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ABSTRACT

Structural information about a document is essential for struc-
tured query processing, indexing, and retrieval. A document
page can be partitioned into a hierarchy of homogeneous re-
gions such as columns, paragraphs, etc.; these regions are
called physical components, and define the physical layout
of the page. In this paper we develop a class of models
for the physical layouts of technical paper title pages. We
model physical layout using hidden semi-Markov models
for directional projections of page regions, and a stochastic
attributedK-d tree grammar model for the 2D hierarchical
structure of these regions. We use the models to generate
sets of synthetic title page images of three distinctive styles,
which we use in controlled experiments on page structure
analysis.

1. INTRODUCTION AND PRIOR WORK

A document page can be partitioned into a hierarchy of
physical components, such as pages, columns, paragraphs,
textlines, words, tables, figures, halftones, etc. This struc-
tural information is essential for structured query process-
ing, indexing, and retrieval the content of the document.
Document understanding modules, such as Optical Charac-
ter Recognition (OCR) and graphics recognition modules,
can also be selectively applied to the structural components
of document page images.

Title pages of technical papers contain rich bibliograph-
ical information about the papers, which is crucial for their
indexing and retrieval. In this paper, we demonstrate how to
analyze the layout of the physical components of technical
paper title pages using hidden semi-Markov models [1] and
a stochastic attributedK-d tree grammar.

Document structure analysis can be regarded as a syn-
tactic analysis problem. The order and containment rela-
tions among the components of a document page can be
described by an ordered tree structure and can be modeled
by a tree grammar which describes the page at the compo-
nent level in terms of regions or blocks. We will introduce
a class of such grammars in Section 2.

A few researchers have developed document physical
layout analysis algorithms that make use of grammatical
methods. Kopec and Chou [2] describe an algorithm for
segmenting a column of text that is modeled using a stochas-
tic regular grammar, but their algorithm must be given tem-
plates for the symbols in the language and that the page is
segmented into columns by some other procedure. Tokuyasu
and Chou [3] used regular grammars to describe the struc-
ture of document page images in terms of axis-parallel rect-
angles, and used a Turbo decoding approach to estimate the
2D image from the observations, but they provided very
limited experimental verification of their approach. Krish-
namoorthyet al. [4] described an algorithm that constructs
a tree in which each node represents an axis-parallel rectan-
gle, but the segmentation and labeling process in their algo-
rithm is based on heuristically specified parameters, not on
estimated ones.

2. THE MODEL

Our physical layout model consists of two parts: (1) a hid-
den semi-Markov model that describes the grouping of lowest-
level page regions (strips, in a given direction) into rect-
angular blocks; (2) aK-d tree grammar (defined below)
that describe the hierarchical decomposition of the page into
these blocks.

To parse a given page image, we first divide it into thin
parallel strips and count the number of black pixels in each
strip. The resulting sequence of pixel counts is taken to be
the observation sequence of a hidden semi-Markov model.
The state changes of the model then indicate boundaries be-
tween groups of strips. For example, a line of text contains
a group of strips with high pixel counts, and the strips in a
gap have low pixel counts. The states define labels of the
groups of strips. These labels are vocabulary symbols of
a stochastic attributedK-d tree grammar which we use to
find possible physical layouts of the page. In the following
description we assumeK = 2.

The “productions”ri of the grammar are directional sub-
division processes, each of which is of the form

ri : Xi
ρi→ Ψi.



HereΨi is a set of trees defined on the vocabulary in which
non-leaf nodes are labeled with nonterminal symbols and
leaf nodes are labeled with either terminal or nonterminal
symbols;ρi denotes the coordinate direction along which
the subdivision takes place; and the children of each parent
node in each tree inΨi are ordered. The trees can be of two
types: a terminating type, in which all the leaf nodes are la-
beled with terminal symbols, and a nonterminating type, in
which one or more of the leaf nodes are labeled with non-
terminal symbols.

Each symbol represents a rectangular region. The posi-
tion and size of this region are defined by the pairs of co-
ordinates of two of its opposite corners. The coordinates
associated with the start symbolS represent the entire page,
and the region associated with a parent node is the union of
the regions associated with its children.

For eachri, let Left(ri) andLeaves(ri) denote the
left-side symbolXi of ri and the set of ordered sets of right-
side leaf nodes of the trees inΨi. ri is applied in directionρi
to partition the rectangular regionD(Left(ri)) into a set of
ordered sets of rectangular regionsD(Leaves(ri)). Asso-
ciated with each node of each tree inΨi is its coordinate (in
that direction) relative to the coordinate of the region rep-
resented byLeft(ri). Also associated with each leaf node
of ri are two features, black pixel count and size, which are
used to determine which sets of strips can be grouped into
the region associated with the leaf node.

A derivation in the grammar involves the application of
a sequence ofri’s. In a generative derivation, the applica-
tion of ri attaches some tree inΨi to a leaf node that has the
labelLeft(ri). In a parsing derivation, the application of
ri joins a set of root nodes that have labels ofLeaves(ri)
to a new root node that has the labelLeft(ri). Whenri
is applied andrj is applied to the result (i.e.,Left(rj) ∈
Leaves(ri)), the directions ofri andrj must be different.

The grammar is stochastic, as defined by the following
probabilities:

• pi, the probability of applyingri; for any symbolA,∑
Left(ri)=A

pi = 1.

• For eachri, each node ofLeaves(ri) represents a
group of strips. The process of grouping the strips
into subregions is performed by a hidden semi-Markov
modelλi. The sequence of strip black pixel counts is
taken to be the observation sequence ofλi. The states
of λi are vocabulary symbols of the grammar.

• λi = (Ai, Bi, Ci, πi), where

– Ai denotes the state transition probability ma-
trix of λi.

– Bi is a matrix of the probabilities that the pixel
count of a strip has a given value if the strip be-
longs to a given state.

– Ci denotes the size (or duration) probability ma-
trix: a matrix of the probabilities that the num-
ber of strips belonging to a given state has a
given value.

– πi denotes the initial probability vector: the prob-
ability thatλi starts in a given state.

An attributedcomplete treeis a tree whose root node is
labeledS and has associated coordinates that represent the
initial region, and whose leaf nodes are labeled with termi-
nal symbols and have associated coordinates that define a
partition of that region, as well as associated feature val-
ues. Thecomplete languageof the grammar is the set of
attributed complete trees that can be created either in a gen-
erative derivation starting from a single node labeledS, or
in a parsing derivation starting with a set of nodes that have
terminal labels.

The probability of generating an attributed complete tree
T in the grammar is a product of probabilities taken over the
ri’s that are used in the derivingT . For each of theseri’s,
we multiply pi by the probability of the sequence of strips
and feature values that are associated with the most proba-
ble set of leaf nodes of any tree inΨi. Let qi denote the
partition of the strips ofD(Left(ri)) into groups of strips
associated with one of the ordered sets inLeaves(ri) and
let oi be the vector of feature observations on the strips
of D(Left(ri)). Thus if a sequencer1, r2, . . . , rk, a se-
quence of feature value vectorso1,o2, . . . ,ok, and a se-
quence of state vectorsq1,q2, . . . ,qk are used to generate
T , the probability of generatingT is

k∏
i=1

piP (oi,qi|λi) =
k∏
i=1

P (λi)P (oi,qi|λi)

whereS
r1,o1,q1=⇒ T1

r2,o2,q2=⇒ T2 . . .
rk,ok,qk=⇒ T ,

If we are given an imageI, the feature observations (o’s)
on the strips of the leaf nodes in a derivation ofI are fixed.
However, there can be more than one derivation ofI us-
ing different combinations ofr’s andq’s. We can use the
grammar to find a maximum-probability hierarchical parti-
tion (i.e., a maximum-probability parse) ofI. To do this, we
divide I into strips, and we consider all possible partitions
of these strips into groups each of which corresponds to a
leaf node of some tree inΨi. With eachri and each parti-
tion qi we associate the probabilityP (λi)P (oi,qi|λi). We
find the sequence ofri’s and associated partitions for which
the product is as great as possible (* denotes the optimum):

T ∗(I) = arg max
r1,r2,...,rk,q1,q2,...,qk

k∏
i=1

P (ri)P (oi,qi|λi)

= arg max
λ1,λ2,...,λk,q1,q2,...,qk

k∏
i=1

P (λi)P (oi,qi|λi)
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Fig. 1. A two-column title page image (a) and its physical layout model (b).

≈ arg max
λ1,λ2,...,λk

k∏
i=1

P (λi)P (oi,q∗i |λi)

The attributed complete treeT ∗ defined by this sequence,
i.e., S

r1,q1=⇒ T1(I)
r2,q2=⇒ T2(I) . . .

rk,qk=⇒ T ∗(I), specifies
the maximum-probability hierarchical partition of the im-
age. To findT ∗(I) we use a dynamic programming algo-
rithm called the DV (for “duration Viterbi”) algorithm. As
we will see, this algorithm is much more powerful than the
conventional Viterbi algorithm (“V algorithm”), in which
state durations are not used (i.e. there is noC matrix).

Our model differs from non-grammar-based tree meth-
ods in the following aspects: 1) Our model is generative. 2)
symbols are rewritten as sets of trees representing subdivi-
sions of a region in a given direction. 3) the tree nodes in
our grammar have associated coordinates which defineK-
dimensional rectangular regions. The coordinate aspect of
our grammar makes it a very appropriate tool for generating
and parsing Manhattan document layouts.

The physical layout analysis model for technical paper
title pages of two-column format is shown in Figure 1. The
descriptions of the symbols in the grammar are given in
Table 1. Our performance metric was based on the frac-
tion ρ of correctly detected textlines. LetlH be a set of
groundtruth textlines, each of which has a logical label. A
textline is said to be correctly detected if it does not have
any of the following six types of textline errors: 1) false
dismissals: no segmented line significantly overlapslH ; 2)
false alarms: a segmented line does not significantly over-
lap anylH ; 3) merges: two or more groundtruth lines sig-

Table 1. Symbol descriptions in the technical paper title
page physical layout grammar. Note that the descriptions of
the gaps are omitted.

Symbol Type Description
Nonterminal S: start symbol; P: main body of text; TI: title

AU: author; B: two-column body; L, R: left, right column
AB: abstract; BT: sections; FN: foot note
SH: section heading; SP: section paragraph

Terminal h: header; lm, rm, tm, bm : left, right, top, and bottom margin
n: noise streak; ti: title line; au: author line; ft: footer line
ab: abstract line; fn: footnote line
sh: section heading line; sp: section paragraph line

nificantly overlap a segmented line; 4) cuts:lH significantly
overlaps both a segmented line and its complement; 5) ex-
cessive height: the segmented line that significantly over-
laps lH is too thick (vertically); and 6) incorrect labeling:
the line is correctly segmented (on the basis of the signifi-
cant overlap and height criteria), but is not labeled correctly.
Since there are many textlines on a document page, mea-
sures based on textlines provide a statistically meaningful
evaluation of performance.

3. EXPERIMENTS

We conducted experiments on technical paper title pages
that had three styles: one-column, mixed one- and two- col-
umn, and two-column. The one-column style is used by
SPIE conferences; the mixed one- and two- column style is
used by SICE conferences; and the two-column style is used
by many IEEE transactions and conferences. We obtained
LATEXstyle files for these title page styles from the IEEE,
SPIE, and SICE web sites.
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Fig. 2. Performance using the V and DV algorithms and the 2-d tree grammar with model parameters estimated on noise-free
training images (a) and on images degraded at two levels (b-c).

(a) (b)

(c) (d)

Fig. 3. Segmentation of a noisy image into page (a), text
body (b), columns (c), and textlines (d) using the DV algo-
rithm and the 2-d tree grammar. The algorithm parameters
were estimated on a training dataset with the same degrada-
tion level.

We used our stochastic generative document model to
randomly generate a dataset of noise-free synthetic title page
images with groundtruth for each of the three styles. The
page text was taken from the symbolic text of the title pages
in the University of Washington III dataset. Each page im-
age was sampled at 300 dpi. Table 2 shows the dataset de-
scriptions for the three styles.

We modified the DVI2TIFF software to generate clean
images and their textline groundtruth, including the logical
label of each line. Each page in the training datasets was de-
graded at two degradation levels using the document degra-
dation model of [5]. As can be seen from Figure 3, even the

Table 2. Dataset descriptions for three layout styles.
Style Training Dataset Test Dataset
one-column 13 pages 16 pages
mixed one- and two-column 11 pages 10 pages
two-column 9 pages 8 pages

lower of the two degradation levels is quite substantial.
Each page in the test datasets was degraded at ten degra-

dation levels. Two of these levels were the same as the lev-
els used for training. Figure 3 shows an example of the seg-
mentation of a two-column title page into page, text body,
columns, and textlines using theK-d tree grammar and the
DV algorithm. Figure 2 shows evaluation results using the
V and DV algorithms on a set of title page images that had
all three layout styles, using a combined grammar.

The performance using the DV algorithm is significantly
better than that for the V algorithm in nearly all cases. In
all cases, both algorithms attain the best performance at the
noise level used for algorithm training.
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