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SYMBOLS

H

X

aircraft altitude above runway, ft

aircraft position along course (runway heading) relative to ILS glide slope

intercept point, positive toward departure end of runway, ft

lateral position relative to runway centerline extended, positive to left of

approach course, ft

Inputs to wind-field model:

WX

WY

XC

YC

R

HT

VZO

GX,GY

DELX,

DELY

GVZ

ambient wind component toward positive X, ft/sec

ambient wind toward positive Y, ft/sec

along course position of vertical axis, ft

across course position of vertical axis, ft

characteristic radius of downdraft, ft

the upper altitude limit of horizontal flow associated with the down burst, ft

reference vertical flow velocity, positive downward, ft/sec

distortion factors which produce asymmetric flow by varying the effective

value of R with azimuth; zero values are associated with axial symmetry

wind field position adjustment terms, nominally zero.

wind field intensity gain factor, nominally 1.0

Outputs:

VX

VY

VZ

VZX

VZY

SLU

SLV

SLW

SGU

wind velocity toward positive X, ft/sec

wind velocity toward positive Y, ft/sec

vertical wind velocity, positive down, ft/sec

gradient with distance, along course, of vertical wind velocity, i/sec p

gradient with distance, across course, of vertical wind velocity, i/sec

scale length, longitudinal component of random turbulence, ft

scale length_ lateral component of random turbulence, ft

scale length, vertical component of random turbulence, ft

rms intensity, longitudinal component of random turbulence, ft/sec
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SGV

SGW

rms intensity, lateral componentof randomturbulence, ft/sec

rms intensity, vertical componentof randomturbulence, ft/sec
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SUMMARY

A computational method for modeling severe wind shears of the type that have been

documented during severe convective atmospheric conditions is offered for use in

research and training flight simulation. The procedure was developed with the objec-

tives of operational flexibility and minimum computer load. From one to five simple

"down-burst" wind models can be configured and located to produce the wind field

desired for specific simulated flight scenarios. A definition of related turbulence

parameters is offered as an additional product of the computations. The use of the

method to model several documented examples of severe wind shear is demonstrated.

INTRODUCTION

The usual objective of wind-field modeling in simulation is the creation of

environments that challenge the performance of normal operational tasks, such as

landing or takeoff, in simulations conducted for training purposes or in the develop-

ment and evaluation of aircraft systems. A number of wind-shear-induced accidents

experienced in the past decade, together with the meteorological measurements of

reference i, have given firm evidence of the hazardous variations in horizontal and

vertical winds that can occur in strong convective situations. Recorded data from

the accidents, usually of doubtful accuracy, have been used to justify models depen-

dent on a single variable, range, or two variables, range and altitude. The data

reported in reference i, on the other hand, supports the modeling of three components

of the wind in a significant volume of three-dimensional space. An alternative to

the storage of such data in the computer memory is an analytical model. The model

computes, in real time, wind values that emulate the variations which would result

from the data storage models, especially for the spatial volume significant to landing

and takeoff. The subject modeling procedure was developed to meet that objective.

Concurrent objectives were flexibility in use and economy in computation time.

For the aircraft position, the completely defined model computes three wind com-

ponents (vertical, along course, and across course) for a wind field which includes

from one to five local flow models. Each model describes the flow resulting from the

impingement of a vertically moving column of air (down burst) on the ground plane.

Definitions of associated turbulence parameters are offered for use with a conven-

tional Dryden random turbulence model. The wind-field model format is not derived

from considerations of atmospheric mechanics other than that of continuity. Incom-

pressible flow is assumed, and wind velocities are invariant with time. The forms of

downdraft geometry and vertical velocity distribution are arbitrary. They simply

provide the means for creating low-altitude wind-field models that have spatial varia-

tions in wind velocity similar to those measured in the atmosphere during severe con-

vective disturbances.



THEWIND-FIELDMODEL

The computational procedure for producing a complete wind-field model will be
described in terms of the operational sequence seen in a digital program.

The Input File

Each total wind-field model is defined by an input data file that includes a
statement of ambient, spatially invariant wind (WX,WY), together with the parameters
defining each of up to five individual downbursts. An example input file is given
as follows:

WX -11.8

WY 11.8

XC /2000, 3000, 4250, 11500, i000/

YC /4200, 4200, 4500, 4500, 4000/

R /1400, 800, 1750, 1150, i000/

HT /2000, 2000, 2000, 1700, 2000/

VZO /16.9, 23.7, 32.4, -39, 0/

GX /-0.6, 0.7, 0.15, -0.8, 0/

GY / 0, O, O, 0, 0,/

(It is noted that the adjustment terms DELX, DELY, and GVZ are not included in the

file, but are left independently available to the user.) In this input file, only

four down burst models are actually defined. As seen later in the flow computations,

all velocities in a given down burst are proportional to the input value of VZO. In

this case, VZO(5) = 0. It is also noted that VZO(4) has a negative value, indicating

an updraft which suggests a converging horizontal flow near the ground. This particu-

lar input file was configured to recreate the along-course and vertical winds mea-

sured in a meteorological research program (ref. i). This wind-field model will be

discussed later, together with other examples.

Initialization P

The three components of the wind, and the along-course and across-course gra-

dients of the vertical wind velocity are initialized as follows:

VZ = 0 VZX = 0

VX = WX VZY = 0

VY = WY
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The wind contributions for each of the downbursts are then calculated and summed
together with their initial values, in a computational loop or sequence. The flow
associated with each downburst is calculated as vertical and radial velocities
(VZZ, VR), from which the horizontal velocity components (VXX, VYY) are derived.

The Vertical Flow Column

Computing the radial distance of the aircraft, RC, from the vertical flow axis
yields

XR = X - XC - DELX

YR= Y - YC - DELY

RC= (XR2 + yR2)I/2

(To avoid any problems of division by zero, RC is assigned a minimumvalue of 1.0,)

The effective radius of the vertical flow, RA, is equal to the input value, R,
if the distortion parameters GXand GYare zero. The resultant of GXand GYeffec-
tively translates the vertical wind "column" with respect to its defined axis. As
will be shown, this results in a systematic variation of effective radius, RA, (and
peak divergent wind velocities) with azimuth about the down-burst axis. The resultant
distortion factor is

GR= (GX2 + GY2)I/2

(Again, assign a minimumvalue, in this case, 0.001.)

RA, a function of aircraft pos4tion, down-burst location, and the distortion
factors is determined by

XR GX YR GY
COSA= R--C" G-R+ R--C" GR

RT = R. COSA. GR

RA = RT + [RT2 + R2(I - GR2)]I/2

A minimumvalue of 1.0 is assigned to RA.

An arbitrary variation of vertical velocity with altitude is chosen:

If H > HT: VZH= GVZ• VZO

Otherwise: VZH= GVZ• vzo _ H

The radial distribution of vertical flow velocity is chosen, using a computa-

tional radius ratio:

RC
RR =

0.7 RA



If RR < 1.0: VZZ = VZH

If RR > 2.0: VZZ = 0

If 2.0 > RR >_1.0: VZZ = VZH
i - cos(RR • _)

Horizontal Flow

The previous definition of vertical flow, considering continuity, results in a

linear variation of peak radial velocity with altitude, at distance RC = RA, from

zero at HT to a maximum value at ground level, VRM, that is approximated by

VRM=
GVZ • VZO • RA

HT

or a total wind change, across the diameter of the down draft column, of

2 • GVZ • VZO • R

HT

VRM is not to be calculated, but rather to be used as a simple relationship when

initially configuring the model. The radial velocity distribution is calculated first

by defining the velocity at RR = 1.0 as a function of altitude

If H > HT: VRR = 0

Otherwise: VRR = GVZ • VZO •
0.7 RA

2
HT

• (HT - H)

A modest boundary-layer attenuation of velocity near the ground is assumed

If H < 50, then VRR is replaced by VRR(0.75 + 0.005 H)

Local radial velocity, VR, as a function of distance from the vertical axis is

calculated

If RR < 1.0: VR = RR • VRR

If 1.0 _< RR <_ 2.0: VR = VRR[RR - 1.3(RR - 1) 3 + 0.45(RR - 1)6 ]

2.3 • VRR
If RR > 2.0: VR =

RR

(In the second expression above, the exponential series approximates the more awkward

series of cosine terms that results from integration of the continuity equation.)

The X and Y components of the radial velocity are

XR • VR
VXX =

RC

YR • VR
VYY =

RC



Vertical Velocity Gradients

The longitudinal and spanwise gradients of vertical velocity can have significant
effects on the response of an aircraft. It is convenient in this model to define the
along-course and across-course gradients. For the individual downburst, the gra-
dients exist only for values of RR greater than 1.0 and less than 2.0. In this
region, the radial gradient is defined as

VZH •
VZZR = 1.4 RA SIN(RR - 7)

The gradient components are

XR
VZZX =- • VZZR

RC

YR
VZZY = -- • VZZR

RC

Summation of the Velocity Components

At the conclusion of the computation of the flows for each down burst, the winds

and gradients are summed in the program statements

VX = VX + VXX

VY = VY + VYY

VZ = VZ + VZZ

VZX = VZX + VZZX

VZY = VZY + VZZY

Turbulence Parameters

The following definition of turbulence, suggested for association with the wind,

field model, is based on the specifications cited in reference 2, and the observations

cited in reference 3. At this time, the definition must be considered as a crude,

educated guess. It is recommended that the user include common gain factors in his

mechanization, to facilitate obtaining the desired level of disturbance.

Intensity levels, defined as functions of wind velocity and altitude, are

VT = (VX 2 + VY 2 + VZ2) _/2

If H _ i000: SGT = SGU = SGV = SGW = 0.07 • VT + 0.2 • IVZI

If H < i000: SGU = SGV =
SGT

(0.25 + 0.00075 • H) i/2

SGT • H
If H < I00: SGW =

- i00



Variations of scale lengths with altitude, and vertical wind velocity, are

If H _ i000: SLT = SLU= SLV= SLW= I000 - 0.3 • VZ2

H - 0.3 • VZ2If H < i000: SLU= SLV= 0.15 + 0.00085 • H

SLT • H
SLW =

i000

The minimum values of SLU and SLV are set at i00, and for SLW is set at 30.

MODELING WIND FIELDS

The Single Down-Burst Model

Illustrated in figure i are the winds produced by a single, axially symmetric,

down-burst model, described by R = 2000 ft, HT = i000 ft, and VZO = 25 ft/sec. The

variation of the along-course wind and the vertical wind, along paths through the

down burst center at an altitude of 50 and 250 ft, are shown in figure l(a). Horizon-

tal flow vectors, at 50 ft, are illustrated in figure l(b). A vertical section,

through the center of the down burst, is seen in figure l(c). The contributions of

distortion factors are shown in figure 2 for GX = GY = 0.4. Winds along a path at an

altitude of 250 ft, through the center of the displaced downburst column are shown in

figure 2(a). A crosswind component is seen in this case because the horizontal
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(a) Winds along paths through center of downburst.

Figure i.- Winds produced by a single, down-burst model; R = 2000 ft,

HT = i000 ft, VZO = 25 fps.



(b) Horizontal flow field at H = 50 ft.
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(c) Vertical cross section through center of down burst.

Figure i.- Concluded.
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Figure 2.- Effects of distortion factors, GX, GY.

8



dispersion center is to one side of the track. It can be seen that the along-track

wind shear is the same magnitude as before however, the peak head-wind/tail-wind

relationship is altered. Horizontal flow vectors, at 50 ft, are shown in figure 2(b).

Appropriately sized and located, with respect to the approach or takeoff path,

the single-down-burst model can produce reasonable recreations of the problems seen

in some of the well-publicized accidents. It saw extensive use in simulator studies

of cockpit displays at NASA Ames Research Center. There is, however, the desire to

create more complex, less symmetrical models that can produce sequences of winds

closely matching those measured in the atmosphere in specific circumstances. By use

of multiple down-burst models, good matches of along-track and vertical winds can be

made for complex cases.

Modeling Specific Wind-Shear Events- Doppler radar-measured winds, describing a

strong, convective disturbance near Denver, Colorado, on August 5, 1982, are docu-

mented in reference i. Figure 3 (taken from ref. I) shows the horizontal wind vectors

near ground level for a 44-km 2 area, together with identified paths through the area

that encounter wind variations of several levels of severity. Path AB, which appears

to traverse a down burst center, and then a vicinity of a flow convergence, is iden-

tified as one of the more severe wind-shear environments. Figure 4 shows the varia-

tion of the along-course wind measured for a 12,000-ft segment of AB, together with a

profile generated by a wind-field model utilizing four downbursts. Both the measured

and modeled values are appropriate for an altitude of 50 ft. The model successfully

recreates the major wind variations that are significant to aircraft performance. A

::::.:::-i::::LL..

(-4.9, -27.61 H

Figure 3.- JAWS data set coordinates in kilometers relative to CP-2 (see JAWS

Project Operations Summary 1982, ref. i).
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Figure 4.- Model match of a segment of JAWS Aug 5Ab, along-course wind at
H = 50 ft.

horizontal wind-vector field, defined by the model, is shown in figure 5. Indicated

are the four down burst model locations; one of the models, defining the flow con-

vergence, is actually an updraft. The example input file, presented earlier in this

report, defines this complete wind-field model. A comparison of derived and modeled

vertical wind velocities, at 500 ft, is shown in figure 6.

Defining the individual down-burst characteristics, to produce a match with

measured data, is an iterative, "by hand" process. Using the basic relationships

defining the shear gradient and its extent (the parameter VRM discussed earlier),

initial crude matches of the major gradients are attempted. The match can then be

improved by adjusting the primary down-burst models, or by the addition of more models.

The match in the example case involved five iterations. (Familiarity with the model,

and the modeling process, expedites the achievement of close matches.)

The second example of wind-profile matching is shown in figure 7. The event data

were derived from flight recordings obtained in an L-1011 airplane during an approach

and go-around in severe wind shear at Kennedy Airport in 1975. This aircraft mage its

approach several minutes prior to a major wind-shear accident at the same location.

In this case, the match is for winds along a descending flight path, and then the

ascending path of the go-around. The input file describing these down-burst models is

indicated in the figure. It was necessary, in creating the sequence in which a down-

draft preceded the onset of severe shear, to use rather low values of HT for the pri-

mary down bursts. Another match of an accident-derived wind-shear profile, which

included a "stagnation zone," or interruption in the shear gradient, was effected by

locating a small updraft model within a much larger down-burst model.

Little mention has been made of the across-course wind variations associated with

these models. In the first case, in which crosswinds are defined, no specific effort
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Figure 7.- Model of shear recorded in landing approach near-accident, 1975.

was made at such matching, although down-burst centers were offset from the nominal

course line to create variability in the defined crosswind component. Since the dis-

persion center can be offset from the nominal course line by as much as 0.5 RA without

significantly altering the along-course wind components, a significant range of

crosswind profiles can be associated with a given along-course variation.

CONCLUDING REMARKS

This paper describes a format for the modeling of hazardous wind environments in

flight simulation, but does not attempt the definition of models for specific simula-

tion objectives. Either of the two examples illustrated here, appropriately located

relative to the runway, might meet the user's needs; however, if a comprehensive

exploration or demonstration of wind-shear hazards is the objective, additional

scenarios are required. Perhaps the primary virtue of a computational wind program,

compared to a "table look-up" model, is its flexibility. Systematic variations in the

sequence and magnitudes of horizontal and vertical winds can be effected with modest

changes of the input file data,
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