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SUMMARY. Overeating in obese individuals shares similarities with
the loss of control and compulsive drug taking behavior observed in
drug-addicted subjects. The mechanism of these behaviors is not well
understood. Our prior studies with positron emission tomography (PET)
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in drug-addicted subjects documented reductions in striatal dopamine
(DA) D2 receptors. In pathologically obese subjects, we found reduc-
tions in striatal DA D2 receptors similar to that in drug-addicted sub-
jects. Moreover, DA D2 receptor levels were found to have an inverse
relationship to the body mass index of the obese subjects. We postulated
that decreased levels of DA D2 receptors predisposed subjects to search
for reinforcers; in the case of drug-addicted subjects for the drug and in
the case of the obese subjects for food as a means to temporarily com-
pensate for a decreased sensitivity of DA D2 regulated reward circuits.
Understanding the mechanism in food intake will help to suggest strate-
gies for the treatment of obesity. [Article copies available for a fee from The
Haworth Document Delivery Service: 1-800-HAWORTH. E-mail address:
<docdelivery@haworthpress.com> Website: <http://www.HaworthPress.com>]
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INTRODUCTION

Obesity is a complex disease of appetite regulation and energy metab-
olism that is controlled by many factors.1 It can result from several possi-
ble genetic and environmental interactions2 some of which may entail a
more direct genetic association (i.e., a genetically regulated response to
sweet food which is perceived as reinforcing)3 or alternatively an indirect
association that makes the individual genetically more susceptible to en-
vironmental stressors that will then favor food consumption.4

Among the genetic factors, there are neuromodulators (e.g., leptin),5
and multiple neurotransmitter systems involved with the reinforcing
properties of food (i.e., GABA, dopamine, opioids, serotonin). These
neurotransmitters also play an important role in feeding behavior and
satiation.6 There is a large amount of evidence to suggest that dopamine
(DA) may be one of the neurotransmitters linking the genetic and envi-
ronmental factors that contribute to obesity.7 Behavioral studies on ro-
dents indicate that DA D2 receptor antagonists can enhance meal size
and duration of feeding.8 Similarly, long-term administration of DA D2
receptor antagonists increases feeding and body weight in female rats.9
In clinical studies, patients treated with typical and atypical antipsy-
chotic medications, which block DA D2 receptors, show significant
weight gain.10,11 Dopaminergic agonists (e.g., amphetamine, cocaine,
methylphenidate) that increase brain dopamine concentration have
anorexigenic effects.12
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Many obesity researchers focus on how the body’s fuel and fat levels
control appetite. But as binge eaters know, habits and desires often
override metabolic need, which share some of the characteristics of
drug using behavior in drug-addicted subjects. The present article dis-
cusses the role of DA in drug abuse and its involvement in the mecha-
nism of obesity.

BRAIN DA AND ADDICTIVE BEHAVIORS

The role of DA in addiction (loss of control and compulsive drug in-
take) is poorly understood. A plethora of studies have reported over the
years the role of dopamine and its receptors on alcohol and drug abuse.
One example is the role of DA on cocaine addiction, which is consid-
ered to be one of the most reinforcing of the abused drugs. Animal studies
have shown that the ability of cocaine to block the dopamine transport-
ers appears to be crucial for its reinforcing effects. In humans, the rein-
forcing effects of cocaine used intravenously or smoked can lead to
rapid escalation of drug intake and compulsive drug administration. An-
imal studies indicate that DA D2 receptor levels mediate reinforcing re-
sponses to drugs of abuse. We have shown that overexpression of DA
D2 receptors in the nucleus accumbens, which is the brain region asso-
ciated with the reinforcing effects of drugs of abuse, in animals previ-
ously trained to self-administer alcohol resulted in a marked reduction
in alcohol intake that returned to baseline levels as the DA D2 receptors
decreased to their prior levels.13,14

While the studies on the effects of DA D2 receptor antagonists on the
reinforcing effects of psychostimulants in humans have not been as con-
clusive as those in laboratory animals, they have shown a decrease in
the subjective ratings of pleasant sensations and of the craving induced
by cocaine.15 The lower efficacy of DA D2 receptor antagonists re-
ported in studies may reflect the fact that the doses used were lower than
those used in laboratory animals and resulted in incomplete DA D2 re-
ceptor blockade.

USE OF IN VIVO IMAGING TO STUDY DRUG ADDICTION

Positron Emission Tomography (PET) is a medical imaging technol-
ogy that uses radioactive positron-emitting atoms (i.e., carbon-11 and
fluorine-18) to label and measure the concentration and movement of
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positron labeled compounds in living tissue. Positron emitter labeled
radiotracers are used to label proteins that are of physiological rele-
vance (i.e., receptors, transporters and enzymes) in the human brain.
The measurement of DA D2 receptor using PET and [11C]raclopride
has been used to assess neuropsychiatric disorders, substance abuse and
aging (reviewed,16). Since [11C]raclopride is sensitive to endogenous
DA concentration and its binding is reproducible,17 it can also be used to
measure relative changes in DA concentration secondary to pharmaco-
logical interventions. Methylphenidate is a cocaine-like psychostim-
ulant that increases extracellular DA by blocking DA transporters.
Methylphenidate-induced changes in [11C]raclopride striatal binding
are interpreted as reflecting changes induced by DA occupancy of D2
receptors secondary to the changes in DA synaptic concentration.17 The
measure has been used as an indication of the responsivity of the DA
system to pharmacological challenge. This strategy allowed us to evalu-
ate the relationship between DA changes as assessed by the levels of
DA D2 receptors occupancy and subjective perception of pleasure or
euphoric “high,” which is associated with rewarding effects of the
drug.18 We found the intensity of the “high” induced by methylpheni-
date was significantly correlated with the levels of released DA. The
subjects who reported the most intense “high” were those who have the
greatest increases of DA release. It appears that DA and DA D2 recep-
tors play an important role in the reinforcing response to psycho-
stimulants.

Even though the reinforcing effects of cocaine may involve the initial
drug taking behavior, others factors might also contribute to the com-
pulsive drug taking and the loss of control in addicts. Repeated cocaine
self-administration often continues (because of acute tolerance to the
pleasurable response) and sometimes, despite the presence of an
aversive drug reaction.19,20 Acute tolerance to cocaine can occur in rec-
reational levels of cocaine consumption. This neurochemical response
to cocaine is primarily caused by direct pharmacological effects of the
drug rather than by the conditioning to external environmental cues.21

Chronic administration of cocaine significantly impacts the brain DA
system.22 In fact, our prior [11C]raclopride-PET studies in drug-ad-
dicted subjects (cocaine,23 methamphetamine,24 alcoholics,25 and her-
oin26) showed significant DA D2 receptor reductions in striatum (Fig-
ure 1). It has been hypothesized that compulsive disorders such as drug
addiction, gambling and sex reflect a “Reward Deficiency Syndrome,”27

that is speculated to be due in part to a reduction in DA D2 receptors.
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FIGURE 1. Group average images of [11C]raclopride (distribution volume ratio)
PET images for 15 methamphetamine users (9 women and 6 men, age range
21-46 years, mean 32 ± 7 years old), their control subjects (6 women and 14
men, age range 21-43 years, mean age 31 ± 7 years old), 10 obese subjects (5
women and 5 men, mean 39 ± 7 years old, age range 26-54) and their control
subjects (3 women and 7 men, age range 25-45 years, mean 37.5 ± 5.9 years
old) at the level of the striatum. The images are scaled with respect to the max-
imum absolute value obtained on average image of the control subjects and
presented using the gray scale where white represents the highest value and
black represents the lowest value. Methamphetamine users and obese sub-
jects have significantly lower measures of striatal dopamine D2 receptor avail-
ability than control subjects. Modified from references 24 and 59.



THE INVOLVEMENT OF BRAIN DA IN FOOD INTAKE

DA release seems to have a site-specific action on the regulation of
food intake. In the nucleus accumbens, DA release has been generally
associated with the reinforcing effects of food.28 In the hypothalamus,
DA release is associated with the duration of meal consumption, which
is a factor in determining feeding pattern. Hence, DA is required to initi-
ate each meal and is associated with the quantity and duration of a
meal.29 DA acting locally within the hypothalamus acts as a potent in-
hibitor of feeding in the perifornical area, ventromedial hypothalamus,
and arcuate nucleus. In addition, DA is a potent inhibitor of hypotha-
lamic neuropeptide Y (NPY, a potent stimulator of food intake) expres-
sion and activity and a stimulator of arcuate proopiomelanocortin
(POMC) expression.30,31 These hypothalamic influences may contrib-
ute to DA’s ability to reduce food consumption and hyperphagia.
Leptin, insulin, and other peripheral peptides and steroid hormones
modulate the synthesis and release of DA.32 It appears that DA is asso-
ciated with both short-term (individual meals) and long-term (hunger)
regulation of food intake.33

DA regulates food intake34 via the meso-limbic circuitry of the brain
apparently by modulating appetitive motivational processes.35-37 There
are also projections from the nucleus accumbens to the hypothalamus
that directly regulate feeding.38 The dopaminergic reward pathways of
the brain are critical for survival since they help influence the funda-
mental drive for eating. Recent work has shown that DA systems are
necessary for wanting incentives, which is a distinct component of mo-
tivation and reinforcement.36,39 It is one of the natural reinforcing mech-
anisms that motivates an animal to perform and seek a given behavior.
However, unnatural rewards such as drugs of abuse (i.e., cocaine, alco-
hol, nicotine), also release DA.27 Furthermore, because most of the
drugs abused by humans lead to increased DA concentration in the nu-
cleus accumbens, this has been suggested as being a common mecha-
nism for reinforcement.19

THE DOPAMINE’S ROLE IN THE MOTIVATION
FOR FOOD INTAKE

Though the effects of DA in the nucleus accumbens are the ones tra-
ditionally implicated in motivation for food,40 a study in DA deficient
knockout mice provided clear evidence of the relevance of the dorsal
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striatum in the motivation for food consumption. Without intervention,
these DA deficient mice die because of lack of food consumption, how-
ever, treatment with DA in the dorsal striatum, but not in the nucleus
accumbens, restored feeding.41 Interestingly in these animals rescuing
DA in the nucleus accumbens restored the ability of the mice to choose
between a palatable and a non-palatable solution but did not prevent
them from dying due to inadequate caloric consumption. The latter
study points to two separate processes regulating food intake; one to
maintain the caloric requirements necessary for survival that implicates
the dorsal striatum and another one that relates to the motivation
properties of food (palatability) that implicates the nucleus accumbens.

To assess the involvement of DA in the dorsal striatum in the
non-hedonic motivation for food intake in human subjects, we evalu-
ated changes in extracellular DA in striatum in response to food stimu-
lation (visual, olfactory, and gustatory display of food in food deprived
subjects) after placebo and after methylphenidate.41 In this study,
methylphenidate was given as a strategy to amplify DA signals. Neither
the neutral stimuli (with or without 20 mg of oral methylphenidate) nor
the food stimuli when given with placebo increased DA or increased the
desire for food. However, the food stimuli when given with methyl-
phenidate increased both extracellular dopamine and the desire for
food. We found that changes in extracellular dopamine in striatum in re-
sponse to food stimulation were significant in dorsal but not in ventral
striatum and were significantly correlated with the increases in self-re-
ports of hunger and desire for food. Such a relationship was not ob-
served for the ventral striatum where the nucleus accumbens is located.
Our results showing an effect in the dorsal but not in the ventral striatum
is likely to reflect the fact that the food stimulation to the subjects was
not rewarding, i.e., in this study subjects were not permitted to consume
the food.

THE ROLE OF BRAIN DOPAMINE IN OBESITY

DA plays a role in pathological feeding behavior, since low levels of
DA may interfere with the drive and motivation to eat. Binge eating
(Bulimia Nervosa), which occurs in about 30% of obese subjects at-
tending weight control programs, is characterized by episodes of eating
objectively large amounts of food and with feelings of loss of control.42

Obese binge eaters consume significantly more calories than obese
non-binge eaters when asked to eat as much as they wanted or simply to
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eat normally.43,44 Obese binge eaters have high relapse rates during
weight control programs and experience their disorder for long periods
of time. A high prevalence of binge eating disorder (30-80%) was re-
ported among the morbidly obese subjects who have undergone bariatric
surgery.45-49 The eating disturbances persist (6-26%) in many of the
same patients after surgery and are correlated with weight regain.45,47,49

The obese binge eaters lose less excess body weight than obese non-
binge eaters after the surgery.49

Bulimic nervosa patients have been found to have normal DA metab-
olite levels. In contrast, high frequency binge eaters have reduced
cerebrospinal fluid DA levels.50 Decreased DA metabolite plasma lev-
els have been found, but they are not associated with symptomatology
of binge eating disorder.51 To this day, it is difficult to determine
whether a trait disturbance on the dopaminergic system plays a role in
the etiology of binge eating disorder.

There is better evidence for the causal role of DA in obesity. Human
studies have shown a higher prevalence of the Taq I A allele for the DA
D2 receptors in obese subjects.52 Though not replicated by all studies,53

the Taq 1 A allele has been linked with lower levels of DA D2 recep-
tors.54 Variants of the human obesity (ob) gene and the DA D2 receptor
gene have been examined in relationship to obesity. These two poly-
morphisms together account for about 20% of the variance in BMI, par-
ticularly in younger women.55 The association of the Taq 1 A allele with
reduced number of DA D2 receptor levels suggests that obese individu-
als with the A1 allele may use food to increase DA stimulation to a more
desirable level.56 This is consistent with the finding in binge eaters with
frequent binge episodes who are reported to have low DA metabolite
concentrations in cerebrospinal fluid.51 These results indicate that low
DA brain activity (either due to decreased DA release or to decreased
stimulation of postsynaptic DA receptors) may be associated with dys-
functional eating patterns. The DA system has also been targeted for
therapy of obesity since DA agonists have anorexigenic effects57 whereas
drugs that block DA D2 receptors increase appetite and result in weight
gain.58

USE OF PET IMAGING TECHNOLOGY TO STUDY OBESITY

Compulsive overeating in obese subjects shares many of the same
characteristics as drug addiction. Using a PET scanner with a re-de-
signed bed to support heavy weight, we have shown a significant reduc-
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tion in DA D2 receptor availability in obese subjects (Figure 1).59 These
subjects have body mass indexes (BMI: weight in kilograms divided by
the square of height in meters) between 42 and 60 (mean 51.2 ± 4.8 kg/
m2, body weight: 274-416 lb). These subjects do not have current or
past psychiatric and/or neurological disease, hypertension, diabetes,
and medical conditions that may alter cerebral functioning. Interest-
ingly, in the obese subjects, but not in the controls, the DA D2 receptors
were significantly associated with their BMI (Figure 2).59 It is possible
that in obese subjects, DA D2 receptors may play a greater role in regu-
lating eating behavior than in control subjects. The results could also be
interpreted to suggest that DA D2 receptors are not involved in modu-
lating body weight per se but rather may regulate compulsiveness in the
pathological eaters. This would imply that the role of the DA D2 recep-
tors is not to enable obesity but if the pertinent genetic or environmental
variables that predispose to obesity are present, then it will favor a more
severe presentation. The obese subjects share in common with drug ad-
dicts the inability to refrain from using the reinforcer and its compulsive
administration. Thus DA D2 decrements are unlikely to be specific for
any one of these compulsive behavioral disorders including obesity and
may relate to vulnerability for addictive behaviors.

DRUG PREFERENCES AND COMPULSIVE OVEREATING

One of the challenging questions regarding the neurobiological
mechanism(s) underlying these disorders is why some subjects abuse
drugs while others do not. We investigated this problem in non-drug
abusing individuals in whom we measured DA D2 receptor levels and
assessed their response (pleasant or unpleasant) to a challenge dose of
the stimulant drug, methylphenidate given intravenously. We found
that subjects who reported the methylphenidate as pleasant had lower
DA D2 receptor levels.60 Those who reported methylphenidate as un-
pleasant had higher DA D2 receptor levels. A replicate study docu-
mented that the levels of DA D2 receptors predicted how much subjects
liked the effects of methylphenidate.61 However, vulnerability to drug
abuse could not be explained solely on the differences in DA D2 recep-
tor availability since none of these subjects suffered from addiction
even though they have very low DA D2 receptor levels. This indicates
that while DA D2 receptors may contribute to vulnerability by them-
selves they are not sufficient to lead to addiction. Further work is neces-
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sary to assess if DA D2 receptors also modulate the “liking” responses
to food to determine if low DA D2 levels may also be associated with a
higher vulnerability for compulsive eating behaviors.

SENSORY PROCESSING OF THE FOOD AND OBESITY

What makes obese subjects different from drug addicts? Would
obese subjects have an enhanced sensitivity in the brain regions in-
volved with sensory processing of the food? Signals that affect food in-
take originate from internal sources that directly regulate food intake
(i.e., hunger, satiety) and those that regulate emotional responses (i.e.,
to stress, boredom) as well as from the environmental sources (e.g.,
food availability, food related cues, alternative reinforcers).62 Disrup-
tion in the sensitivity of the brain to these sources could lead to obesity
from excess eating. Irrespective of the source, a particularly relevant
variable in the regulation of food intake is the sensory appeal that the
food conveys to the subject. Thus, we questioned whether obese subjects
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Kd) and body mass index (BMI: kg/m2) in obese and control subjects. Modified
from reference 59.



would have an enhanced sensitivity in the brain regions involved in sen-
sory processing of the food associated with eating. We compared brain
metabolism of obese subjects with lean control subjects using PET and
2-deoxy-2[18F]fluoro-D-glucose (FDG), an analog of glucose, which
has been served as an indicator of brain function. This method has been
used to assess cerebral dysfunction in neurological and psychiatric dis-
orders.63 The brain metabolic images were analyzed using statistical pa-
rameter map (SPM), which showed that obese subjects had significantly
greater glucose metabolism in the vicinity of the post-central gyrus in
the left and right parietal cortex (Brodmann’s areas 1).64 This area of the
parietal cortex is where the somatosensory maps of the mouth, lips, and
tongue are located and is an area involved with taste perception (Figure
2).65 The enhanced activation of these parietal regions is consistent with
an enhanced sensitivity to food palatability (i.e., consistency, taste) in
obese subjects. The enhanced activation in somatic parietal areas for
mouth, tongue and lips in obese subjects suggests that enhanced sensi-
tivity in regions involved in the sensory processing of food may make
food more rewarding and may be one of the variables contributing to ex-
cess food consumption in these obese individuals.

MODULATION OF SENSORY PROCESSING OF THE FOOD
IN OBESE INDIVIDUALS

Because foods with high palatability tend to have high energy con-
tent but are not satiating (fatty foods) in contrast to foods with low en-
ergy density that are more satiating but less palatable,66 enhanced
sensitivity to food palatability could lead to food over-consumption and
obesity. Palatability increases food intake through a positive-feedback
reward mechanism that involves the opioid and GABA/benzodiazepine
systems.67,68 Thus, interventions that include the use of pharmacologi-
cal treatments known to decrease palatability (i.e., opioid receptor an-
tagonist)69 in association with behavioral therapies to reduce the likeness
of food with high energy content may prove beneficial in reverting the
enhanced sensitivity of the somatosensory areas processing food palat-
ability and reducing food intake in obese subjects.

CONCLUSION

Though obesity is the product of many interacting variables, there is
mounting evidence that the motivation and reward circuits regulated by
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DA play a role. Our PET studies show obese individuals have signifi-
cantly lower DA D2 receptor levels, which is similar to findings from
PET studies in drug-addicted subjects. Lower DA D2 receptors in obese
individuals would make them less sensitivity to reward stimuli, which
in turn would make them more vulnerable to food intake as a means to
temporarily compensate for this deficit. In addition, obese individuals
show an enhanced activity of brain regions that process food palatabil-
ity, which is likely to increase the rewarding properties of food and
could account for the powerful salience that food has in obese individu-
als. The results from these studies have implications for the treatment of
obesity since they would suggest that strategies aimed at improving DA
function might be beneficial in the treatment and prevention of obesity.
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