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ABSTRACT 

This paper proposes chordal surface transform for representation and discretization of thin section solids, such as automobile 
bodies, plastic injection mold components and sheet metal parts.  A multiple-layered all-hex mesh with a high aspect ratio is a 
typical requirement for mold flow simulation of thin section objects.  The chordal surface transform reduces the problem of 3D 
hex meshing to 2D quad meshing on the chordal surface.  The chordal surface is generated by cutting a tet mesh of the input 
CAD model at its mid plane.  Radius function and curvature of the chordal surface are used to provide sizing function for quad 
meshing.  Two-way mapping between the chordal surface and the boundary is used to sweep the quad elements from the chordal 
surface onto the boundary, resulting in a layered all-hex mesh.  The algorithm has been tested on industrial models, whose 
chordal surface is 2-manifold.  The graphical results of the chordal surface and the multiple-layered all-hex mesh are presented 
along with the quality measures.  The results show geometrically adaptive high aspect ratio all-hex mesh, whose average scaled 
Jacobean, is close to 1.0.  
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1. INTRODUCTION 

This paper proposes a new method for the representation and 
discretization of thin section objects such as automobile 
bodies, plastic injection mold components, sheet metal parts, 
paint coating and rubber sheets, into an assemblage of 
hexahedral finite elements.  Thin section solids have smaller 
wall thickness and relatively large surface area, as shown in 
Figure 1.  In other words, the ratio of area to perimeter of the 
cross section is small.  Finite element meshes are used in the 
Finite Element Method (FEM), a versatile and powerful 
numerical procedure to analyze complex structures and 
continua in many scientific and engineering fields.  The 
accuracy of the results obtained by FEM greatly depends on 
the quality of the finite element mesh; so there is a great 
demand for the generation of high quality hex mesh with 
fewer elements, so that accurate results can be obtained in 
less time.  The Hex-Layer aims at solving this problem for 
specific type of geometries, called thin section solids. 

Thin section objects can be best represented by Medial Axis 
Transform (MAT) [2], which is the locus of the center of the 
maximal sphere as it rolls inside a solid, along with the 
associated radius function.  Like mid surface abstraction, 
which has the required property of MAT, here an 
approximation of the mid surface ( called the “chordal 
surface” [9] ), is proposed as the skeleton of 3D objects.  The 
skeleton model has numerous applications in such diverse 
areas as computer vision, robot path planning, evaluation of 
moulds and dies, feature recognition, medical diagnostics and 
mesh generation [10, 22].  

The Hex-Layer uses the chordal surface to reduce the 
problem of 3D hex meshing to 2D quad meshing on the 
chordal surface.  Quad elements are then swept using two-
way mapping between the chordal surface and the boundary 
of the model to generate the layered all-hex mesh.  The 
results of the implementation of the chordal surface, and the 
hex mesh generation of objects whose chordal surface is 2-
manifold, is presented.  The extension of the Hex-Layer to 
deal with general solids is addressed in the conclusion.    

 

Figure 1 .  Thin section object with holes 

2. LITERATURE REVIEW 

From the literature, hex meshing can be broadly classified 
into the direct method and the indirect method [3].  Direct 
methods generate a hex mesh directly from a solid.  Indirect 
methods first subdivide a solid into a tet mesh; the tet mesh is 
then converted to a hex mesh.  One approach is to subdivide 



each tet into four hexahedral elements [19].  Even though this 
approach generates all-hex mesh, the quality will be poor.  
Recently, Hexhoop [18] was proposed to solve the problem 
of converting a hex-dominant mesh to an all-hex mesh, using 
templates.  However, combining multiple tets to form a hex 
has proved to be a difficult task.  In the indirect methods the 
quality of the final mesh greatly depends on the input tet 
mesh.  

Some of the major algorithms belonging to the direct method 
are, the advancing front methods  [1, 20], mapped meshing 
methods,  grid based approaches [14, 13], skeleton based 
methods, and optimal node placement and connectivity 
methods [4, 15]. Only the algorithms that are closely related 
with the Hex-Layer are discussed here. 

Sweeping is a type of mapped meshing method applicable 
specifically to geometries whose end faces contain 
topologically equivalent quad mesh.  Quad mesh is then 
swept along a direction specified by a curve.  Layers of 
hexahedral elements are formed at regular intervals with the 
same topology as that of a quadrilateral mesh.  This technique 
can be generalized to mesh certain classes of volumes by 
defining so-called ‘multiple source’ and ‘multiple target 
surfaces’, and using Boolean operations [7, 6].  An all-hex 
meshing algorithm, called ‘the Graft Tool’ [11] has been 
proposed for multi-directional swept volumes.  Gambit uses a 
multi-axis cooper algorithm [8], which provides a toolbox for 
identification of sub domains with a definite axis, and it is 
meshed using a cooper tool.  Thin section solids, such as 
automobile bodies and injection mould components, are 
usually not composed of sub domains with definite axis, and 
identifying multiple source and multiple target surfaces may 
be difficult. 

The medial surface, along with the radius function, is called 
the Medial Axis Transform (MAT).  It is a mathematically 
well defined 2D representation of a 3D solid.  Medial surface 
methods [10] decompose the complex geometry into simpler 
sub domains; the sub domains are classified based on the 
topology.  Templates are then used to mesh the sub domains. 
Linear programming is used to ensure conformity between 
the meshes of the sub domains.  Recently MAT was used to 
subdivide a complex object into only one type of sub-domain, 
called “tracks” [23], in 2D domain and rectangular columns 
[12] in 3D space.  In Sampl’s method, the medial surface 
obtained is first meshed into a quad-dominant mesh, 
containing triangles and quadrilaterals, using an advancing 
front based algorithm (Paving).  The mesh on the medial 
surface is then extruded on both sides of the medial surface 
until it intersects the boundary of the object to obtain 3D 
mesh.  The output mesh contains non-hex elements at the 
concave edges and vertices.  Although the medial surface is 
mathematically well defined, its generation is 
computationally very expensive and contains extra surfaces 
which may not be of use for engineering applications.  The 
quality of the mesh at the boundary of the thin section objects 
can be improved by using the chordal or mid surface.  

The Hex-Layer uses a chordal surface, which is generated by 
cutting a tet mesh of the solid at its mid-plane; therefore it 
can be classified under indirect methods.  But, the quality of 
the final mesh is independent of the tet mesh. Because the 
medial surface is the region of natural termination of the 

opposite fronts of the advancing front method, it is implied 
that the Hex-Layer avoids expensive interference checks at 
every layer, with a one time cost of generating the chordal 
surface. 

3. PROBLEM DEFINITION 

In this paper, a thin section solid whose chordal surface is 2-
manifold is considered.  Many industrial models, made from 
an injection molding process and sheet metal works, fall in 
this category.   Figure 1 shows a thin section solid with top, 
bottom, and lateral surface.  Note that Hex-Layer does not 
require the explicit identification of top, bottom, and lateral 
surface as user input. 

Consider a solid 3ℜ⊂Ω , in which the boundary Ω∂  
consists of a top surface tω , bottom surface bω , and lateral 
surface lω . Ω  is said to be a thin section solid 
if )()(),( lbt AAA ωωω >> , where )( iA ω is the area of iω . 
The chordal surface of Ω  is denoted by )(ΩC and is 2-
manifold, if for every point )(Ω∈Cx , the neighborhood of 
x denoted by )(xN is topologically equivalent to a 2-disk 

}1|{ 22 <−ℜ∈= 0yyyD . 

Given a solidΩ  whose )(ΩC is 2-manifold, generate:  

1. Chordal surface )(ΩC and the mapping 

tt C ωπ →Ω)(: and bb C ωπ →Ω)(:  
2. Uniform isotropic single/multi-layered all-hex mesh 
3. Uniform anisotropic single/multi-layered all-hex mesh 
4. Geometry adaptive isotropic single/multi-layered all-hex 

mesh 
5. Geometry adaptive anisotropic single/multi-layered all-

hex mesh 

4. OVERVIEW OF PROPOSED METHOD 

The main purpose of the Hex-Layer is to reduce the 3D hex 
meshing problem to a 2D quad meshing, followed by 
sweeping the quad elements.  This is accomplished by 
generating a chordal surface, which is proposed as a skeleton 
for representing thin section objects, and by using two-way 
mapping to sweep the quad mesh lying on the chordal surface 
onto the top and the bottom surface.  Figure 2 shows the steps 
involved in generating multi-layered hex mesh of the input 
CAD model.  

The tet mesh of the CAD model is generated using a bubble 
packing algorithm. The bubble packing algorithm 
automatically places the nodes only on the top and bottom 
surface, without any interior nodes or nodes on the lateral 
surface. This is accomplished by setting the sphere radius 
more than half the maximum wall thickness.  This bypasses 
the relatively difficult task of identifying the top and the 
bottom surface of the CAD model.  The Delaunay method is 
used to connect the nodes, to generate a good quality tet mesh 
[16], as shown in Figure 2(b).  Tet element (Figure 3), which 
has at least one node on both the top and the bottom surface 



of the solid, is considered to be a valid tet for our algorithm; 
otherwise it is called the “flat” element.  Unlike previous 
indirect methods, tet mesh is not directly used to generate hex 
mesh, rather it is used to generate the chordal surface.  
Therefore the final hex mesh quality does not greatly depend 
on the tet mesh generated.  

The advantage of using the chordal surface rather than the 
medial surface is that the generation of the chordal surface is 
computationally less expensive.  The chordal surface is 
generated by cutting the tet elements at its mid section, as 
shown in Figure 2(c), and is discussed in detail in Section 5.  
Once the chordal surface becomes available, the 3D hex 
meshing reduces to 2D quad meshing [5] on the chordal 
surface.  Either the uniform or the geometry adaptive quad 
mesh (based on the radius function and the curvature of the 
chordal surface) is generated, as shown in Figure 2(d), and is 
briefly discussed in Section 6.  The quality and size of the 
quad mesh determines the final quality and size of the hex 
elements.   Note that if the quad mesh is generated on the top 
or the bottom surface, rather than on the chordal surface, the 
quality of the hex mesh after sweeping will be poor near the 
bottom or the top surface respectively. 

The final step is to lay the desired number of hex layers 
(Figure 2(e)) by locally sweeping every quad element on both 
sides of the chordal surface.  Sweeping of the quad element is 
accomplished by placing hex nodes along the normal 
direction at every quad node and connecting them in order, as 
explained in Section 7 

The major contributions of this paper are the generation of a 
chordal surface and layered hex meshing by local sweeping 
of 2D quad elements lying on the chordal surface.  Section 8 
shows the results obtained by using the Hex-Layer on two 
industrial objects whose chordal surface is 2-manifold.  The 
extension of the Hex-Layer to handle objects with a non-
manifold chordal surface is highlighted in the conclusion. 

5. CHORDAL SURFACE GENERATION 

Prasad L.  [9, 17] first proposed chordal axis transform 
(CAT) for the morphological analysis of 2D planar shapes.  
Like the medial surface, extraction of the chordal surface of 
3D objects would be of importance in many diverse areas 
such as computer vision, robot path planning, feature 
recognition and medical diagnostics.  This paper proposes the 
chordal surface for all-hex meshing of thin section solids. 

This section provides the mathematical definition based on 
graph theory, and its geometric construction from input tet 
mesh.  Let the top surface of the thin walled solid be 
represented by a simple graph, G, consisting of a nonempty 
set V (G) of vertices and a set E (G) of edges.  Similarly, the 
bottom surface is represented by a simple graph, H, 
consisting of a vertex set V (H) and an edge set E (H).  And 
let E1 be the set of edges of the tet mesh so that ∀ e (u, v) ∈ 
E1, u ∈ V (G) and v  ∈ V (H).  

Definition:  The chordal surface ,a composition of simple 
graphs G and H, is a simple graph represented as G[H], with 
vertex set V(G) ×  V(H), in which vertex (u, v) is adjacent to 
vertex (u’, v’) if and only if  either:(1)  uu’ ∈ E (G) and v = 

v’; or (2) u = u’ and vv’ ∈ E(H), where, e (u, v), e (u’, v’)  ∈ 
E1. 

Figure 3 shows all possible types of tets in a tet mesh of a 
solid, whose chordal surface is 2-manifold.  Case 4-0 and 
Case 0-4 tets are considered to be topologically invalid for 
chordal surface generation, as all the four vertices lie on the 
same surface.   

Top Surface

Lateral Surface  

(a) Input CAD model 

Tet Mesh

 

(b) Tet mesh of CAD model 

Quad Facet

Triangular Facet Top Surface

Chordal Surface
Bottom Surface

 
(c) Chordal surface of CAD model 

All Quad Mesh

Chordal Surface  

(d) All-Quad mesh on chordal surface 

Chordal Surface

3 Layer All Hex Mesh

 

(e) All-Hex mesh of CAD model 

Figure 2.   Overview of the Hex-Layer algorithm 
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Figure 3.  Possible types of tet elements 

But geometrically, such flat tets may exist in a high curvature 
region and are removed during the processing of the tets, 
which is discussed in Section 5.4.  Cases 3-1 and 1-3 are 
similar and contain three internal edges connecting the top 
and bottom surfaces.  Cutting internal edges results in a 
triangular chordal surface facet.  Case 2-2 contains four 
internal edges, which form the quadrilateral chordal surface 
facet.  Therefore the chordal surface consists of only 
triangular and quadrilateral facets. 

5.1. Finding Interior Triangles and Adjacency 
List of Tet Mesh 

A triangular face of any tet element is said to be interior if it 
is shared by two tet elements.  Each of the four triangles of 
every tet is tested by checking the three vertices of the 
triangle with four vertices of every other tet.  If the three 
vertices of a triangle are present in another tet, it is an interior 
triangle, and the adjacency list of both the tets incident on the 
interior triangle is updated.  This intermediate adjacency list 
reduces the computation cost.  If only one or none of the 
vertices of the triangle are present in another tet, then that tet 
is not checked for three other triangles. The adjacency list 
establishes connectivity between the tets and is used in the 
breadth first traversal of tet mesh. 

5.2. Finding External Edges and Marking 
Boundary Edges 

Once the interior triangles are known, the rest of the triangles 
of the tet mesh form a set of connected exterior triangles.  
The topological requirement for the boundary of any valid 
solid is that the outer surface mesh should be 2-manifold,    
so every external edge should be shared by two external 
triangles.   Boundary edges are those external edges whose 
dihedral angle is less than the predefined threshold value, 
which in our case is set to 125 degrees. 

5.3. Classification of Tets Based on Number 
of External Triangles and External Edges. 

The number of exterior triangles and exterior edges of a tet is 
used as the criteria to classify the tets and is tabulated in 
Table 1.  This classification determines the order of 
processing the tets while generating the chordal surface, 
which is explained in Section 5.4.  In Table 1, ‘X’ indicates 

that the tet cannot exist; ‘Y’ indicates that the tet can exist; 
and ‘D’ indicates a degenerate case.  The Existence of 
degenerate tets is possible when either the top or the bottom 
surface becomes a line, which is not discussed in this paper. 

The classification shown in Table 1 is valid for a tet mesh of 
a thin section solid, whose chordal surface is 2-manifold, the 
tet mesh contains nodes only on the top or the bottom surface 
and does not contain flat tets.  A tet with four exterior 
triangles forms an isolated tet and cannot exist with any 
combination of external edges.  A tet with three exterior 
triangles exists at a corner of the solid, as shown in Figure 
5(a).  A tet with two exterior triangles contains at least five 
external edges, as shown in Figures 4(a) and 5(b).  A tet with 
one exterior triangle will have a minimum of three external 
edges.  Figure 4 (a) shows the tet with three external edges 
and Figure 4(b) shows a tet with four and five external edges.  
A tet which is totally covered by four adjacent tets has zero 
exterior triangles and should contain at least two external 
edges (Figure 3).  As the internal edges (Figure 4(c)), are 
exposed to the external surface, the number of external edges 
increases up to six, as shown in Figure 5(c).   

Table 1 Possible types of simple and complex tets 

5.4. Processing Simple Tets and Incremental 
Processing of Complex Tets 

Chordal surface generation is accomplished in two steps: (1) 
processing simple tets and (2) incremental processing of 
complex tets.  The tets which exist at the interior of the 
domain are cut without ambiguity to form a major part of the 
chordal surface.  These tets are called simple tets (Figure 4).  
If it is not possible to decide the cutting direction with the 
known information, such as the exterior triangle, exterior 
edges and boundary information, then those tets are called 
“complex tets” (Figure 5), and their processing/cutting is 
postponed.  Complex tets usually exist at the boundary, joints 
and other intricate parts. The complex tets adjacent to the 
available section of the chordal surface are processed first.   
This incremental approach of processing the complex tets is 
performed over the iterations till all the complex tets are 
processed. The iteration stops, either when all the complex 
tets are processed, or if some undesirable tets exist (which 
does not fall in the classification given in Table 1).  The 
existence of such undesirable tets is an indication of the 
presence of the invalid flat tets (Case 0-4 and 4-0 in Figure 3 
and Figure 4).  Flat tets cover internal tets, thus giving rise to 
undesirable tets; this is overcome by removing the flat tets.  
The adjacent tets are updated by labeling the internal shared 

External 
tri/edges 

0 1 2 3 4 5 6 

0 X X Y Y Y Y Y 
1 X X X Y Y Y D 
2 X X X X X Y D 
3 X X X X X X Y 
4 X X X X X X X 



triangle and edges as exterior.  This processing of simple and 
complex tets is repeated for all the tets.   

Figure 4 and Figure 5 shows all the simple and complex tets 
with their chordal surface facets.  Solid lines are external 
edges and dashed lines are internal edges (not hidden lines). 
The cycle formed by three solid lines, by default indicates the 
external triangle of a tet element.  Chordal surface facets are 
indicated by shaded polygon.  In Figures 4 and 5 the chordal 
vertex v of an edge with end vertices tv and bv  lying on 
the top and the bottom surface respectively is given 
by 2/)( bt vvv += .  A brief description of cutting the 
simple and the complex tets is given below. 

Simple tets: 

Following are six simple tets, those can be cut without 
ambiguity and which do not require the chordal surface 
information of the adjacent tets. 

TWO_EXT_TRI_FIVE_EXT_EDGE: This tet (Figure 4(a)) 
exists at the boundary and contains three out of four vertices 
on the boundary.  A chordal surface facet is obtained by 
cutting the edges which are incident on a vertex which lies on 
the boundary, but not on the common edge shared by the two 
external triangles.  If all the four vertices are lying on the 
boundary as shown in Figure 5(b), then it is difficult to 
determine the cutting direction, and it is treated as a complex 
tet. 

ONE_EXT_TRI_THREE_EXT_EDGE: This tet (Figure 
4(a)) exists away from the boundary. Cutting the internal 
edges gives a triangular chordal surface facet. 

ONE_EXT_TRI_FOUR_EXT_EDGE:  Figure 4(b) shows 
that if all the three vertices of the exterior triangle lie on the 
boundary, and the fourth vertex does not incident on the 
boundary, then the chordal surface facet is quadrilateral.  If 
the fourth vertex is also on the boundary, then the tet is 
treated as a complex tet as shown in Figure 5(b).  If all the 
three vertices of the exterior triangle do not lie on the 
boundary, then the edges incident on the fourth vertex are cut 
to obtain the triangular chordal surface facet, as shown in the 
Figure 4(b).  

ONE_EXT_TRI_FIVE_EXT_EDGE: This tet exists at the 
corner as shown in Figure 4(b).  Note that there is a cycle of 
three external edges forming an interior triangle.  The three 
edges incident on a vertex that is not incident on the external 
triangle, are cut to form a triangular chordal surface facet.  

ZERO_EXT_TRI_TWO_EXT_EDGE: This tet is shown in 
the left side of Figure 4(c).  Cutting the internal edges results 
in a quadrilateral chordal surface facet. 

ZERO_EXT_TRI_THREE_EXT_EDGE: This tet (Figure 
4(c)) also can be cut without ambiguity to form a 
quadrilateral chordal surface facet.  If more than three edges 
are external, as shown in Figure 5(c) and 5(d), they are 
treated as complex tets. 

Complex tets: 

The complex tets listed below are processed in a particular  

order.  The tets which touch the chordal surface are processed 
before the tets which are far away from the chordal surface. 

THREE_EXT_TRI_SIX_EXT_EDGE: These tets exist at the 
corner, as shown in the Figure 5(a). When any two edges are 
touched by the chordal surface, then the tet can be processed. 

TWO_EXT_TRI_FIVE_EXT_EDGE and 
ONE_EXT_TRI_FOUR_EXT_EDGE: The external edge 
incident on the chordal surface determines the cutting 
direction (Figure 5(b)). 

ZERO_EXT_TRI_FOUR_EXT_EDGE and 
ZERO_EXT_TRI_FIVE_EXT_EDGE and 
ZERO_EXT_TRI_SIX_EXT_EDGE: Figure 5(c) and 5(d) 
shows tets with no external triangle.  These tets are processed 
using existing chordal surface information. 

Invalid flat tets: 

TWO_EXT_TRI_FIVE_EXT_EDGE_FLAT: This is a flat 
tet that contains no vertex on the boundary except the ones 
incident on the common external edge (Case 4-0 and 0-4 in 
Figure 3 and Figure 4(d)). 

5.5. Find Average Normal and Radius at Every 
Chordal Vertex 

After the generation of chordal surface, the radius function at 
every chordal vertex is calculated to establish the two-way 
mapping between the chordal surface and the boundary.  As 
the chordal surface facets are computed locally by processing 
every tet element, the facets’ normal vector is adjusted by 
reversing the vertex list to maintain consistent orientation.  

 The normal vector of every facet is calculated before the 
average unit normal vector at the chordal vertex is calculated. 
As explained in Section 3, the chordal surface facet consists 
of either a triangular or a quadrilateral facet. 

Let jv : jth vertex of ith chordal facet 

       in : Unit normal vector of ith chordal facet 

Normal vector of triangular facet: Because the chordal 
vertices are always coplanar, the cross product of any two 
adjacent edges gives the direction of the normal.   

211 vve −=  

232 vve −=  
where 1e and 2e are edges of triangular facet. 

Normal vector of quadrilateral facet: The chordal vertices of 
a quadrilateral chordal surface facet may not be coplanar and 
the normal vector is calculated as below 

241 vve −=  

132 vve −=  
 

where 1e and 2e are diagonals of quadrilateral facet. The 
normal vector of both triangular and quadrilateral facets is 
computed as given in Equation 1: 
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(b) ONE_EXT_TRI_FOUR_EXT_EDGE and 
ONE_EXT_TRI_FIVE_EXT_EDGE 
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(c) ZERO_EXT_TRI_TWO_EXT_EDGE and 
ZERO_EXT_TRI_THREE_EXT_EDGE 
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(d) TWO_EXT_TRI_FIVE_EXT_EDGE_FLAT 

Figure 4. Simple and flat tets 
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(c) ZERO_EXT_TRI_FIVE_EXT_EDGE and 
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(d) ZERO_EXT_TRI_SIX_EXT_EDGE 

Figure 5. Complex tets 
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The unit average normal vector ‘ n ’ at a vertex ‘ v ’, which is 
incident on ‘ k ’ chordal surface facets (Figure 6), is given by 
Equation 2: 

k

k

i
i∑
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n

N  

 

N

Nn =     (2) 

At every chordal surface vertex, only one common interior 
edge passes through the vertex, and there can be many tets 
incident on the common edge.  From Section 5.4 we know 
that the chordal vertex is the mid point of the common edge.  
The radius / depth ‘ r ’ at the vertex ‘ v ’, is computed as 
shown in Figure 6 and is given by Equation 3. 

ln ⋅=r     (3) 

where vvl −= t  which is half the length of the common 
edge. 

After computing the discrete radius/depth function at every 
chordal vertex, the continuous radius/depth function over the 
entire chordal surface can be obtained by interpolating over 
the domain, as discussed in Section 7.1.  Note that the radius 
function of MAT is perpendicular to the boundary, and the 
current unit average normal vector computed is perpendicular 
to the chordal surface.  For general solids, sweeping along the 
radius direction of MAT is recommended, as it gives almost 
orthogonal hex elements at the boundary  [21].  The current 
approach is best suited for thin section solids, as it gives 
almost the same quality mesh in all the layers, which is 
discussed in Section 7.3. 
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Figure 6. Normal and radius/depth at a chordal 
vertex 

6. QUAD MESHING ON A CHORDAL 
SURFACE 

The chordal surface reduces the 3D problem of hex meshing 
to 2D quad meshing.  The size and quality of the final 
hexahedral mesh is controlled by the quad elements on the 
chordal surface. Either isotropic quad elements can be 
generated, or the radius function and curvature of the chordal 
surface can be used to adapt the size of the quad elements. 
The bubble packing algorithm is used here [5] to generate 
high quality quad-dominant mesh on multiple connected 
surfaces in 3D space, as shown in Figures 12(d) and 13(d).  
Templates are used to convert the quad-dominant mesh to all-
quad mesh.  

6.1. Sizing Function for Quad Meshing  
For geometry adaptive quad meshing (Figure 12(d)), the 
sizing function is set directly proportional to the radius 
function (Figure 7).  This would result in geometry adaptive 
hex meshing, as shown in Figure 12(e).  

The curvature of the chordal surface is another parameter 
which decides the size of quad elements.  Fine elements are 
obtained in the high curvature region, as shown in Figure 
12(e). 

Radius Function

Smaller Quad Elements

Chordal Surface

Coarser Quad Elements

 
  

Figure 7. Sizing based on radius function 

6.2. Converting Quad Dominant Mesh to All 
Quad Mesh using Templates 

As the quad dominant mesh contains only triangles and 
quadrilaterals, simple templates are used to convert the quad 
dominant mesh to an all quad mesh.  A quad element can be 
converted into four quad elements by inserting a node at the 
centroid of the quad element and connecting it with the mid 
point of each of the edges of the quad element.  A similar 
process converts the triangle into three triangular elements. 
The initial quad dominant mesh is made coarser as the 
number of elements in the all quad mesh becomes larger, 
after the use of templates.  Note that the templates can be 
avoided by using a suitable all-quad meshing algorithm. 



7. ALL-HEX MESHING USING QUAD MESH 

The sweeping of quad elements to result in layered hex mesh, 
is further reduced to sweeping quad nodes to place the hex 
nodes and to establish connectivity between the hex nodes.  
The coordinates of quad nodes lying on the chordal surface 
gives the source position vector for sweeping.  The sweeping 
direction and magnitude at the quad node are interpolated 
from the average unit normal vector and radius values at the 
chordal vertices.  The number of hex nodes placed by 
sweeping the quad node depends on the number of hex layers 
needed.  Hex nodes are then connected by using the 
connectivity of quad nodes at the quad elements.  The 
following section gives the details of hex meshing using quad 
mesh. 

7.1. Interpolate Normal and Radius at a Quad 
Node 

A quad node can lie on a vertex, on an edge, or on a facet of 
the chordal surface.  If a quad node lies on a chordal vertex, 
then the unit average normal computed using Equation 2 and 
radius computed using Equation 3 at the chordal vertex 
determines the sweeping direction and magnitude.  If a quad 
node lies on an edge of the chordal surface, then the normal 
and radius is calculated by linearly interpolating the unit 
average normal and the radius at the end chordal vertices, as 
given below. 

Let iv and jv  be the end vertices of an edge of the chordal 

surface on which a quad node q lies. Let in , jn be the 
average unit normal and ir , jr be the depth at iv and 

jv respectively. 

The sweeping direction n  and magnitude r at q are given 
by Equations 4 and 5. 

ji u nnn +−= )1(    (4) 

ururr ji +−= )1(    (5) 

where parameter 
ij

iu
vv

vq
−
−

= . 

If a quad node lies inside a facet of the chordal surface, then 
the normal and the radius at the quad node are interpolated 
using the chordal vertices of the facet.  

Let A be the area of the triangular facet.  Quad node q  
partitions the triangle into three sub-triangles whose areas 
are 21, AA and 3A , as shown in Figure  8.  The normal n and 
depth ‘ r ’at q are given by Equations 6 and 7. 
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A
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When a quad node lies on a quadrilateral facet of the chordal 
surface, then inverse bilinear interpolation is used to find the 
normal and the depth at the quad node. 
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Figure 8. Interpolation of depth and normal at a 

quad node lying on a chordal surface facet 

7.2. Placing Hex Nodes along the Normal 
Direction at a Quad Node 

After finding the sweeping direction and magnitude at every 
quad node, the quad nodes are swept to place hex nodes at 
regular intervals, based on the number of hex layers needed.  
When the number of layers is even, a hex node coincides 
with the quad node present on the chordal surface, if the 
number of layers is odd, no agreement occurs.  Figure 9 
shows the placement of hex nodes for both even and odd 
numbers of hex layers ‘ m ’. 

For even numbers of hex layers, hex node ih is given by

 )( isi ⋅+= nqh ,  2/0 mi ≤≤  

 )( isi ⋅−= nqh ,  2/0 mi ≤<  
For odd numbers of hex layers, hex node ih is given by 

 )5.0( +⋅⋅+= isi nqh ,  2/)1(0 −≤≤ mi  
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Figure 9. Placing hex nodes at a quad node  



)5.0( +⋅⋅−= isi nqh ,  2/)1(0 −≤≤ mi  

where n  is average unit normal at q  and step 
size mrs /)2( ×= . 

7.3. Building Hex Elements at Quad Element 
Connecting hex nodes to form hex elements is dictated by the 
connectivity of quad nodes in the underlying quad mesh on 
the chordal surface.  Connectivity between the hex elements 
of layered mesh is obtained by the adjacency list of quad 
elements.  Figure 10 shows even and odd number of hex 
elements at a quad element. 
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Figure 10. Layers of hex elements at quad element 

8. RESULTS AND DISCUSSION 

This section presents the results obtained by Hex-Layer on 
the objects whose chordal surface is 2-manifold and the 
results for two industrial parts are shown in Figures 12 and 
13.  The Hex-Layer algorithm is implemented in VC++ using 
OpenGL for graphics display.   

Figures 12 and 13 show the input CAD model, tet mesh, 
chordal surface, quad dominant mesh and layered hex mesh 
of a plastic injection molding component (a car mirror 
casing), and a metal bracket with holes.  The size of the hex 
elements shown in Figures 12 and 13 depend mainly on the 
size of the quad elements on the chordal surface.  Radius 
function and curvature of chordal surface is used to adapt the 
size of the quad elements to geometric features, as shown in 
Figure 12(d).  Figure 12(f) shows the exploded view of six-
layer anisotropic all-hex mesh. 

Hex-Layer generates high quality, almost cuboidal shape hex 
elements with the desired number of hex layers.  Figure 11 
shows the distribution of elements based on the aspect ratio. 
On the average, about 80% of the elements attain the desired 
aspect ratio and the remaining elements deviate only 
marginally from the desired value.  Figure 11 shows the 
distribution of elements based on the scaled Jacobean. Note 
that the scaled Jacobean of most of the hex elements is near 
1.0.  The graph with a plot symbol shows the aspect ratio and 
scaled Jacobean of the hex elements of the geometry adaptive 
anisotropic two-layer all-hex mesh, shown in Figure 12, 

which contains 9602 elements.  The graph without a plot 
symbol shows the aspect ratio and scaled Jacobean of hex 
elements of uniform anisotropic six-layer all-hex mesh, 
shown in Figure 13, which contains 8664 hex elements.  
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Figure 11. Quality metrics of all-hex mesh  

  

9. CONCLUSION 

A new method has been proposed for the generation of the 
chordal surface, which is used as a skeleton to represent the 
3D thin section solids.  A new hex meshing algorithm for the 
generation of multi-layered all-hex mesh of the thin section 
solids, whose chordal surface is 2-manifold, is proposed. The 
algorithm as such need not be restricted to these objects. 
Work is underway to handle the objects whose chordal 
surface is non-manifold. More general classification of the 
tets for objects whose chordal surface is non-manifold, and 
sweeping of quad elements along the tracks  [21] (radii of 
maximal  sphere), will make the algorithm more general.    
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(a) Input CAD model (b) Tet mesh and boundary edges 

 
 

(c) Chordal surface of CAD model (d) Quad-dominant mesh on chordal surface 

 

 
(e) Two-layer geometry adaptive all-hex mesh (f) Exploded view of 2-layer all-hex mesh 

Figure 12. Plastic injection mold component (a car mirror casing) 

 



  
(a) Input CAD model (b) Tet mesh and boundary edges 

 
 

(c) Chordal surface of CAD model (d) Quad-dominant mesh on chordal surface 

 

 

 

(e) Six-layer uniform anisotropic all-hex mesh (f) Exploded view of six-layer all-hex mesh 

 
Figure 13. Thin wall metal bracket  with holes 

 


