

EMITTANCE DILUTION IN NLC MAIN LINAC (1 TeV CM): DISPERSION FREE STEERING

Kirti Ranjan and Ashutosh Bhardwaj University of Delhi, India & Peter Tenenbaum Stanford Linear Accelerator Center & Shekhar Mishra Fermi National Accelerator Laboratory

- Emittance Dilution in NLC Main Linac:
 - → Single Bunch Beam Break Up
 - ➔ Incoherent sources
 - ➔ Beam Based Alignment
 - RF Structure Alignment
 - Quad Alignment
 - Dispersion Free Steering
- MATLIAR Main Linac Simulation
- ➢ Results
- Conclusions / Plans

NLC – Design Parameters

Parameter	NLC-500 GeV CM	NLC-1 TeV CM
Luminosity	2.0x10 ³⁴	======================================
Repetition rate	120 Hz	120 Hz
Bunch Charge	0.75×10^{10}	0.75×10^{10}
Bunch/train	192	192
Bunch separation	1.4 ns	1.4 n
Unloaded Gradient	65 MV/m	65 MV/m
Loaded Gradient	52 MV/m	52 MV/m
Inject $\gamma_{\mathbf{E}_{\mathbf{x}}}$	3.0 µm.	3.0 µm.
IP γε _χ	3.6 µm.	3.6 µm.
Inject $\gamma \epsilon_{\rm Y}$	20 nm	20 nm
ΙΡ γε _γ	40 nm	40 nm
β _x *	8.0 mm	13.0 mm
β _Y *	110 µm	110 µmm
σ _z	110 µm	110 µm.
σ _x *	243 nm	219 nm
σ _y *	3.0 nm	2.3 nm
Pinch enhancement	1.51	1.47

- NLC Main linac will accelerate e⁻/e⁺ from ~10 GeV -> 250 GeV, (after Upgrade 500 GeV)
- There are two major design issues:
 - ⇒ Efficient acceleration of the beams, and
 - ⇒ Emittance preservation => Primary sources of Dilution:
 - Transverse Wakefields (Beam Break Up): Short and Long Range
 - Dispersive and Chromatic Effects
 - Transverse Jitter
- Vertical plane would be more challenging:

⇒ Large aspect ratio (x:y) in both spot size and emittance (~100:1)
 ⇒ 1 to 2 orders of magnitude more difficult

Normalized Emittance Dilution Budget in NLC Main Linac (both for 500 GeV / 1 TeV machine) DR Ext. => ML Inject. => ML Ext. => IP Hor. (nm-rad): 3000 => 3200 => 3300 (3.3%) => 3600 Vert. (nm-rad): 20 => 24 => 34 (50%) => 40

Occurs when beam undergoes betatron oscillation through Linac

Single Bunch BBU

∽ Solution: BNS Damping: Introduce correlated energy spread:
 ⇒ Bunch head higher in energy than bunch tail

Solution: Damped Detuned Structure

SINGLE BUNCH - WHAT'S LEFT AFTER BBU?

Chromatic and Dispersive Sources

- ∽ Misalignments:
 - ⇒ Beam-to-Quad offsets (most problematic)
 - ⇒ Beam-to-RF Structure offsets
 - ⇒ RF Structure pitch angles
- Quad Roll Errors
- Quad Strength

Misalignment Tolerances (Vertical plane) in NLC ML (500 GeV CM)

Misalignment	Tolerance	Emittance
		Growth (nm)
Beam-to-Quad	2.0 µum.	2.2
Beam-to-RF-girder	3.0 µum.	1.5
Quad rotation	300 µrad	1.4

Transverse Jitter

柋

- > Alignment tolerances can not be met by *ab initio* installation
- Quads and RF structures need to be aligned with beam-based measurements

Instrumentation

Remotely controlled *Girder* and *Magnet* Translation Stages
 High resolution BPMs in Quads and RF structures

- S-BPMs: Beam position in RF structure is measured by the Amplitude and Phase of the Dipole Wakefield signal
- Structure Alignment: Nulling Technique. Zero on S-BPM => Nulling transverse wakefield
- "Simple" algorithm for RF alignment (to zero mean offset /angle on S-BPMs) works if:
 - ∽ No unexpected systematic offsets in S-BPM reading.
 - Structure stays "straight" between beam-based shape measurements
 - ☞ Structure-to-structure alignment on girder is okay
 - Loose tolerance (many tens of µm)

- Every linac quad contains a captured Q-BPM
- Quad alignment How to do?
 - Find a set of BPM Readings for which beam should pass through the exact center of every quad
 - Move the quads until that set is achieved and Steer the beam
- Quad alignment is relatively difficult.
 - ∽ Moving a quad steers the beam
 - ☞ BPM Electrical Center ≠ Quad Magnetic Center
 - \Rightarrow RMS difference ~ 100 $\mu m.$
 - ⇒ Can't just "steer BPMs to Zero"
 - ⇒ Measure BPM-to-Quad offsets => **Quad Shunting**.

Quad Shunting: Measure beam kick vs quad strength to determine BPM-to-Quad offset (prerequisite, routinely done)

- ➢ Not adequate to achieve micrometer-level accuracy.
 ⇒ up to ~ 5µm BPM-to-Quad offset.
- Look for a technique which does not require the knowledge of the BPM-to-Quad offset (Proposed by Raubenheimer/Ruth [NIM A302,191-208,1991])

- DFS is a technique that aims to directly measure and correct dispersion in a beamline
- General principle:
 - Measure dispersion (via mismatching the beam energy to the lattice)
 - ⇒ Calculate correction (via steering magnets or magnet movers) needed to zero dispersion
 - ⇒ Apply the correction
- Very successful in rings (LEP, PEP, others)
- Less successful at SLC (never reduced resulting emittance as much as predicted)

(Note: SLC varied magnet strengths (center motion?), others varied beam energy)

- LIAR (LInear Accelerator Research Code)
 - ⇒ General tool to study beam dynamics
 - ⇒ Simulate regions with accelerator structures
 - ⇒ Includes wakefield, dispersive and chromatic emittance dilution
 - Includes diagnostic and correction devices, including beam position monitors, RF pickups, dipole correctors, magnet movers, beam-based feedbacks etc
- MATLAB drives the whole package allowing fast development of correction and feedback algorithms
- CPU Intensive: Two Dedicated Processors for the purpose

MATLIAR SIMULATION: NLC MAIN LINAC (1 TeV CM)

Test the steering algorithm in simulation – 100 seeds of misalign linac, steer to zero BPM readings, DFS

Nominal Conditions:

Tolerance	X	У	Comment
BPM-Quad Offset	5 µm	5 µm	From quad shunting systematics
Quad Misalign	150 µm	50 µm	Expected survey & alignment quality
Quad Rotation	300 µrad		Expected fiducialization quality
Quad Strength	0.25	5%	FFTB experience
RF-to-Girder	75 µm	25 µm	
Girder Offset	150 µm	50 µm	Similar problem to quad mechanical alignment
Structure Angle	100 µrad	33 µrad	
Girder Angle	45 µrad	15 µrad	
BPM Resolution	0.4 µm	0.4 µm	Achieved at FFTB

Main Linac Design

- ⇒ ~14.3 km length
- ⇒ 17856 X-band RF (11.424GHz) structures, each ~0.6 m length
- ⇒ 4 structures per girder
- ⇒ 986 Quads
- ⇒ Injection energy = 7.87 GeV
- ⇒ Initial Energy spread = 1.48 %
- ⇒ Extracted beam energy = 500 GeV

Beam Conditions

- ⇒ Bunch Charge: 0.75 x 10¹⁰ particles/bunch
- \Rightarrow Bunch length = 110 μ m
- ⇒ Normalized injection emittance:
 - γε_{X =} 3000 nm-rad
 - $\gamma \varepsilon_{\rm Y} = 20 \text{ nm-rad}$
- Only Single bunch used
- > No Jitter in position, angle etc.; No Ground Motion and Feedback

STEERING ALGORITHM FRENCH CURVE (FC) vs. DFS

FC

- Read all Q-BPMs in a single pulse
- Compute set of magnet moves and apply the correction
 - Constraint simultaneously minimize RMS of the BPM readings and RMS magnet mover position change
- Align RF structures
- Iterate a few times and go on to next segment.
- Next segment starts from the center quad of the previous segment (50% overlap)
- Performed for 100 Seeds

DFS

Break linac into segments of ~50quads

- Vary energy by switching off structures in front of a segment (no variation within segment)
- Measure change in orbit (fit out incoming orbit change from RF switch-off)
- Apply correction
 - Constraint simultaneously
 minimize dispersion and RMS
 magnet mover position change
- Align RF structures
- Iterate a few times and go on to next segment
- Performed for 100 Seeds

FOR NLC NOMINAL CONDITIONS

DFS: Lower mean emittance growth than FC.
 DFS is More effective in vertical plane (which is good!)

STRUCTURE-to-GIRDER OFFSET

BPM-to-QUAD OFFSET

γε_y & γε_x growth in FC:
 Increases significantly
 Much above tolerance.

RMS offset in x / y-plane : $5 \ \mu m$ / $5 \ \mu m$

- $\succ \gamma \varepsilon_y \& \gamma \varepsilon_x$ growth in DFS:
 - Increases gradually due to soft constraints and initial beam condition.
 - Mean is within tolerancefor ~ x 2.5 nominal values.

100 0

0

Nominal

2

3

BPM RESOLUTION

5

ß

BPM Resolution (x Nominal)

8

9

10

11

- $\succ \gamma \varepsilon_y \& \gamma \varepsilon_x$ growth in FC:
 - Lesser dependence, but,much above tolerance.

Nominal Values

RMS offset in x / y plane : 0.4 μm / 0.4 μm

- $\succ \gamma \varepsilon_y \& \gamma \varepsilon_x$ growth in DFS:
 - Depends heavily on BPM resolution.
 - Should remain within nominal values.

Nominal

No. of DFS Segments

*

NUMBER OF DFS SEGMENTS

(50 % overlap

- Sominal looks O.K.
- Overlapping the segments (like in FC) doesn't affect much.

EFFECT OF PITCH ANGLE b/w STRUCTURE & GIRDER

Mean % Emittance Growth in vertical direction

	FC	DFS
Nominal	149.3	36.6
x10 Nominal structure-to-girder pitch angle only	160.3	57.7
x10 Nominal structure-to-girder all offsets*	172.8	82.0

* RMS horizontal and vertical misalignments, yaw and pitch angles of whole structure w.r.t. Girder.

 \succ mean % $\gamma \varepsilon_v$ growth in DFS

⁽²⁾ significantly greater than that in FC.

rightarrow structure-to-girder pitch angle alone accounts for ~ $\frac{1}{2}$ the total growth.

 \Rightarrow a serious limitation on the performance if not corrected.

- Normalized emittance growth (Single bunch) in Main Linac for 1 TeV CM NLC machine is simulated using MATLIAR
- > DFS and FC steering algorithm are compared in terms of:
 - Structure-to-girder offsets
 - BPM-to-Quad offset
 - BPM resolution
 - Structure-to-girder pitch angle only
- DFS algorithm provides significantly better results than FC. DFS results are within emittance budget for mean seeds (for Nominal conditions)
- DFS algorithm is drastically affected by BPM resolution and structure-to-girder pitch angle – should remain within their nominal tolerances

PLAN

- Include Transverse Jitter and Ground Motion
- Perform a Similar Study for TESLA LINAC