ et,t+∆. (16)

Obviously, for the implied volatility to provide unbiased forecasts, the two projection coef-

ficients should equal φ0 = 0 and φ1 = 1, respectively. Meanwhile, most empirical studies

report statistically significant biases in the direction of φ0 > 0 and φ1 < 1. These empiri-

cal biases have in part been explained by a standard errors-in-variables type problem arising

from the use of finite-sample equivalents to the population regression in (16) (Christensen and
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Prabhala, 1998), along with very persistent volatility dynamics rendering standard statisti-

cal inference unreliable (Bandi and Perron, 2003). However, these statistical considerations

aside, it follows that if the stochastic volatility risk premium, λv, differs from zero, the two

population regression coefficients in (16) implied by the structural model in (1) and (2) will

not equal zero and unity, respectively.

Proposition 3 Assume that the parameters in (1) and (2) adhere to the standard sign

restrictions, κ > 0, θ > 0, σ > 0, ρ < 0, λv < 0, and λs > 0. The population parameters in

the regression in (16) are then given by,

φ0 = b∆ − a∆

a∗
∆

b∗∆ and φ1 =
a∆

a∗
∆

< 1, (17)

where a∆ = (1 − e−κ∆)/κ, a∗
∆ = (1 − e−κ∗∆)/κ∗, b∆ = θ(∆ − a∆), and b∗∆ = θ∗(∆ − a∗

∆).

The proof of the proposition is given in Appendix C.

The proposition immediately explains the typical finding of a downward bias in the

estimated slope coefficient. Intuitively, for λv < 0, the stochastic volatility risk premium

reduces the degree of mean reversion in the risk-neutral volatility process relative to that of

the actual volatility process (κ∗ < κ), in turn resulting in the ratio a∆/a∗
∆ becoming less than

one.6 Thus, any estimate of φ1 should be gauged against this population bias. Of course,

the true structural model parameters, κ and κ∗, are generally unknown and would have to

be estimated.

Conversely, the population return-volatility regressions in Propositions 1-3 (coupled with

additional moment restrictions along the lines of Bollerslev and Zhou, 2002) could in prin-

ciple be employed as a system of equations in estimating the structural model parameters

underlying the actual and risk-neutral distributions in (1) and (2). We shall not pursue this

approach any further here. Instead, we next turn to a concrete empirical implementation of

the five regression equations based on aggregate U.S. stock market volatility and returns for

directly illustrating the various biases implied by Propositions 1-3.

6Closely related results, along with a more detailed analysis of the impact of jumps, have recently been
derived in concurrent work by Bates (2002) and Chernov (2002).
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3 Empirical Illustration

Our empirical analysis is based on monthly returns and volatilities for the S&P composite

index spanning the period from January 1986 through February 2002.7 The monthly con-

tinuously compounded percentage returns are constructed from the daily S&P500 closing

prices supplied by the Wall Street Journal. Normalizing the monthly time interval to unity,

we will refer to the return over the t + 1’th month as Rt,t+1.

The corresponding realized volatilities are based on the summation of the five-minute

squared returns within the month. The high-frequency data for the S&P500 index is provided

by the Institute of Financial Markets. Specifically, with nt+1 trading days in month t + 1,

RVt,t+1 ≡
78·nt+1∑

i=1

(log Pt+i/78·nt+1
− log Pt+(i−1)/78·nt+1

)2, (18)

where the 78 five-minute subintervals represents the normal trading hours from 9:30am to

4:00pm, including the close-to-open five-minute interval. As discussed in the previous section,

the realized volatility, RVt,t+1, is readily interpreted as a consistent (for increasing sampling

frequency) estimate of the corresponding integrated volatility, IVt,t+1 ≡ ∫ t+1
t Vsds.

The monthly implied volatility (variance) is formally defined by,

IV∗
t,t+1 ≡ E∗

[∫ t+1

t
Vsds|Ft

]
, (19)

where E∗ refers to the risk-adjusted expectation of the one-month ahead integrated volatil-

ity, IVt,t+1.
8 The most actively traded equity index options are written on the S&P100

index. Hence for liquidity reasons, we rely on the corresponding option implied volatilities

(VIX) provide by the CBOE in empirically quantifying IV∗
t,t+1. The VIX index (reported

in annualized percentage standard deviation form) is based on a weighted average of the

one-month ahead volatilities inverted from eight near-the-money puts and calls, and is now

widely regarded among market participants as the “implied volatility index” (see Fleming

7The start date of January 1986 reflects the availability of both the S&P high-frequency return data and
VIX implied volatility index. However, all of the regression results reported below are materially unaffected
by excluding the October 1987 stock market crash and starting the sample in January 1988. These results
are available upon request.

8This measure is also sometimes referred to as the “risk-neutral integrated volatility.” In empirical studies
the implied volatility concept is used almost exclusively in reference to the volatility that equates the Black-
Scholes price with the actual price of an option. This generally provides an accurate approximation for
short-lived at-the-money options; see, e.g., Ledoit et al. (2002).
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et al., 1995; Fleming, 1998, for a precise definition and further discussion of the VIX index).9

To facilitate the theoretical derivations, all of the volatility regressions analyzed in the

previous section were cast in the form of variances corresponding to the empirical RVt,t+1 and

IV∗
t,t+1 measures defined above. However, for robustness reasons previous empirical studies

have often been implemented in the form of standard deviations. Hence, we augment the

variance regressions with the analogous regressions based on RV
1/2
t,t+1 and IV

∗1/2
t,t+1.

Summary statistics for all of the variables are reported in Table 1. For comparison pur-

poses the standard deviations and the variances are converted to percentage and squared

percentage points, respectively. From the first column, the average annualized return on the

market was about ten percent, with a sample standard deviation of around sixteen percent.

The returns are negatively skewed with much fatter tails than the normal distribution. The

implied volatilities are systematically higher than the realized volatilities, and their uncon-

ditional distributions also deviate more from the normal. The returns are approximately

serially uncorrelated, while the volatility series (both in standard deviation and variance

forms) exhibit pronounced own temporal dependencies. In fact, the first ten autocorrela-

tions reported in the bottom part of the table are all highly significant with the gradual,

but very slow, decay suggestive of long-memory type features. This is also evident from the

time series plots for each of the five series given in Figure 1.

3.1 Volatility Feedback Effect

Our estimates of the volatility feedback effect are based on the empirical equivalents to the

two population regressions in equations (4) and (5),

Rt,t+1 = α + βRVt,t+1 + ut+1, (20)

Rt,t+1 = α∗ + β∗IV∗
t,t+1 + u∗

t+1, (21)

along with the corresponding robust regressions in standard deviation form,

Rt,t+1 = α + βRV
1/2
t,t+1 + ut+1, (22)

Rt,t+1 = α∗ + β∗IV∗1/2
t,t+1 + u∗

t+1, (23)

9Ideally, we would want realized and implied volatilities and returns for the same index. However,
reliable high-frequency data, required for the construction of the realized volatilities, are only available for
the S&P500 index, while liquidity considerations in the options market dictates the use of the S&P100 VIX
index. Of course, the returns on the two indexes are very close, with a monthly sample correlation of 0.988.
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where the residuals from the regressions are generically denoted by ut+1 and u∗
t+1, respec-

tively. The coefficient estimates, along with their asymptotic standard errors based on a

Newey-West covariance matrix estimator allowing for a two-month lag, are reported in Ta-

ble 2. Interestingly, for the regressions involving the implied volatility, the intercept and

slope coefficients are all insignificant, and both of the R-squares are very close to zero. In

contrast, the two realized volatility regressions both result in highly significant estimates for

the intercepts (positive) and slopes (negative). These contemporaneous return-volatility re-

gressions also explain about ten and thirteen percent of the variability in the ex-post monthly

returns, respectively. Although the empirical finding of a significant negative relationship

between aggregated stock market returns and realized volatility may appear counter intu-

itive, the result is, of course, entirely consistent with Proposition 1 and the ranking of the

corresponding population parameters, β < 0 < β∗, given that the condition 0 < λs < −ρκ
σ

is

satisfied by the underlying structural model parameters.10

It is worth noting, that while all of the regressions above involve a trade-off between

monthly returns and volatilities over the identical time horizon, the one-month implied

volatility is determined at time t, whereas the realized volatility is not observable until

t + 1. As such, the results in Table 2 are also consistent with the recent empirical findings

by Brandt and Kang (2002), who report a (puzzling) negative contemporaneous relation be-

tween the conditional mean and the conditional variance of the market returns, along with

a more conventional positive tradeoff for the one-month lagged volatility. Similarly, Ghysels

et al. (2002) report a significant positive trade-off relationship when the squared returns

20-50 days in the past are weighted most heavily in their realized volatility constructs.

In order to further illustrate this point, the last columns in each of the panels in Table 2

report the results from a standard instrumental variables procedure in which we rely on the

absolute lagged returns as instruments for the realized volatilities in the two regressions in

(20) and (22). Although the slope coefficient estimates for both the standard deviation and

the variance formulation remain negative, they are clearly much closer to zero, and the re-

gression R-squares drop from 10-13% to about 5-6%. Moreover, the corresponding standard

errors are also much larger so that the estimates are no longer statistically significant. It is

also noteworthy that on using the lagged raw returns as instruments, the estimates for the

10Recall that the positive return volatility trade-off observed in some empirical studies, 0 < β < β∗, may
similarly be justified by the second case of Proposition 1, when the underlying structural parameters satisfy
the condition 0 < − ρκ

σ < λs <
a∗
∆

a∆−a∗
∆

ρκ
σ .
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two slope coefficients (available upon request) are both positive, albeit even closer to zero sta-

tistically.11 As such, these results further highlight the sensitivity to the particular volatility

proxy and instrument choice employed in the reduced form volatility feedback regressions,

despite the fact that some instruments may produce conventional positive feedback effect.

3.2 Leverage Effect

The empirical equivalents to the simple leverage regressions analyzed in Section 2.2 above

take the form,

RVt,t+1 = γ + δRt−1,t + ut+1, (24)

IV∗
t,t+1 = γ∗ + δ∗Rt−1,t + u∗

t , (25)

with the theoretical prediction from Proposition 2 that in population δ∗ < δ < 0; i.e., the

implied volatility is more responsive to the lagged return than the realized volatility. Again,

for robustness reasons, the asymmetry implications may alternatively be tested in standard

deviation form,

RV
1/2
t,t+1 = γ + δRt−1,t + ut+1, (26)

IV
∗1/2
t,t+1 = γ∗ + δ∗Rt−1,t + u∗

t , (27)

with the similar predictions in regards to the sign and ordering of the slope coefficients.

Moreover, to account for the strong own temporal dependencies in the volatility and to allow

for different impacts from past negative and positive returns, a slightly longer asymmetry

regression is often estimated empirically,

RVt,t+1 = γ + βRVt−1,t + α (Rt−1,t)
2 − δ (Rt−1,t)

2 I(Rt−1,t≤0) + ut+1, (28)

IV∗
t,t+1 = γ∗ + β∗IV∗

t−1,t + α∗ (Rt−1,t)
2 − δ∗ (Rt−1,t)

2 I(Rt−1,t≤0) + u∗
t . (29)

In these longer regressions, weak asymmetry would again be implied by negative δ’s, while

strong asymmetry would have the α’s be negative as well. Similarly, if the implied volatility

responds more asymmetrically to past returns than do the realized volatility, we would

11We also experimented with a number of other instrumental variables, including the lagged squared
returns and the lagged volatilities in standard deviation and variance forms. Although not statistically
significant, only the results based on the absolute lagged returns were generally consistent in terms of their
signs across different subsamples.

15



expect to find that the estimates for the δ’s satisfy the relation δ∗ < δ < 0. These same

considerations apply to the pair of robust standard deviation regressions,

RV
1/2
t,t+1 = γ + βRV

1/2
t−1,t + α |Rt−1,t| − δ |Rt−1,t| I(Rt−1,t≤0) + ut+1, (30)

IV
∗1/2
t,t+1 = γ∗ + β∗IV∗1/2

t−1,t + α∗ |Rt−1,t| − δ∗ |Rt−1,t| I(Rt−1,t≤0) + u∗
t . (31)

Note that for β = 0 and δ = 2α the long regression in equation (30) collapses to the short

regression in equation (26). Likewise, for β∗ = 0 and δ∗ = 2α∗ the two risk-neutral regressions

in equations (31) and (27) coincide.

The actual S&P estimation results for the leverage regressions are reported in Table 3.

The intercepts and slope coefficients for the short regressions in the first panel of the table

are all highly significant. The R-squares for the realized volatility regressions are systemat-

ically lower than the corresponding R-squares for the implied volatilities. Importantly, the

estimates of the δ’s from the variance regression, δ∗ = −3.31 and δ = −0.82, also adhere

exactly to the theoretical predictions from Proposition 2 of negative and more pronounced

asymmetry for the implied volatility. Similarly, the short regressions in standard deviation

form results in estimates of δ∗ = −0.17 and δ = −0.08, both of which are significantly less

than zero. Turning to the longer regressions, it is noteworthy that the asymmetry in the

realized volatility are no longer statistically significant, while the two estimates of δ∗ from the

implied volatility regressions are both overwhelmingly significant, and economically large.

Again, this is directly in line with the implications from Proposition 2 of strong asymmetry

for the implied volatility along with weak, and possibly even reverse, asymmetry for the

realized volatility.12 The well-documented strong own temporal dependencies in the volatil-

ity also result in fairly large and highly significant estimates for the β’s, along with much

higher R-squares for the long volatility regressions (84-88% for the implied and 38-55% for

the realized volatilities).

All-in-all, the at first somewhat puzzling empirical findings for the different regressions

reported in Table 3 again highlight the importance of properly interpreting the estimated

asymmetry in lieu of the theoretical implications for the different volatility proxies detailed

in Proposition 2. In this regard, the results in Table 3 are also consistent with previous

empirical evidence in the literature related to the significance, or the lack thereof, of the

12Indeed, subsample analysis excluding 1986-1987 and 1998-2002, result in reverse asymmetry for the
realized volatility, while the implied volatility asymmetry remains very strong. This is therefore consistent
with the second case of Proposition 2, i.e., δ∗ < 0 < δ. Further details concerning these subsample results
are again available upon request.
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volatility asymmetry effect for other markets and time periods (see, e.g., Schwert, 1989;

Nelson, 1991; Gallant et al., 1992; Engle and Ng, 1993; Duffee, 1995; Bekaert and Wu, 2000;

Wu, 2001, among others). We next turn to discussion of the related empirical evidence

concerning the unbiasedness regressions directly linking the implied and realized volatility.

3.3 Implied Volatility Forecasting Bias

The question of whether implied volatilities provide unbiased and informationally efficient

forecasts of the corresponding future realized volatilities have been studied extensively in

the empirical finance literature. The typical regression employed in the literature takes the

form,

RVt,t+1 = φ0 + φ1IV
∗
t,t+1 + ut+1, (32)

or in terms of standard deviations,

RV
1/2
t,t+1 = φ0 + φ1IV

∗1/2
t,t+1 + ut+1, (33)

where unbiasedness would be associated with φ0 = 0 and φ1 = 1. Of course, the theoretical

results in Proposition 3 implies that these are not the values to be expected empirically if

the stochastic volatility risk is priced.13

The actual estimation results reported in Table 4 also do not support the unbiasedness

hypothesis. Both of the estimates for φ1 are significantly less than unity, and the estimates

for φ0 are greater than zero, albeit not significantly so. The regression in standard deviation

form results in a fairly high R-square of 0.51, while the R-square from the less robust variance

regression equals 0.34. These findings of a downward bias in the implied volatility forecasts

along with fairly high explanatory power when judged by the high-frequence based realized

volatility measures are directly in line with recent empirical results in the literature (see,

e.g., Martens and Zein, 2002; Neely, 2003, and the survey by Poon and Granger, 2002).

Moreover, the direction of the estimated biases are exactly as expected from Proposition 3,

and as such do not necessarily suggest any inefficiencies.

13The existence of a non-zero stochastic volatility risk premium for explaining estimates of φ0 > 0 and
φ1 < 1, along the lines of Proposition 3, has previously been discussed by Bates (2002), Benzoni (2001),
Chernov (2002), and Pan (2002), among others. Meanwhile, as in Fleming (1998), different subsamples
result in estimates of φ0 ≤ 0, which is still consistent with Proposition 3. These results are available upon
request.
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4 Conclusion

The simple unified continuous-time framework derived in this paper for assessing the link-

ages between discretely observed returns and realized and implied volatilities help explain a

number of puzzling findings in the extant empirical literature. In particular, we show that

whereas the sign of the correlation between return and implied volatility is unambiguously

positive, the correlation between contemporaneous return and realized volatility is generally

undetermined. Similarly, the lagged return-volatility asymmetry is always stronger for im-

plied than realized volatility. Also, implied volatilities generally provide downward biased

forecasts of subsequent realized volatilities.

It would be interesting to extend the empirical analysis for the aggregate S&P market

index presented here to other markets. In particular, the volatility feedback and asymmetry

effects may not be as important for other markets, and consequently result in qualitatively

different return-volatility linkages. The theoretical analysis of more complicated model struc-

tures allowing for jumps in the volatility and/or returns along with multiple volatility factors

may also give rise to additional new insights. The regression-based implications derived here

could also be used in directly estimating the underlying objective and risk-neutral dynamics,

including the stochastic volatility risk premium, by appropriately matching the sample and

population moments for the realized and implied volatilities. We leave further work along

these lines for future research.
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A Proof of Proposition 1

To simplify the exposition, define a∆ = (1− e−κ∆)/κ, a∗
∆ = (1− e−κ∗∆)/κ∗, b∆ = θ(∆− a∆),

b∗∆ = θ∗(∆ − a∗
∆), and c∆ = (e−κ∆ + κ∆ − 1)/κ. The proof consists of three steps.

To determine the projection coefficients in the realized volatility-return trade-off rela-

tionship, note that from Andersen et al. (2002b), the variance term may be written as,

V AR

(∫ t+∆

t
Vudu

)
=

θσ2

κ3

(
e−κ∆ + κ∆ − 1

)
=

θσ2

κ2
c∆.

Similarly, the covariance term takes the form,

COV
(
Rt,t+∆,

∫ t+∆
t Vudu

)
= COV

(
µ∆ + λs

∫ t+∆
t Vudu +

∫ t+∆
t

√
VudBu,

∫ t+∆
t Vudu

)
= λsV AR

(∫ t+∆
t Vudu

)
+ COV

(∫ t+∆
t

√
VudBu,

∫ t+∆
t Vudu

)
.

Rearranging and integrating by parts, the second term becomes,

COV
(∫ t+∆

t

√
VudBu,

∫ t+∆
t Vudu

)
= E

(∫ t+∆
t

√
VudBu

∫ t+∆
t Vudu

)
= E

[∫ t+∆
t

(∫ u
t

√
VsdBs

)
Vudu +

∫ t+∆
t (

∫ u
t Vsds)

√
VudBu

]
= E

[∫ t+∆
t

(∫ u
t

√
VsdBs

)
Vudu

]
= E

[∫ t+∆
t

(∫ u
t

√
VsdBs

) (
Vt +

∫ u
t κ(θ − Vs)ds +

∫ u
t σ

√
VsdWs

)
du
]

= E
[∫ t+∆

t −κ
(∫ u

t

√
VsdBs

∫ u
t Vsds

)]
+ E

[∫ t+∆
t

(∫ u
t

√
VsdBs

∫ u
t σ

√
VsdWs

)
du
]

= E
∫ t+∆
t

[
−κ

∫ u
t

(∫ s
t

√
VτdBτ

)
Vsds

]
du + E

(∫ t+∆
t

∫ u
t ρσVsdsdu

)
.

Notice that the recursive structure within the Riemann integral
∫ t+∆
t (·)du must hold over

any time interval ∆, so that in particular,

∫ t+∆

t
E
(∫ u

t

√
VsdBsVu

)
du =

∫ t+∆

t
−κ

∫ u

t
E
(∫ s

t

√
VτdBτVs

)
dsdu

+
∫ t+∆

t

(∫ u

t
ρσθds

)
du,

which gives rise to the linear first order ordinary differential equation,

dE
(∫ u

t

√
VsdBsVu

)
du

= −κE
(∫ u

t

√
VsdBsVu

)
+ ρσθ. (A1)

Solving this equation yields,

E
(∫ u

t

√
VsdBsVu

)
= e−κ(u−t)E

(∫ t

t

√
VsdBsVt

)
+

ρσθ

κ

(
1 − e−κ(u−t)

)
. (A2)
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Realizing that the first term on the right-hand-side equals zero, and completing the outside

integration operator now yields,∫ t+∆

t

(∫ u

t

√
VsdBsVu

)
du =

ρσθ

κ2

(
e−κ∆ + κ∆ − 1

)
=

ρσθ

κ
c∆. (A3)

Therefore,

β =
COV

(
Rt,t+∆,

∫ t+∆
t Vudu

)
V AR

(∫ t+∆
t Vudu

) = λs +
ρκ

σ
, (A4)

which is less than zero provided that 0 < λs < −ρκ
σ

and great than zero if 0 < −ρκ
σ

< λs. In

addition, the intercept may be written as,

α = E (Rt,t+∆) − βE

(∫ t+∆

t
Vudu

)
= µ∆ + λsθ∆ − βθ∆ = µ∆ − ρκθ

σ
∆, (A5)

which is larger than µ∆ under the usual parameter restrictions stipulated in the Proposition.

The determination of the projection coefficients in the implied volatility-return regression

proceed by analogous arguments. First, the variance term may be written as,

V AR

[
E∗

t

(∫ t+∆

t
Vudu

)]
= V AR (a∗

∆Vt + b∗∆) =
σ2θ
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∆.

Similarly, for the covariance term
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while the second term equals zero,
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Hence,

β∗ =
COV

[∫ t+∆
t Vudu, E∗

t

(∫ t+∆
t Vudu

)]
V AR

[
E∗

t

(∫ t+∆
t Vudu

)] = λs

σ2θ
2κ

a∆a∗
∆

σ2θ
2κ

a∗
∆a∗

∆

= λs
a∆

a∗
∆

, (A6)
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which is less than λs but larger than zero, provided that λv < 0 and λs > 0. Also,

α∗ = E (Rt,t+∆) − β∗E

[
E∗

t

(∫ t+∆

t
Vudu

)]
= µ∆ + λsθ∆ − λs

a∆

a∗
∆

θ∆, (A7)

which is larger than µ∆ given λv < 0 and λs > 0.

Finally, combining the results above, it follows readily that if 0 < λs < −ρκ
σ

we have

β < 0 < β∗, (A8)

while for 0 < −ρκ
σ

< λs <
a∗
∆

a∆−a∗
∆

ρκ
σ

we have

0 < β < β∗. (A9)

B Proof of Proposition 2

By definition

δ =
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)
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.

The denominator may be rewritten as,
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where the second equality follows from the results in Andersen et al. (2002b), Bollerslev and

Zhou (2002), and Proposition 1 above. The numerator may be expressed as,
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where the first term uses the result from Andersen et al. (2002b), and the second term uses

the result from the proof of Proposition 1,
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Combining the two equations it follows therefore that
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The intercept in the realized volatility asymmetry regression can be easily shown as

γ = θ∆ − δ(µ∆ + λsθ∆). (A11)

The coefficient of the implied volatility asymmetry is similarly defined by,
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Now combing the different equations it follows that

δ∗ =
ρσθa∗

∆a∆

θ∆ + λsσθ
κ

(
λsσ
κ

+ ρ
)

c∆

. (A12)

The intercept in the implied volatility asymmetry regression can be easily shown as

γ∗ = (a∗
∆θ + b∗∆) − δ∗(µ∆ + λsθ∆). (A13)

Lastly, note that the common denominator of δ and δ∗ (corresponding to a variance) is

always positive. The requirement that δ∗ < δ, or

ρσθa∗
∆a∆ < λs

θσ2

2κ
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is equivalent to
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∆ − a∆).

The assumption that λv < 0 ensures that a∗
∆ − a∆ > 0. Thus, given the usual parameter

restrictions in the Proposition, the assumptions that λs > 0 and ρ < 0 are sufficient to

guarantee the ordering of the δ’s.

C Proof of Proposition 3

From the proof of Proposition 1,
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where the last inequality follows directly by the assumption that κ∗ = κ+λv < κ. Similarly,

the intercept may be evaluated as,
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D Tables and Figures

Table 1: Summary Statistics for Monthly Returns and Volatilities

Return Standard Deviation Variance
Implied Realized Implied Realized

Mean 0.857 6.074 3.363 41.190 13.558
Std. Dev. 4.595 2.078 1.504 33.673 13.907
Skewness -1.213 1.634 1.476 3.967 2.916
Kurtosis 7.611 8.602 5.637 27.516 14.883
Minimum -24.543 2.835 1.366 8.036 1.866
5% Qntl. -6.634 3.465 1.733 12.003 3.004
25% Qntl. -1.914 4.615 2.261 21.300 5.113
50% Qntl. 1.232 5.828 2.881 33.970 8.301
75% Qntl. 3.863 7.137 4.093 50.934 16.751
95% Qntl. 7.074 9.724 6.287 94.565 39.523
Maximum 12.378 17.728 10.284 314.266 105.767

ρ1 -0.011 0.773 0.738 0.642 0.616
ρ2 -0.077 0.627 0.588 0.438 0.413
ρ3 -0.034 0.523 0.519 0.321 0.343
ρ4 -0.117 0.485 0.458 0.275 0.273
ρ5 0.065 0.483 0.487 0.272 0.319
ρ6 0.012 0.485 0.512 0.289 0.373
ρ7 0.066 0.460 0.472 0.251 0.307
ρ8 -0.032 0.447 0.462 0.244 0.300
ρ9 -0.028 0.441 0.457 0.243 0.293
ρ10 0.122 0.422 0.441 0.233 0.291
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Table 2: Volatility Feedback Effect

Standard Deviation Variance
Implied Realized Expected Implied Realized Expected

α∗ = 0.637 α = 4.156 α̃ = 1.717 α∗ = 0.828 α = 2.486 α̃ = 1.231
(0.932) (1.171) (1.838) (0.489) (0.552) (12.91)

β∗ = 0.036 β= -0.981 β̃= -0.264 β∗ = 0.001 β = -0.120 β̃ = -0.029
(0.170) (0.390) (0.594) (0.013) (0.047) (0.965)

R2 = 0.000 R2 = 0.103 R2 = 0.047 R2 =0.000 R2 = 0.132 R2 = 0.057

Note: The ”Expected” volatility regressions refer to the instrumental variables regressions
using the absolute lagged returns as instruments for the realized volatilities.

Table 3: Leverage Effect

Short Regression
Standard Deviation Variance
Implied Realized Implied Realized

γ∗ = 6.225 γ = 3.438 γ∗ = 44.087 γ = 14.317
(0.238) (0.168) (3.891) (1.471)

δ∗ = -0.170 δ = -0.081 δ∗ = -3.305 δ = -0.824
(0.059) (0.028) (1.384) (0.283)

R2 = 0.141 R2 = 0.062 R2 = 0.204 R2 = 0.074

Long Regression
Standard Deviation Variance
Implied Realized Implied Realized

γ∗ = 1.218 γ = 0.900 γ∗ = 12.110 γ = 4.967
(0.279) (0.195) (2.494) (1.183)

β∗ = 0.689 β = 0.723 β∗ = 0.580 β = 0.654
(0.059) (0.054) (0.067) (0.068)

α∗ = 0.072 α = 0.007 α∗ = 0.032 α = -0.003
(0.037) (0.036) (0.052) (0.044)

δ∗ = -0.309 δ = -0.009 δ∗ = -0.444 δ = 0.015
(0.033) (0.050) (0.062) (0.058)

R2 = 0.844 R2 = 0.547 R2 = 0.884 R2 = 0.383
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Table 4: Implied Volatility Forecasting Bias

Standard Deviation Variance
φ0 = 0.231 φ0 = 3.705

(0.392) (2.643)
φ1 = 0.516 φ1 = 0.239

(0.069) (0.066)
R2 = 0.507 R2 = 0.336
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Figure 1: Time Series Plot of Returns and Volatilities.
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