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D
PR10 observations of Mercury's magnetic field suggest that small-scale crustal

magnetic fields, if they exist, are at the limit of resolution. Large-scale crustal magnetic fields have also been
suggested to exist at Mercury, originating from a relic of an internal dipole whose symmetry has been broken
by latitudinal and longitudinal variations in surface temperature. If this large-scale magnetization is confined
to a layer averaging 50 km in thickness, it must be magnetized with an intensity of at least 2.9 A/m. Fits to
models constrained by such large-scale insolation variations do not reveal the predicted signal, and the
absence of small-scale features attributable to remanence further weakens the case for large-scale
magnetization. Our tests are hindered by the limited coverage to date and difficulty in isolating the internal
magnetic field. We conclude that the case for large- and small-scale remanence on Mercury is weak, but
further measurements by MESSENGER can decide the issue unequivocally. Across the terrestrial planets and
the Moon, magnetization contrast and iron abundance in the crust show a positive correlation. This
correlation suggests that crustal iron content plays a determining role in the strength of crustal
magnetization.

© 2008 Published by Elsevier B.V.
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1. Introduction

Mercury's magnetic field was discovered by the Mariner 10
spacecraft during two flybys of the planet in 1974 and 1975. The
dominantly dipolar internal magnetic field is oriented in the same
sense as the Earth's, but its strength is only 1% as large. A quadrupolar
component was suggested by the observations, but its magnitude was
poorly constrained because of the limited spatial coverage of the
planet afforded by the flybys (Connerney and Ness, 1988).

Magnetometer observations during the recent Mercury flyby by the
MErcury Surface, Space ENvironment, GEochemistry, and Ranging
(MESSENGER) spacecraft have been explained (Anderson et al., 2008) in
terms of an internal dipole, magnetopause and tail currents, and large-
and small-scale diamagnetic (plasma pressure) effects. These interpreta-
tions are supported by protonplasma count rates (Zurbuchen et al., 2008)
and simulations of Mercury's magnetosphere (Trávníček et al., 2007).

By analogy with the Earth, the origin of Mercury's dipolar field
could be a thermo-chemical dynamo in the planet's fluid outer core
62
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64urucker).
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(Zuber et al., 2007). It has also been suggested that it might originate
as the remanent of a dipole field, either through variations in the
thickness of a coherently magnetized remanent layer (Aharonson
et al., 2004) or in a layer of uniform thickness but relatively low
magnetic permeability (Stephenson,1976;Merrill,1981;M. H. Acuña,
personal communication, 2008). This paper will explore the
constraints placed on small- and large-scale remanence by the
three flybys, especially the recent MESSENGER flyby. A companion
paper in this volume (Uno et al., 2008-this issue) explores the
constraints placed on the origin of the field if it is the product of a core
dynamo.

2. Data and modeling techniques

2.1. Magnetometer observations

A triaxial fluxgate Magnetometer (Anderson et al., 2007) mounted
on a 3.6-m-long boom measured the magnetic field during MESSEN-
GER's first Mercury flyby at a rate of 20 samples per second. The
calibrated magnitude and three orthogonal magnetic field compo-
nents are shown in Fig. 1 in a spherical Mercury-fixed coordinate
tic field: Constraints on large- and small-scale fields of crustal origin,
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Fig. 1. Collocated Magnetometer and Mercury Laser Altimeter observations during the MESSENGER flyby of 14 January 2008. The uppermost record shows the MLA profile (vertical
exaggeration 63:1) as individual dots and the altitude of the spacecraft above the surface as a dashed line (Zuber et al., 2008). The other records, from top to bottom, show the
observed r, θ, and ϕ components of the magnetic field in planetocentric coordinates and the total field magnitude, after calibration but prior to external field correction (Anderson
et al., 2008). The unit for all magnetic field observations is nanoTesla (nT). One degree of longitude at the equator is approximately 43 km. Features at a, b, and c are discussed in the
text. CA locates closest approach.
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system (Br positive outward, Bθ positive southward, Bϕ positive
eastward). The attitude uncertainty of the vector data is estimated
at 0.1°, and instrument digitization resolution is 0.047 nT.

We use two approaches, one forward and one inverse, for the
removal of external fields, as in Anderson et al. (2008). The forward
model (TS04) is based on the adaptation of a terrestrial magneto-
spheric model for Mercury (Korth et al., 2004; Anderson et al., 2008),
and the inverse approach (Anderson et al., 2008) involves the
simultaneous estimation of the internal and external magnetic fields
with a least squares, spherical harmonic expansion. The spherical
harmonic solution parameterizes a magnetic field B into a part of
internal origin Bint (sources internal to the observation altitude) and a
part of external origin Bext:

B = Bint + Bext

= −grad a ∑
n;m

gnmcosm/ + hnmsinm/
� � a

r

� �n + 1
Pm
n cosθð Þ

� �� 	

−grad a ∑
n;m

qnmcosm/ + snmsinm/
� � r

a

� �n
Pm
n cosθð Þ

� �� 	

Here (r, θ, ϕ) are spherical coordinates, a is Mercury's mean radius,
Pn
m(cosθ) are the Schmidt-normalized Legendre functions, (gnm, hnm)

and (qnm, snm) are expansion coefficients describing internal and
external magnetic field contributions, respectively, and n and m are
spherical harmonic degree and order. The selection of data for
modeling of the internal field, and the identification of inbound and
outbound bow shock and magnetopause crossing, follow Anderson
et al. (2008).

All three closest approach (CA) locations were on the nightside. For
Mariner 10 observations near CA used in this study, we currently have
only Earth-based radar images (Harmon et al., 2007) to provide context.
For the MESSENGER observations near CA, we have both radar images
Please cite this article as: Purucker, M.E., et al., Mercury's internal magne
Earth Planet. Sci. Lett. (2008), doi:10.1016/j.epsl.2008.12.017
TE 9and a single laser altimeter profile (Zuber et al., 2008) to provide insight
9into the nature of the surface. Such information has proven to be
9important in understandingmagneticfields of crustal origin atMars and
9the Moon (Langlais et al., 2004; Nicholas et al., 2007).

92.2. Laser altimeter observations

9TheMercury Laser Altimeter (MLA) is a laser rangefinder operating
9at an 8 Hz rate. During MESSENGER's Mercury flyby, MLA collected a
93200-km long profile (Fig. 1), beginning about two minutes before CA
1and continuing for about ten minutes (Zuber et al., 2008). The
1topography exhibited a 5.2-km dynamic range along this profile, and
1several significant craters were sampled (Fig. 1), some of which are
1also seen in the radar images. Impact craters affect small-scale crustal
1magnetic fields through excavation of magnetic material, impact and
1thermal demagnetization, and subsequent remagnetization by ther-
1mal or shock processes in the presence of an ambient or core field (e.g.,
1Lillis et al., 2008). Other geological processes (e.g., volcanism) can also
1affect prior magnetization.

13. Constraints on the presence of small-scale crustal magnetic
1fields

1Small-scale crustal fields will be most easily identified near CA (Fig. 1)
1as featureswithwavelengths comparable to, or larger than, thedistanceof
1the spacecraft from the surface. At the MESSENGER CA altitude (201 km)
1this shortest wavelength on Mercury is ~5°. The decrease in |B| near CA,
1coincident with the deep crater “a” (Fig. 1), is interpreted not as a crustal
1magnetic feature but as a diamagnetic (plasma pressure) effect because it
1coincideswith enhanced fluctuation amplitudes in the 1–

^
10Hz passband

1(Anderson et al., 2008) andwith an increase in proton plasma count rates
tic field: Constraints on large- and small-scale fields of crustal origin,
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Fig. 2. Tests for the presence of large-scale crustal magnetic fields using data from all three flybys (M10-I is the firstMariner 10 flyby, M10-III is the thirdMariner 10 flyby, andM1 is the
first MESSENGER flyby). (a) Remanent magnetization fit 1. Observed magnetic field (blue) versus predictions (internal in green, internal+external in red) for laterally varying
temperature and magnetized layer thickness (Aharonson et al., 2004). The solution includes co-estimates of the internal terms (g10, g30, and g32, all other internal terms set to 0) and
external terms (different for each flyby, and them=0 terms are set to 0 since the flyby provides little latitudinal coverage). (b) Remanentmagnetization fit 2. Observedmagnetic field—

TS04 external field model (Anderson et al., 2008) (in blue) versus predictions (in red) for same type of internal field model as in (a).
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seen in the Fast Imaging Plasma Spectrometer observations (Zurbuchen
et al., 2008).A smaller feature, “b” in Fig.1, is less than4nT inmagnitude, is
not associated with either enhanced magnetic fluctuations or increased
protonplasma count rates, and is not closely related to any surface feature
seenbyMLA. If the feature is of crustal origin, the relative strengthof theϕ
Please cite this article as: Purucker, M.E., et al., Mercury's internal magne
Earth Planet. Sci. Lett. (2008), doi:10.1016/j.epsl.2008.12.017
component suggests that the spacecraft ground track passed near an edge
of the source body. The prominent pair of craters seen at “c” has no
magnetic field expression.

The Mariner
^
10 magnetometer observations made during the near-

polar thirdflybyexhibit few features (Connerney andNess,1988)with the
tic field: Constraints on large- and small-scale fields of crustal origin,
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Fig. 3. Constraints on the product of thickness and magnetization contrast in Mercury's
crust implied by the small-scale magnetic fields measured during the MESSENGER flyby
and the large-scale fieldsmeasured during the third flyby of Mariner 10. The input to the
small-scale calculation is the altitude of closest approach (201 km) and the maximum
field that might be ascribed to small-scale crustal sources (the 4-nT feature associated
with point “b” on Fig. 1). The input to the large-scale calculation is the altitude (352 km)
of the maximum magnetic field magnitude (400.6 nT measured field, 338.1 nT after
correction for external fields).
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appropriate wavelengths (Fig. 2, M10-III). The equatorial pass of Mariner
10 (Fig. 2, M10-I) was affected by strong external field signatures close to
CA.

Taken in total, these observations suggest that small-scale crustal
magnetic fields, if they exist, are less than 4 nT at 201 km altitude. This
limit is set by magnetic feature “b” in Fig. 1. The most basic question we
would like to answer is the magnitude of the intensity of magnetization
required to explain this result. By means of a constrained optimization
approach, Parker (2003) showed how a series of bounds on themagnetic
parameters of source regionsmaybedeterminedwith no assumptions on
the direction ofmagnetization. These bounds can bederived froma single
datumand solved in closed formwith elementary functions.When |B| has
been measured, M0 is the smallest possible scalar intensity of any
distributionwithin a magnetic layer of thickness L bounded by the set of
points with h1bzbh2, where z is the vertical Cartesian coordinate
measuredpositive downward and the origin is at themeasurement point:

MzM0 =
12jBj=μ0

6 +
ffiffiffi
3

p
ln 2 +

ffiffiffi
3

p� �
ln h2=h1ð Þ

h i

and where μ0 is themagnetic permeability of free space. Combining the
distance from the planet with the 4-nT crustal field limit allows us to
place constraints on the product of magnetization (A/m) and the
magnetized layer thickness, as illustrated in Fig. 3. These calculations
allowus to conclude, for example, that if themagnetization in this region
is confined to a 10-km-thick layer, it must be coherently magnetized
with an intensity of at least 0.1 A/m. Bounds can also be based on
multiple observations, but Parker (2003) found that single-point bounds
are not substantially inferior to those based on observation pairs.

4. Constraints on the presence of large-scale crustal magnetic
fields

A constrained optimization approach can also be utilized to place
bounds on the magnitude of large-scale crustal magnetic fields, if they
Please cite this article as: Purucker, M.E., et al., Mercury's internal magne
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1originate as a consequence of variations in the thickness of a
1magnetized layer in Mercury's crust. The largest |B| field was
1encountered on the third (polar) flyby of Mariner 10 (Fig. 2), where
1a field of 400.6 nT was measured at an altitude of 352 km above the
1planet at 66°N, 73°E. This value decreases to 338.1 nT if external fields
1are first removed with the TS04 model (Anderson et al., 2008). These
1bounds (Fig. 2), using the same one-datum formalism as before, imply
1that, if themagnetization is confined to a 50-km-thick layer, it must be
1at an intensity of at least 2.9 A/m. The flat-planet approximation used
1in this simplification can be shown to be quite accurate (Parker, 2003,
1Appendix A), with the largest errors at large layer thicknesses. These
1intensities are much stronger than those encountered on Earth; for
1example, newly magnetized basaltic rocks at a mid-ocean ridge may
1have a magnetization of 10 A/m, but the rocks with such magnetiza-
1tion are generally less than 1 km thick.
1In the absence of local heterogeneities, it can be shown that
1variations in surface temperature (Vasavada et al., 1999) could
1control the depth to the base of a magnetized layer (Aharonson et al.,
12004). These variations are a consequence of Mercury's spin-orbit
1coupling and result in insolation patterns that are symmetric about
1longitudes 0° and 90° and the equator. For Earth-like thermal
1gradients near the surface, the depth to the Curie temperature of any
1given magnetic carrier might vary by as much as 10 km. If a dynamo
1existed in Mercury at some time in the past, and if that dynamo field
1was approximately constant during cooling of the crust through the
1Curie temperature, we might expect to see a large-scale remanence
1in the crust that would produce an external field with a dominantly
1dipolar character (Fig. 4, remanent magnetization prediction). This
1result does not violate Runcorn's (1975) theorem, because lateral
1variations in shell thickness are a consequence of the variations in
1insolation.
1Spherical harmonic expansions of the predicted large-scale
1variations in the thickness of the magnetic layer are dominated by
1the (n,m)=(2,0), (2,2), and (4,0) terms (Aharonson et al., 2004), which
1map to dominant (1,0), (3,0), and (3,2) terms in the magnetic Gauss
1coefficients. As a test of this theory, we can therefore solve a
1constrained least-squares problem for the internal Gauss field
1coefficients g10, g30, and g32, using either the TS04 external field
1model or through co-estimation of internal and external fields (Figs. 2
1and 4, and Table 1). These solutions do not reveal the predicted signal
1and yieldmuch larger ratios of the dipole to the non-dipole terms than
2predicted by the remanent model. This outcome might imply that if
2remanence is the cause of Mercury's magnetic field, it is confined
2largely to the polar regions, and longitudinal variations are sub-
2ordinate. However, the apparent absence of small-scale remanence
2features in the polar flyby observations of Mariner 10 makes this
2scenario unlikely. The model fit to the TS04-reduced model (Fig. 2 b
2and Table 1) leaves a significant residual field, especially in the
2horizontal component data over the poles, when compared with the
2other fits. Hence, the large-scale remanent model is unlikely to apply
2to Mercury, although limited coverage and the difficulty of separating
2internal from external fields make it difficult at this point to refute the
2model convincingly.

25. Discussion

2Two more flybys will precede MESSENGER's entry into orbit about
2Mercury in 2011. The remaining flybys will be near-equatorial, like the
2first MESSENGER flyby, but will sample different longitudinal regions.
2In the subsequent orbital phase, the orbit will be highly elliptical, with
2periapsis near 60–72°N. The flybys will allow additional constraints to
2be placed on the presence of small-scale fields, and correlations will
2be possible among MLA-measured topographic profiles, features as
2seen on images, and any variations in internal magnetic field. The
2orbital phase should allow for detailed testing of the large-scale
2remanence idea.
tic field: Constraints on large- and small-scale fields of crustal origin,
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Fig. 4.Maps of predicted and fit vector and scalar magnetic fields expected for large-scale variations in magnetic layer thickness (right three columns) produced by laterally varying
surface temperature fields, compared with maps of an internal dipole fit (left column). The cold (C) and hot (H) poles, corresponding to the thickest and thinnest portions of the
magnetized layer, respectively, are shown on the radial field prediction map. These predictions are based on a 10-km thickness variation between cold and hot poles. Maps are
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equalized approach. The numbers below and to the left of each map indicate the minimum and maximummagnetic fields present in that map. The statistics and spherical harmonic
coefficients for each fit or prediction are shown in Table 1. Hammer projection.
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RIt has long been recognized that magnetization within the
terrestrial planets and Moon is controlled in part by the amount of
available iron within the crust. Iron is partitioned among oxide,
sulfide, and silicate phases in the crust (Clark, 1997), and only the first
and perhaps the second of these phases can retain significant
remanent magnetization in Mercury's environment. We can quantify
a relationship between magnetization and iron content by using
crustal iron abundances deduced from a variety of techniques and
comparing these with the magnetization bounds deduced from the
method of Parker (2003, Eq. 13) using satellite compilations of crustal
magnetism. With the exception of Mercury, we have global coverage
of the magnetic fields originating within the crust of these bodies.
Magnetization values are minimum values, which are exceeded
locally, and we select the largest measured field from the lowest
altitude for determining magnetization bounds. On Mercury, we use
the small-scale magnetization contrast for the reasons put forward in
this paper. Increasing the altitude at which the magnetization bounds
are calculated has the effect of reducing the bounds. At Mars, for
example, the bound calculated with the 390-km-altitude mapping
Please cite this article as: Purucker, M.E., et al., Mercury's internal magne
Earth Planet. Sci. Lett. (2008), doi:10.1016/j.epsl.2008.12.017
orbit of Mars Global Surveyor is 2.5 A/m, whereas the bound
determined with the lower-altitude aerobraking orbit is 6.2 A/m.

For the average iron content of the terrestrial and lunar crusts
we use the compilations of Lodders and Fegley (1998). At the
Moon, the largest measured fields are over highland crust, so we
select an Fe abundance typical of highland material. At Earth, the
largest measured fields are over continental crust, so we select an
Fe abundance typical of continental crustal composition. For
Mercury we use the limits from the MESSENGER Neutron Spectro-
meter (NS) sensor, which provided an upper limit on surface Fe
abundance from flyby observations (Solomon et al., 2008). For
Mars we use values provided by the Gamma Ray Spectrometer
(Hahn et al., 2007) on Mars Odyssey, which are in agreement
with earlier constraints by McSween et al. (2003) from Martian
meteorite chemistry, analysis of surface samples by Mars Path-
finder, spacecraft thermal emission spectra, and inferred crustal
densities.

Crustal iron content and magnetization are compared in Fig. 5.
Considering that both the small-scale magnetization constraint for
tic field: Constraints on large- and small-scale fields of crustal origin,
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Mercury and the bound on iron abundance from NS observations are
likely to decrease further with additional measurements, they are not
inconsistent with a general relationship between crustal iron content
and magnetization for the other terrestrial planetary bodies. Addi-
tional influences on magnetization include the strength of the
dynamo field in which the magnetization was acquired and the
mineralogy of the magnetic phases. We expect further insights into
both topics once MESSENGER reaches orbit.

Differences between themagnetic properties of highland andmare
materials on the Moon, and between oceanic and continental crust on
Earth, highlight some of the other influences that should be
considered in establishing relationships between crustal iron content
andmagnetization. For both theMoon and Earth, the crustal typewith
higher Fe abundance has lower measured magnetic fields (Maus et al.,
2007; Purucker, 2008). For Earth, this outcome is the result of the
significantly greater thickness of continental crust and because
upward continuation of the fields produced by oceanic crust
magnetized at alternating polarity tends to average out the effect of
reversals. For the Moon, the lower fields over maria is likely the result
of emplacement ages for mare units that postdate the time when
there was a global lunar field.

6. Summary

We conclude that the case for large- and small-scale remanence on
Mercury is weak, but further MESSENGER measurements are
necessary to decide the issue unequivocally. Mercury appears to be
consistent with a relationship between the amount of Fe in the crust
and bounds on crustal magnetization observed for other terrestrial
planets.
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Table 1
Spherical harmonic coefficients and root mean square (RMS) misfits for fits and models
shown in Figs. 2a, b and 4

Internal
dipole fit

Remanent
magnetization
prediction

Remanent
magnetization
fit 1

Remanent
magnetization
fit 2

g10 −288.6 −85 −256.3 −229.5
g11 15.3 – – –

h11 19.2 – – –

g30 – −139 −48.2 −16.5
g32 – 63 3.2 40.7
Br RMS 14.2 – 12.2 42.8
Bθ RMS 17.2 – 6.6 18.5
Bϕ RMS 7.5 – 6.3 22.7
Overall vector 13.6 – 8.8 29.9
Magnitude 9.5 – 5.2 13.3

Internal dipole fit is based on coestimating a common internal dipole and degree-2
external fields that differ for each flyby. Remanent magnetization prediction is based on
the laterally varying temperature field of Aharonson et al. (2004). Remanent
magnetization fit 1 is based on coestimating internal (g10, g30, and g32 only) and
external fields (Figs. 2a and 4). Remanent magnetization fit 2 is based on removing the
TS04 external field model (Anderson et al., 2008) prior to estimating the g10, g30, and
g32 internal field coefficients (Figs. 2b and 4). All values are in units of nT. The RMS
misfits are shown as both vector misfits, and as misfits of the scalar field magnitude.
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