
Quad-core Catamount and
R&D in Multi-core Lightweight Kernels

Salishan Conference on High-Speed Computing
Gleneden Beach, Oregon

April 21-24, 2008

Kevin Pedretti
Senior Member of Technical Staff

Scalable System Software, Dept. 1423
ktpedre@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND Number: 2008-1725A

2

Outline

• Introduction

• Quad-core Catamount LWK results

• Open-source LWK

• Research directions

• Conclusion

3

Going on Four Decades of UNIX

Operating System = Collection of software and APIs
Users care about environment, not implementation details

LWK is about getting details right for scalability

4

LWK Overview

• POSIX-like environment
• Inverted resource management
• Very low noise OS noise/jitter
• Straight-forward network stack (e.g., no pinning)
• Simplicity leads to reliability

Policy
Maker
(PCT)

A
pp

lic
at

io
n

1

libmpi.a
Libc.a

A
pp

lic
at

io
n

N
libmpi.a
Libc.a

Policy Enforcer/HAL (QK)

Privileged Hardware

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

Basic Architecture Memory Management

5

Lightweight Kernel
Timeline

1990 – Sandia/UNM OS (SUNMOS), nCube-2

1991 – SUNMOS ported to Intel Paragon (1800 nodes)

1991 – Linux 0.02

1993 – SUNMOS enhanced, becomes Puma
First implementation of Portals communication architecture

1994 – Linux 1.0

1995 – Puma ported to ASCI Red (4700 nodes)
Renamed Cougar, productized by Intel

1997 – Stripped down Linux used on Cplant (2000 nodes)
Difficult to port Puma to COTS Alpha server

Included Portals API

2002 – Cougar ported to ASC Red Storm (13000 nodes)
Renamed Catamount, productized by Cray

Host and NIC-based Portals implementations

2004 – IBM develops LWK (CNK) for BG/L/P (106000 nodes)

2005 – IBM & ETI develop LWK (C64) for Cyclops64 (160 cores/die)

Nov 2007 Top500
Top 10 System
Compute Processors:
82% run a LWK

6

Challenge: Exponentially Increasing Parallelism

900 TF
75K cores
12 GF/core

89% per year

33% per year

2019
1 EF

1.7M cores (green)
588 GF/core

or
28M cores (blue)

35 GF/core

72% per year

Se
e

K
ey

 fo
r U

ni
ts

7

We Know OS Noise Matters

P0
P1
P2
P3

• Impact of noise increases with scale (basic probability)
• Multi-core increases load on OS
• Idle noise measurements distort reality

– Not asking OS to do anything
– Micro-benchmark != real application

See “The Case of the Missing Supercomputer Performance”, Petrini, et al.

8

Red Storm Noise Injection Experiments

• Result:
Noise duration is more
important than frequency

• OS should break up work
into many small & short
pieces

• Opposite of current
efforts
– Linux Dynaticks

• Cray CNL with 10 Hz
timer had to revert back
to 250 Hz due to OS noise
duration issues

From Kurt Ferreira’s Masters Thesis

9

Drivers for LWK Compute Node OS
• Practical advantages

– Low OS noise
– Performance – tuned for scalability
– Determinism – inverted resource management
– Reliability

• Research advantages
– Small and simple
– Freedom to innovate (see “Berkeley View”)

• Multi-core
• Virtualization

– Focused on capability systems
• Can’t separate OS from node-level architecture

Much simpler to create LWK than mainstream OS

10

Outline

• Introduction

• Quad-core Catamount LWK results

• Open-source LWK

• Research directions

• Conclusion

11

Quad-core Catamount
• Risk mitigation for ORNL Jaguar System

– Plan of record: CNL + ALPS
– Backup plan: Quad-core Catamount

• Funded by DOE Office of Science and ORNL
– PI: Sue Kelly;

John VanDyke, Courtenay Vaughan
– Project complete, fully functional
– Will be used for Red Storm quad-core upgrade:

38400 cores, 284 TFLOPS

• Results discussed:
– Large-scale dual-core CNL vs. Catamount
– Small-scale quad-core performance

12

Large-scale Dual-core CNL vs. Catamount

Testing performed June 16-17, 2007 at ORNL
– Apps important to ORNL
– Time ran out before LSMS and S3D problems diagnosed
– Catamount apps did not link with IOBUF library

13

Small-scale Quad-core CNL vs. Catamount

Disclaimer: Some test problems were small
Testing performed April, 2008 at Sandia

– Four nodes, 2.2 GHz quad-core, rev. B2
– UNICOS 2.0.44
– 4 KB pages CNL, 2 MB Catamount
– VH1 wouldn’t run on CNL

14

Catamount Quad-core Cores Effectively Used

Disclaimer: UMT2K problem was possibly small, others reasonable
Calculation:

– 4 core runs, either 1 core per node (S) or 4 cores per node (Q)
– Assume S takes 1 hr. and Q takes .85 hours
– Assume S using 100% of core
– Q is effectively using .85 * 4 = 3.4 of each core

15

Quad-Core Catamount
Network Stack Performance

• LWK’s static, contiguous memory layout simplifies network stack
– No pinning/unpinning overhead
– Send address/length to SeaStar NIC

LWK
31% better

LWK
21% better

LWK
28% better

LWK
31% better

LWK
8% better

Host-based Network Stack (Generic Portals)
Testing Performed April 2008 at Sandia, UNICOS 2.0.44

16

TLB Gets in Way of Algorithm Research

Dashed Line =
Small pages

Solid Line =
Large pages
(Dual-core Opteron)

Open Shapes =
Existing Logarithmic Algorithm
(Gibson/Bruck)

Solid Shapes =
New Constant-Time Algorithm
(Slepoy, Thompson, Plimpton)

TLB misses increased with large pages,
but time to service miss decreased dramatically (10x).

Page table fits in L1! (vs. 2MB per GB with small pages)

Unexpected
Behavior

Due to TLB

17

Outline

• Introduction

• Quad-core Catamount LWK results

• Open-source LWK

• Research directions

• Conclusion

18

Project Kitten

• Creating modern open-source LWK platform
– Multi-core becoming MPP on a chip, requires innovation
– Leverage hardware virtualization for flexibility

• Retain scalability and determinism of Catamount
• Better match user and vendor expectations

19

Leverage Linux and Open Source

• Repurpose basic functionality from Linux Kernel
– Hardware bootstrap
– Basic OS kernel primitives

• Innovate in key areas
– Memory management (Catamount-like)
– Network stack
– Fully tick-less operation, but short duration OS work

• Aim for drop-in replacement for CNL
• Open platform more attractive to collaborators

– Northwestern and UNM adding their V3VEE lightweight
hypervisor to Kitten (NSF funded)

– Potential for wider impact

20

LWK Architecture

Policy
Maker
(PCT)

A
pp

lic
at

io
n

1

libmpi.a

LWK
specific
Libc.a

A
pp

lic
at

io
n

N
libmpi.a

Policy Enforcer/HAL (QK)

Privileged Hardware

Catamount Kitten

LWK
specific
Libc.a

A
pp

lic
at

io
n

1

libmpi.a

Standard
Libc.a

Guest
OS

G
ue

st
 O

S
1

Policy Enforcer/HAL/Hypervisor
(QK)

Privileged Hardware

Policy
Maker
(PCT)

Major changes:
– QK includes hypervisor functionality
– QK provides Linux ABI interface, relay to PCT
– PCT provides function shipping, rather than special libc.a

21

Status

Stack

Kernel

Heap

Data

Text

UNIX Heap
Grows Up

Anonymous
mmap() grows
down

• X86-64 support
• Linux ABI

– Basic system calls
– Initial user-stack setup
– Thread Local Storage (TLS)
– Virtual system calls

• Boots on Red Storm
– Drop-in CNL replacement
– Console I/O
– Portals network stack

• Initrd treated as PCT (ELF image)
• Runs STREAM compiled with

standard Linux toolchain
• DOE approved for open source

release (GPL)

22

make bzImage
make isoimage

kvm –cdrom image.iso

23

Outline

• Introduction

• Quad-core Catamount LWK results

• Open-source LWK

• Research directions

• Conclusion

24

SMARTMAP: Simple Mapping of Address Region
Tables for Multi-core Aware Programming

• Leverages LWK memory management model
• Allows all of the processes on a multi-core

processor to access each others’ memory directly
– User-space to user-space
– No serialization through the OS
– Access to remote address by flipping a bit

• Each process still has a separate virtual address
space

• Allows MPI to minimize memory-to-memory copies
on node
– No copying for non-contiguous MPI datatypes
– More efficient collective operations

• Reductions can operate directly on user buffer
P0 P1 P3 P4

P0 P0 P0 P0
P1 P1 P1 P1

P2 P2 P2 P2

P3 P3 P3 P3

P0 P1 P2 P3

Ron Brightwell, Trammell Hudson, Kevin Pedretti

25

Complexity of a Lightweight OS

LWK Code
static void
initialize_shared_memory(void)
{

extern page_table_t *pml4_table_cpu[];
int cpu;
for (cpu=0; cpu < MAX_NUM_CPUS; cpu++)
{

page_table_t *pml4 = pml4_table_cpu[cpu];
if (!pml4)

continue;
pcb_t * kpcb = cur_kpcb_ptr[cpu];
if (!kpcb)

continue;
page_table_entry_t dirbase = (

phys_addr(kpcb->kpcb_dirbase)
| PDE_P
| PDE_W
| PDE_U

);
int other;
for (other=0; other < MAX_NUM_CPUS; other++)
{

page_table_t *other_pml4 = pml4_table_cpu[other];
if (!other_pml4)

continue;
other_pml4[cpu+1] = dirbase;

}
}

}

User Code
static inline void *
remote_address(

unsigned core,
volatile void * vaddr)

{
uintptr_t addr = (uintptr_t) vaddr;
addr |= ((uintptr_t) (core+1)) << 39;
return (void*) addr;

}

26

PingPong Latency

• 2.2 GHz Quad-core
AMD Opteron

• Catamount N-Way
(CNW) 2.0.41

• PGI 7.1.4
• GNU 3.3.3
• Open MPI

subversion head

27

28

29

Future Work

• Lots of MPI work
• Expose node/network topology through MPI

communicators
– MPI_COMM_NODE
– MPI_COMM_NETWORK

• Explore ways for applications to use directly
– Compiler (BEC)?
– Libraries (LibSM)?

30

Mitigating DRAM Bank Conflicts

128KB Spacing
Worst Case

128KB +/- 16KB
Spacing Results

In DRAM Conflicts

31

Catamount Power Saving IDLE

Pallas
HPCC

HPL

Compute Node Linux IDLE

Application Power Signatures

32

Conclusion

• Sandia focusing on needs of capability systems
• Quad-core Catamount ready for action

– Risk mitigation for ORNL Jaguar
– Will be used for Red Storm upgrade:

38400 cores, 284 TFLOPS
• Kitten LWK in development

– Open source
– Multi-core and hardware virtualization

• Leveraging LWK for system software research

33

Acknowledgements

• Quad-core Catamount
– Office of Science and ORNL
– Sue Kelly, John VanDyke, Courtenay Vaughan,

Jim Tomkins
• Kitten LWK

– Kurt Ferreira, Trammell Hudson, Sue Kelly,
Michael Levenhagen, John VanDyke

• SMARTMAP
– Ron Brightwell, Trammell Hudson

• DRAM Bank Conflicts
– Kurt Ferreira, Courtenay Vaughan

• Power Signatures
– Jim Laros

	Quad-core Catamount and �R&D in Multi-core Lightweight Kernels
	Outline
	Going on Four Decades of UNIX
	LWK Overview
	Lightweight Kernel�Timeline
	Challenge: Exponentially Increasing Parallelism
	We Know OS Noise Matters
	Red Storm Noise Injection Experiments
	Drivers for LWK Compute Node OS
	Outline
	Quad-core Catamount
	Large-scale Dual-core CNL vs. Catamount
	Small-scale Quad-core CNL vs. Catamount
	Catamount Quad-core Cores Effectively Used
	Quad-Core Catamount�Network Stack Performance
	TLB Gets in Way of Algorithm Research
	Outline
	Project Kitten
	Leverage Linux and Open Source
	LWK Architecture
	Status
	Outline
	SMARTMAP: Simple Mapping of Address Region�Tables for Multi-core Aware Programming
	Complexity of a Lightweight OS
	PingPong Latency
	Future Work
	Mitigating DRAM Bank Conflicts
	Conclusion
	Acknowledgements

