Studies of multi-heme cytochromes from Geobacter sulfurreducens
Yuri Londer, P. Raj Pokkuluri, Valerie Orshonsky, Norma Duke and Marianne Schiffer (PI)
Biosciences Division, Argonne National Laboratory, Argonne, IL 60439

Introduction

The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter
sulfurreducens; its genome contains a large number ($\$ 100$) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological
studies are in progress in Prof. Derek Lovevey's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We arg studying cytochromes from the c_{7} family that are required for the reduction of $\mathrm{Fe}(\mathrm{III})$.

Previously, we expressed in E. coli Londer et al., 2002) and determined the three-dimensional structure at 1.45 A resolution (Pokkuluri et al., 2004a) of the threeheme cytochrome c_{7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c_{7}-type domains, two of which consist of four domains

Small c7 cytochromes, PpcA homologs

We cloned, expressed, purified, crystallized and determined the structures by X -ray diffraction
al four three-heme homogh all four three-heme homologs of PpcA, coded by ORFs $601,603,2938,1734$; their crystallographic
lefinement is in progress. Though these proteins have highly homologous sequences and threedimensional structures their surface characteristics differ from each other. We also found that they have different thermal stabilities and different reduction potentials. Laurie DiDonato in Prof. Lovley's group determined that the physiological function of the above homologs is also different; disabling the individual genes coding for them results in different iron reduction rates.

Aligned sequences of the homologs illustrated the different distribution of charged residues (acidic residues Asp and Glu shown in red and basic residues Lys and Arg shown in blue). Insertions and deletions of residues also result in different arrangements in space of the side chains causing variation in surface electrostatic potential.

Summary of data					
	PpcA	РpcB	Ppcc	PpcE	PpcD
	c_{7}	$c_{T}-2$	$c_{7} 3$	$c_{T}-4$	$c_{T} 5$
No.of residues	71	71	75	70	72
Calculated pl	9.2	9.0	8.8	9.5	9.0
Eapp (mV)*	-155	-151	-152	-129	-150
$\%$ of CD signal ${ }^{\dagger}$	81	72	74	36	69
at 90° compared to 25°					
X-ray data resolution, \AA ¢	1.45	1.35	2.25	1.60	1.34
Current R-factor \%	18.2	15.2	27.4	19.3	16.4

Redox potential determined by Prof. Carlos Salgueiro (Universidade Nova de Lisboa)
Stability, measured as change in circular dich hroism with temperature at the heme Stability, measur
absorption band

The structure of PpcA , the c_{7} which is most abundant in the periplasm, differs most significantly from the structures of the other
homologs. In PpcA, heme I and heme IV are further apart, the Fe to Fe distance is $20.8 \AA$ compared with an average of $18.3 \pm 0.2 \AA$ in the other four structures. PpcA has a pocket where a guest molecule is located in its structure, not observed in the other homolog structures. This pocket might be occupied by a quinone molecule in vivo.

Overlap of PpcA and PpcD structures PpcA: C in bue, hemes \& deoxycholic acid in gree
PpcD: C in magenta, hemes in gray

Overlap of PpcB and PpcE structures PpcB: C_in blue, hemes in greeen
PpcE: C_ in magenta, hemes in gray $^{\text {and }}$

[^0]Electrostatic potential on the molecular surfaces calculated by the program GRASP are shown (negative in red; positive in blue); the molecules are in the all the hemes; PpcA was overlapped using heme III and heme IV only. For this presentation the guest molecule, deoxycholate was removed from the calculation,
resulting in a cavity surrounded by positive potential.

C_{7}-type four domain polymer
We developed methods to express cytochromes c with up to 12 heme E. coli. We purfifed and crystallized domains C , the two domain protein

II

We have determined the x-ray structures of domain C (Pokkuluri et a 2004b) and domains CD. These $c 7$-type domains that form the polymer epresent a new family of cytochromes c that has not been previously described. While two of the hemes are bis-histidine coordinated as found in cytochromes $c_{\text {, }}$ and c_{c} the third one is coordinated by a histidine and a nethionine which is expected to make its redox potential more positive tha
hose of the other two. Indeed, the midpoint reduction potential (Eapp) of domain C is $-105 \mathrm{mV}, 50 \mathrm{mV}$ more positive than that of PpcA.

The structure of the two domain protein (CD) shows that the domain could form a chain as we have predicted based on the packing of the molecules in the crystals formed by PpcA.

The structure of the domain C (R-facior 19.5\% for 1.7 A esolution data) with C_ in blue and hemes in green.

The preliminary structure of the CD two-domain unit, CD. Hemes of neighboring domaint
D are 14.9 A apart.

Crystals of the four domain molecule

[^1]
[^0]:

[^1]:

