

Studies of Single Aperture IR Quad Mechanics

<u>Giorgio Ambrosio</u>¹, Nicolai Andreev¹, Shlomo Caspi², Deepak Chichili¹ ¹FNAL – Technical Division ²LBNL – Accelerator & Fusion Research Division

OUTLINE:

- Φ = 90 mm, stand-alone collars (DC)
- Φ = 110 mm, collars + partial outer shell support (GA)
- Φ = 90 mm, outer shell support (bladders & keys) (SC)
- "Octagonal-collar" concept (NA)
- Conclusions and plans

Magnetic forces

- Forces at 228 T/m (per octant)
 - o 24 % margin (forces)
- * 90-mm 2L quad has 23% higher forces than present HGQ
- * 110-mm 4L quad has 139% higher forces than present HGQ

* Forces @ 228 T/m

	HGQ†	90 mm	110 mm
		2 L	4 L
	(MN/m)	(MN/m)	(MN/m)
F _X	1.6	1.9	4.2
F _Y	-1.9	-2.4	-4.1

 \dagger KEK design scaled to 228 T/m

Φ = 90-mm – stand alone collars[†]

Mechanical design concept: Stand-alone collars

30-mm thick stainless steel

1st: pole is part of the collars Same design of present HGQ

2nd: ring-collars (pole stays with coil)

Compatible with FNAL $\cos\theta$ fabrication tech. Smooth transition from straight section to ends

Criteria:

Peak stress in the coil < 150 MPa No gaps at 240 T/m (operation + margin) Max collar stress < than the yield stress Max coil displacement under Fmag < 0.13 mm

[†]D. chichili, A preliminary mech design and analysis of 2nd generation HGQ, TD-02-005

<u>90-mm – stand alone collars – 1st design</u>

Features of the model:

- o Simulate laminations:
 - 2 collar layers
 - Symmetry BC, Coupling,
- Pre-stress by azimuthal interference: 75 μm

* All steps analysis:

- o **During collaring (max at 300 K)** Keys inserted w/out force
- o After collaring (spring back)
- o At 4.2 K
- o At Fmax (240 T/m)

Azimuthal stress distribution in the coil before spring back at room temperature

<u>90-mm – stand alone collars – 1st design</u>

- Pre-stress drops during cooldown:
 - 0 ~1/3 is lost
- Stress at 240 T/m:
 - o < 150 MPa
 - All coils still under compression
- Max coil displacement under Lorentz force (240 T/m):
 - ο **129 μm**

<u>90-mm – stand alone collars – 2nd design</u>

Features of the model:

- o Simulate laminations:
 - 2 collar layers
 - Symmetry BC, Coupling
- Pre-stress by radial interference: 150 μm

* All steps analysis:

- o **During collaring (max at 300 K)** Keys inserted w/out force
- o After collaring (spring back)
- o At 4.2 K
- o At Fmax

Azimuthal stress distribution in the coil before spring back at room temperature

<u>90 mm – stand alone collars – 2nd design</u>

- Pre-stress drops during cooldown:
 - o ~1/3 is lost

Stress at <u>210 T/m</u>:

- o Max < 95 MPa
- o Coil partially unloaded

But pre-stress at 300 K cannot be increased

<u>90-mm stand alone collars – conclusions</u>

The 1st design (pole is part of the collars) meets all requirements

The 2nd design (ring-collars) is too weak and coils unload at ~200 T/m

Possible solutions to be explored:

- The use of tapered keys should allow increasing the prestress at room temperature
- Impregnated collar laminations should increase the stiffness of the collars[†]

[†]I. Novitski, et al., Common Coil Mechanical Model #1, TD-01-074

Concept for 110-mm aperture

- ✤ Needs: o V
 - o Very rigid structure
 - o <u>Extra force</u> on the mid-planes in order to reduce the coil bending
- Solution: o Almost stand-alone SS collars
 - Some pre-stress by collars
 - o Additional force on the midplanes from the outer shell
 - Additional pre-stress <u>after cooldown</u>
 - Rigid structure **avoids excessive coil bending**

Model:	Gap	Max Stress	Coil displacement: <i>Cooldown – G = 228 T/m</i>
Thin Al shell (30 mm)	Closed by key	<150 Mpa*	131 μm
Thick Al shell (60 mm)	Open	66	153 μm
Thin Al shell (30 mm)	Open	66	167 μm
Stainless steel shell (15 mm)	Open	66	158 μm
Thin Al shell (30 mm)	Closed	66	120 μm
Stainless steel shell (15 mm)	Closed	66	124 μm

* Except lowest turn on the outermost coil

$\Phi = 110 \text{ mm} - gap \ closed \ at \ 4.2 \text{ K}$

$\Phi = 110 \text{ mm} - gap \ closed \ at \ 4.2 \text{ K}$

- * Acceptable stresses at 300 K, after cooldown and at 228 T/m
- ***** Acceptable coil displacement under Lorentz forces (Max = 120 μm)

LAPAC - Jun 17-18, 2004

Studies of single aperture IR quad mechanics - G.Ambrosio

$\Phi = 110 \text{ mm} \cdot \text{Conclusions}$

IT CAN BE DONE!!!

- SS collars + Outer shell support + Yoke gap closing during cooldown
 - o Stresses < 150 MPa in every condition
 - Only exception is the midplane turn of the outermost layer that could be replaced by a dummy turn
 - Gap Control Spacer will assure proper gap dimension at room temperature
 - CERN demonstrated they work well
 - o It's a more rigid structure than with open gap
 - Gives the minimum coil displacement (field quality)
 - Avoids over pre-stress of the coil
 - o The outer shell can be made of Al (< 30 mm) or SS (< 15 mm)

90 mm – "bladder & key" tech.

Main features:

- All pre-stress and support by Al outer shell
- Assembly using bladders and keys

"bladder & key" tech.

Advantages (demonstrated with flat coils):

- No loss of pre-stress
- Simple assembly with good control of prestress
- Outer shell may be re-used

Open questions:

- Effectiveness on shell-type quad
- He vessel

"Octagonal collars" concept

Main features:

- * octagonal shape of collars
 - collar/yoke interface is stable during cool-down (no angle change)
 - o this should reduce the coil stress concentration.
- alternately split yoke laminations
 - will support the coil assembly in two directions.
 - gaps between yoke lamination are closed during cool-down and some prestress is created by aluminum clamps and stainless steel skin to keep it closed under Lorentz forces.

<u>Conclusions</u>

By D.C.

By S.C.

By G.A.

Several designs have been studied, some of them are under further development, some new concepts and technologies will be studied.

Now we can say that:

* 90-mm aperture quad works with:

- o Stand-alone ss collars (with pole piece)
- Outer shell (Al) support using bladders and keys

* 110-mm aperture quad works with:

SS ring-collars + outer shell support (Al or SS) on midplanes

<u>Next steps</u>

- First short models will have 90-mm aperture
- * Two mechanical designs will be tested:
 - 1. Al outer shell with bladder & key, w/o collars (TQ4L1)
 - 2. SS collars with and w/o additional support on midplanes (TQ2L1)
 - o 90-mm aperture quad at G \geq 250 T/m could be used to simulate forces generated in larger aperture quads

These tests are going to show the <u>advantages</u> and <u>limits</u> of each concept. The results will be the base for the design of the final prototype (concept and aperture).

 Meanwhile we will continue to explore alternative concepts (as the "octagonal-collars") and new technologies (as impregnated collars) in order to verify the possible advantages