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Abstract

We extend the “Sparse LDA” algorithm of [7] with
new sparsity bounds on 2-class separability and efficient
partitioned matrix inverse techniques leading to 1000-fold
speed-ups. This mitigates the O(n*) scaling that has lim-
ited this algorithm’s applicability to vision problems and
also prioritizes the less-myopic backward elimination stage
by making it faster than forward selection. Experiments
include “sparse eigenfaces” and gender classification on
FERET data as well as pixel/part selection for OCR on
MNIST data using Bayesian (GP) classification. Sparse-
LDA is an attractive alternative to the more demanding Au-
tomatic Relevance Determination. State-of-the-art recogni-
tion is obtained while discarding the majority of pixels in
all experiments. Our sparse models also show a better fit to
data in terms of the "evidence” or marginal likelihood.

1. Introduction

Spectral techniques have become an integral tool for
learning and optimization in computer vision. Examples in-
clude Normalized Cuts [14] and Spectral Clustering [15], in
which a global eigenvector solution minimizes a continuous
(convex) relaxation of an otherwise NP-hard combinatorial
objective function. Some form of post-processing is then
applied to such approximate solutions in order to yield the
desired segmentation, clustering or partition. More tradi-
tional use of spectral methods is in subspace dimensionality
reduction and various factor-analytic techniques (e.g., PCA,
LDA, etc.) which are almost ubiquitous in dealing with
intrinsically high-dimensions and/or densely-sampled data
(e.g., imagery and other spatial random fields).

The added constraint of sparsity however, fundamentally
changes the nature of spectral techniques. Global eigenvec-
tors are seldom sparse and ad-hoc methods of forcing them
to be sparse (with post-processing) can lead to significant
suboptimality. From the point-of-view of dimensionality
reduction, lack of (input) sparsity is counter-productive as
a non-sparse recipe (from even a single eigenvector) means
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using a (linear) combination of all the variables. Moreover,
finding a low-dimensional manifold that is compactly pa-
rameterized by such derived (mixed) features is not always
straightforward or even advantageous.

Sparsity is closely related to variable selection and au-
tomatic relevance determination (ARD), problems of en-
during interest to the machine learning and statistics com-
munity. Sparseness implies selection and is typically in-
voked by means of continuous optimization with an /; norm
penalty (e.g., Lasso) or “relevance priors.” For example,
Roth & Lange [13] use a wrapper feature selection method
by incorporating LDA into the M-step of an EM algorithm
via regression (Fisher scoring). By imposing standard ARD
(diagonal) Gaussian priors with Gamma hyperpriors they
achieve the hierarchical Bayesian equivalent of variable se-
lection with a Student-f type “norm.”

In the computer vision community there has been much
interest in visual learning of parts-based representations, of-
ten in the form of sparse bases. In face recognition (FR), the
standard eigenfaces algorithm (PCA) has often been criti-
cized for its lack of sparseness and topology. Alternative
subspace methods like Local Feature Analysis (LFA) [11]
were meant to directly address these shortcomings. Mean-
while, Bartlett ez al. [1] proposed Independent Component
Analysis (ICA) for FR as its basis functions exhibit sparse-
ness. Similarly, Lee & Seung [6] advocated using Non-
negative Matrix Factorization (NMF) for visual represen-
tations, as non-negativity was deemed more neurologically
plausible. More recently, Zass & Shashua [16] proposed
Nonnegative Tensor Factorization (NTF) for use in parts-
based representations (including sparse PCA). While non-
negativity is an important constraint in some applications
(e.g., portfolio optimization), its use in image representa-
tion is primarily motivated by its tendency to promote spar-
sity. In contrast, the subspectral algorithms addressed in this
paper do not employ non-negativity, as sparsity is directly
imposed as a hard constraint (as opposed to being induced
indirectly). Also, the appeal to the non-negativity of visual
representation seems less compelling given recent findings
of neurons which encode negative or subtractive responses.



2. Background

In statistics, several new techniques have been proposed
for sparse spectral decomposition. Specifically, Zou et
al. [17] proposed a sparse PCA algorithm (called SPCA)
using an “Elastic Net” framework for [ -penalized regres-
sion on regular PCs. Subsequently, d’ Aspremont ef al. [3]
relaxed the hard cardinality constraint with a simpler convex
approximation using semi-definite programming (SDP) for
a more “direct” formulation (called DSPCA). In contrast,
an alternative discrete spectral framework was recently pro-
posed by Moghaddam et al. [8], using variational bounds
on the covariance “subspectrum” derived by the eigenvalue
Inclusion Principle. This discrete algorithm yielded sub-
stantial performance gains using a greedy search (GSPCA)
and was also faster than continuous methods.

We extended this sparse EVD framework to supervised
learning in [7], using a sparse reformulation of the Courant-
Fischer "Min-Max” theorem for deriving generalized spec-
tral bounds, thus subsuming sparse PCA as a special case
of sparse LDA. Our variable selection algorithm functions
as a filter (as opposed to a wrapper), using only 2nd-order
statistics of the data — e.g., in (Fisher) Linear Discrimi-
nant Analysis (LDA). Sparse LDA (SLDA) maximizes a
generalized eigenvalue (generalized Rayleigh quotient) in
a cardinality-constrained subspace (variable subset). This
gives an exact formulation of sparse generalized EVDs
and also suggests a simple post-processing step (variational
renormalization) for improving continuous solutions. In [7]
we also proposed an exact optimal algorithm (ESLDA) us-
ing branch-and-bound. However, our focus here will be on
optimizing our greedy algorithm (GSLDA) specifically for
binary (2-class) sparse linear discriminants.

3. Sparse Generalized EVD

Fisher Linear Discriminant Analysis (LDA) can be cast
as a generalized eigenvalue decomposition (EVD), where
given a symmetric matrix pair A, B € 8, correspond-
ing to the between-class and within-class covariance ma-
trices respectively, we maximize a class-separability cri-
terion defined by a generalized Rayleigh quotient (GRQ)
R(z) = (2T Az)/(zTB x). The optimal solution is the
eigenvector corresponding to the maximal eigenvalue of
B~1/2AB~1/2. Without the sparsity constraint the GRQ
obeys the global bounds Ai(A, B) < R(x) < A, (A, B).
Note that A’s are ranked in increasing order, thus Apnin = A1
and A\pax = A\p,-

The sparse version of LDA (or any GRQ cast as a G-
EVD) is obtained by adding a cardinality-constraint on x:
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where card(x) denotes the [y norm. However, this objective
function is non-convex and NP-hard. Note that the special
case of B = [ defaults to sparse PCA, therefore any algo-
rithm for sparse LDA will also solve sparse PCA.
Optimality conditions are based on the equality
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where 2z € RF is the nonzero subvector of = and (A, By)
are the k x k principal submatrices of (A, B) obtained by
deleting the rows/columns corresponding to the zero indices
of z. The reduced quadratic form in z is equivalent to a stan-
dard unconstrained GRQ and since this subproblem’s max-
imum is Ag (A, By), this must also be the optimal R. This
reveals the true combinatorial nature of SLDA (or SPCA)
wherein solving for the optimal solution is inherently a dis-
crete search for the k£ indices which maximize the A, 4« of
a subproblem (Ay, By) — i.e., the subspectrum.

Indeed, continuous solutions are only useful in yielding a
sparsity pattern with which to solve an unconstrained sub-
problem in (A, By). Otherwise, they are typically sub-
optimal and must be “’variationally renormalized” using the
above equality. In [8] we showed that the ad-hoc method
of ”simple thresholding” (ST) — setting the smallest load-
ings to zero and renormalizing to unit-norm — is greatly en-
hanced by this “’fix.” We use this improved ST on the global
Fisher vector of LDA in the experiments in Section 6.

3.1. Generalized Spectral Bounds

We have seen that Ay,ax (Ag, Bx) play a key role in defin-
ing SLDA solutions. But due to the combinatorial number
of subspectra we prefer a more concise characterization by
the \;(A, B) which are readily available. The global spec-
trum and all its subspectra are indeed related.

Theorem 1 Generalized Inclusion Principle [8]. Con-
sider the symmetric pair A, B € S™ with generalized spec-
trum \;(4, B). Let (Ag, By) be a corresponding pair of
k x k principal submatrices with 1 < k& < n, and general-
ized subspectrum \; (A, By). Then, forall 1 <i <k

In other words, the generalized eigenvalues of (A, B)
form upper and lower bounds for the generalized eigenval-
ues of all the principal submatrices (Ayg, Bx). Indeed, the
subspectra of (A,,, By,) and (Ay,41, Bimt1) interleave or
interlace each other, with the eigenvalues of the larger ma-
trix pair “bracketing” those of the smaller one. For positive-
definite symmetric matrices (covariances), augmenting A,
to A,,11 (adding a new variable) will always expand the
spectral range: reducing A, and increasing Ap.x. This
monotonicity has important theoretical as well as practical
consequences for combinatorial optimization algorithms.



Since SLDA seeks to maximize the GRQ, the relevant
inequality in Eq.(3) is the one with ¢ = k, thus yielding

)\k(A7B) S Amax(AkaBk) S A77,(1473) (4)

This shows that the k-th smallest eigenvalue of (A, B)
is a lower bound for the class-separability criterion of
sparse LDA with cardinality & (see also Section 4).

Given this discrete search formulation, branch-and-
bound techniques [10] are ideally suited for sparse LDA.
In [7], the generalized inclusion bounds are used for exact
search (ESLDA) to find globally optimal solutions, albeit
for smaller problems (n < 40) since branch-and-bound can
exhibit exponential worst-case complexity.

Greedy techniques like backward elimination can also
exploit the monotonic nature of nested submatrices and
their “bracketing” eigenvalues: start with the full index
set I ={1,2,...,n} and sequentially delete the variable
j which yields the maximum Apax (A, By ;) until only k&
elements remain. For small cardinalities £ << n, the high
cost of backward search makes its forward counterpart for-
ward selection more attractive (despite it being potentially
“myopic”): start with the null index set I = {} and se-
quentially add the variable j which yields the maximum
Amax(A+j, Byj) until k elements are selected.

In [8, 7], we proposed a simple bi-directional greedy
search: pick the better of 2 solutions found by a forward
and (independent) backward pass. This simple strategy has
led to remarkably good results (e.g., out-performing a vari-
ety of continuous algorithms). The dual-pass search has the
added benefit of giving near-optimal solutions for all cardi-
nalities (at once), with a complexity that is less demanding
than finding single % solutions (one at a time).

4. Sparsity Bounds for Binary SLDA

For general multiclass sparse LDA (full-rank A) the ob-
jective value of any solution of cardinality %k is bounded
from below by the k-smallest global eigenvalue A\, (A, B).
This bound characterizes the worst-case scenario and can
be used to choose the smallest & that guarantees a mini-
mum required variance (class-separability). However, this
bound becomes trivially zero for 2-class SLDA, since
Ak(A, B) =0 forall k£ < n due to the rank-1 A matrix.

Using the trace inequality for matrix products on sub-
problems of size k, we derive the following new bound on
the objective value A\, (Ag, Br) = aka’lak
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where Sj is the sum of the k largest diagonal elements of
A. The r.h.s. of Eq(5) is a global (worst-case) lower bound
(i.e. it applies to all possible solutions of cardinality k re-
gardless of how sub-optimal they may be). To illustrate,

Tr(B;, 'agal) > (5)
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Figure 1. A sample lower bound on the binary SLDA objective.

Figure 1 plots this lower bound for a sample problem along
with the global optima found by branch-and-bound search.
Also shown (in red) are the locally optimal solutions for
every possible sparsity pattern. For example, this lower
bound indicates that in order for every subproblem found
(no matter how suboptimal) to capture GRQ(k) > 0.1, the
cardinality must be £ > 5. While it is possible to get tighter
(best-case) bounds by using the full spectrum \;(B), the
bound in Eq(5) is one of the simplest, as it only relies on
the diagonal elements of A and A\p,.x(B).

In addition to these global (worst-case) bounds, some
best-case bounds for greedy search can be derived from
Theorem 1. For example, in [8] we show that SLDA obeys
certain “nesting” bounds on backward search, where among
all the n possible (n — 1)-by-(n — 1) principal submatrices
of the pair (A, B), obtained by deleting a single (say j-th)
row and column, there is at least one whose objective value
is no less than =1 of Aax(A, B)
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This nesting bound can be applied recursively in backward
search mode to show, for example, that our greedy solutions
are guaranteed to achieve no less than the fraction k/n of
the initial (global) Apax (A, B). In actual practice of course,
one captures far more variance than what this linear bound
indicates, due to the overly pessimistic assumptions implicit
in the recursion of Eq(6). In addition to having guarantees
for GSLDA itself, lower bounds on A4« can be used to find
minimax error bounds for hyperplane classifiers [5].

5. Efficient Eigenvalue Computation

Discrete algorithms for the general (full-rank) case of
sparse PCA/LDA will require O(k?) EVDs for each sub-
problem (Ay, By). This is essentially unavoidable and
leads to the usual difficulties with scaling of complex-
ity: forward search has O(n?3) (or less) whereas backward
search has O(n*) (or more). The latter limits the use of
the (usually) more accurate backward search for large n.



Nevertheless, greedy algorithms were still more efficient
(and accurate) than continuous ones (see details in [8]).

Fortunately, for the special case of binary classification
the required GSLDA computations can be made exceed-
ingly efficient as the only finite eigenvalue Ayax( Ak, Bi)
can be computed in closed-form as af Bj, *ay. This is due
to the rank-1 A matrix in the GRQ numerator being a sim-
ple outer-product A = aa”'. Hence the computational com-
plexity of 2-class GSLDA hinges on our ability to invert
By, submatrices “on-the-fly.” A naive implementation, even
with a Cholesky decomposition, is still grossly inefficient
as By and By differ by a single row/column. Therefore,
partitioned matrix inverse techniques [4] and simple rank-
1 updates for the required B, ! are highly recommended.
These implementation details are given in the Appendix.

Moreover, by computing the increments of change in the
GRAQ (instead of final values), intermediate terms (matrix-
vector byproducts) will cancel, leading to an essentially
“loop-free” array computation over the available indices
considered for inclusion/deletion. Consequently, these op-
timized algorithms offer a significant speed-up for 2-class
GSLDA (e.g., by several orders of magnitude). This opens
up the possibility of applying subspectral optimization tech-
niques to a wider range of problems such as pixel or object
part selection in computer vision.

For example, a full (dual-pass) run of the algorithm
in [7] for a matrix of size n = 1024, using “on-the-fly”
Cholesky computation of Apax(Ak, Bi), takes approxi-
mately 12 hours of computation (in Matlab 7.2 on a 3.2GHz
P4) where 80% of the cputime is taken up by the backward
pass. In stark contrast, our implementation using rank-
1 updates on partitioned inverses requires only 2 minutes,
where the backward pass now takes up only 40% of the total
cputime (due to its simpler rank-1 updates, see Appendix).
This represents a speed-up factor of 340. For even larger
matrices (n > 2000) the cputimes were ~ 103 faster than
those of the default GSLDA. For example, with n = 2048
the original algorithm required about 12 days of cputime
whereas our optimized version required just 20 minutes,
with backward search using only 1/3 of the total cputime.

6. Experiments

Before presenting the experimental results with bi-
nary GSLDA, we first illustrate pixel/part selection using
GSPCA, by computing “sparse eigenfaces” for 2D FR and
sparse eigenshapes (segments) for 3D face modeling. Al-
though sparse PCA means working with unlabeled data in
an unsupervised setting, these examples will motivate the
GSLDA results in the next section.

Figure 2-(left) shows the average face of a database of
roughly 11,000 20-by-16 pixel images of frontal faces of
370 individuals obtained in a real access control setting (in
afactory) on 2 separate days, in 2 different locations and un-
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Figure 3. Variance curves for forward & backward GSPCA.

der 2 different lighting conditions. Figure 2-(middle) shows
our full mask which totals n = 174 pixels. We have down-
sampled the data specifically for this illustrative example.

We compare standard eigenfaces (PCA using the full
mask) to its sparse version using the subset of pixels found
by sparse PCA. We compute the full covariance matrix of
size n = 174 and apply the dual-pass GSPCA algorithm [8].
The resulting variance curves are shown in Figure 3 where
the forward/backward passes find sparse solutions of com-
parable variance (true only at this low resolution). Note that
by using only half the pixels (kK = 85) there is no appre-
ciable loss compared to the total variance of a full mask
(k = 174). The selected pixels, corresponding to the spar-
sity pattern of the first GSPCA eigenvector of cardinality
k = 85 is shown in Figure 2-(right). Note that the pixels
in the eyes were not selected because at this low resolution
there is almost no variability in the appearance of eyes (this
however is not the case at higher resolutions).

Using the sparsity pattern found, we compute eigenfaces
for both the full and sparse masks as shown in Figure 4
where we have kept the same sparsity mask for the higher-
order sparse eigenfaces (for simplicity). Note the subtle
differences between the pixels (parts) common to the dif-
ferent sets of bases. Sparse eigenvectors are encoding dif-
ferent (local) aspects of the data than the global ones. We
now compare the verification performance of the two meth-
ods by using the same number of basis functions (100 in
this case) in encoding each face. To calibrate the overall
difficulty of the verification task (matching 7400 probes to
3700 galleries) we note that a leading commercial FR sys-
tem achieved an EER of about 1% on this data but at 16
times higher resolution (80x64 pixel frame). Figure 5 shows
the ROC curves obtained, where the sparse model using the
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Figure 4. Top 8 eigenfaces with full and sparse masks.
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Figure 5. ROC for full and sparse eigenfaces.

same number of basis functions shows better FPR and FNR
at every operating point. The EER has dropped from 1.7%
down to 1.0% and the AUC from 0.26% down to 0.08%.
This is encouraging not only in terms of verification perfor-
mance, but also considering that the sparse model required
half as many basis pixel values to be stored for projections.
Alternatively, we could say that the 100 GSPCA bases were
modeling only 85 pixels as opposed to 174, thereby increas-
ing their explanatory power. Either way, it is noteworthy
that nearly all pixels omitted by GSPCA correspond to near-
uniform (redundant) parts of the face like the cheeks (or
eyes in this low-resolution case).

It is also possible to use sparse eigenvectors for model-
ing 3D shape. In fact, the "Morphable Model” approach for
3D face modeling [2], often uses modular PCA segments
for a coarse parts-based representation of shape (for greater
flexibility). The full face mesh is (re)constructed by stitch-
ing together (blending) these individual part meshes (which
can overlap). However, this segmentation is mostly a con-
venient ad-hoc partition into the usual eye-region, mouth-
region, efc. In contrast, sparse PCA can discover shape
parts automatically in a purely statistical (data-driven) man-
ner. Figure 6 shows the vertex pattern of 3 sparse eigenvec-
tors obtained using (forward) GSPCA on the XYZ mesh,
in standard coarse-to-fine fashion (for reducing computa-
tion). Note that selected regions (shown textured) do co-
vary, like protruding chins and noses or symmetric left/right
cheeks, and are indeed jointly coupled face parts. These
segments are quite different from the a prior partitions into
eye/nose/mouth. This sparse analysis is more “correct” in
letting the shape statistics dictate the 3D part segmentation.

Figure 6. 3D parts found using GSPCA on XYZ data.

6.1. Pixel Selection with GSLDA

We evaluated our optimized GSLDA variable selection
method (or "hard-ARD”) along with simple thresholding of
the Fisher discriminant (the global eigenvector of LDA). We
also compared these to the “soft-ARD” estimation of hy-
perparameters with marginal likelihood maximization. In
all the experiments we used the GPML Matlab toolbox of
Rasmussen & Williams ! for both GP classification and re-
gression (see [12] for details). All computations were car-
ried out with Matlab 7.2 on a 3.2GHz Pentium 4. In Sec-
tion 6.1.1 we give a detailed account of USPS digit clas-
sification using GSLDA and a similar treatment in Sec-
tion 6.1.2 for gender classification on the FERET database.
Both of these datasets have similar data dimensionality and
number of training/testing cases.

6.1.1 USPS Digit Classification

We compared GSLDA hard-ARD to the Fisher thresholded
pixel selection for classification of 16-by-16 USPS digits
“3” vs. “5”. We used a balanced partition of the USPS data
into 767 training cases split 406/361 for the digits “3” and
“5” and a test set of 773 cases split into 418/355, following
the evaluation protocol in [12]. Using the class means in the
training set (Figure 10(a,b)) and an estimate of the within-
class covariance B, we applied GSLDA to find hard-ARD
solutions for each cardinality k. The total cputime of the
optimized dual-pass GSLDA was less than 2 seconds. Fig-
ure 7 shows the resulting forward/backward GSLDA objec-
tives for all values of k. Note that backward search yields
better solutions than the forward search and that the sim-
ple (global) technique of Fisher thresholding is uniformly
inferior to GSLDA in terms of the captured variance.

For every selected pixel-set of size k, we trained cor-
responding GPCs using both Laplace and EP approxima-
tions of the latent posterior (with probit likelihoods), in-
cluding separate hyperparameter estimation by maximiz-
ing marginal likelihood. The kernel function used was the
squared-exponential with 2 hyperparameters: a signal vari-
ance term and a common lengthscale (i.e., a non-ARD ker-
nel) — see [12] for details of these computations. The
main performance criteria used were fest error and the test
set’s averaged log predictive probability or test information,

! http://www.gaussianprocess.org/gpml/code
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Figure 7. Hard-ARD for USPS digits 3-vs-5: GRQ objectives for

greedy forward/backward search (GSLDA) and Fisher threshold-
ing vs. cardinality of selected pixel-set.
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Figure 8. Laplace and EP GPC on USPS digits 3-vs-5: profiles
of test information (blue) and test error (red) vs. the cardinal-
ity of hard-ARD pixel-sets found by GSLDA. All pixels shared a
common length-scale hyperparameter in the covariance kernel.
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Figure 9. Laplace and EP GPC on USPS digits 3-vs-5: profiles of
log marginal likelihood vs. the cardinality of the hard-ARD pixel
sets found by GSLDA. Selected pixels had a common length-scale
hyperparameter in the covariance kernel.

expressed in terms of the fraction of the available bit cap-
tured by the GPC for making predictions (i.e., essentially
the balance of entropy in model predictions vs. target la-
bels, hence 1.0 bits being ideal). The results are shown
in Figure 8 which show that we require much less than
all n = 256 pixels to make accurate predictions, as pixel-
sets of size k = 150 suffice in terms of test error and test
information. In fact, it is mostly for the sparsest regimes
(k < 50) that performance seriously degrades. This is con-
firmed by the log marginal likelihoods shown in Figure 9.
We next examine the alternative soft-ARD by estimating
individual pixel lengthscales with the marginal likelihood.
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Figure 10. USPS digits 3-vs-5: class means (a) & (b), soft-
ARD relevance maps (inverse-lengthscale hyperparameters) for
Laplace-GPC (c) and EP-GPC (d), Fisher loadings (e) and location
of the optimal single-pixel found by GSLDA (f).
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Figure 11. Laplace GPC on USPS digits 3-vs-5: comparing test
information (blue) and test error (red) with pixel subsets found
by Fisher thresholding (solid) and GSLDA (dashed) for k < 50.

The squared-exponential kernel now requires 257 hyperpa-
rameters (1 for each pixel and 1 for the overall signal vari-
ance/scale). This is a much more demanding computation,
requiring a conjugate-gradient search in a 257-dimensional
space (as opposed to 2-dimensional) and requires far more
cputime. To appreciate the added burden, soft-ARD re-
quired approximately 4 minutes of cputime for the Laplace-
GPC and 21 minutes for the EP-GPC (independently of
k). We contrast this with the mere 2 seconds required by
GSLDA for all k. There is also the added concern of hav-
ing more local optima in the marginal likelihood with this
many hyperparameters and an increased risk of over-fitting.
The saliency (relevance) of individual pixels can be visu-
alized by displaying the inverse-lengthscales in image for-
mat as in Figure 10(c) and (d), for Laplace and EP GPCs, re-
spectively. Although not easy to interpret, there does appear
to be more relevance associated with pixels near the upper
right-hand cusp of the digit ”’5” (where it differs markedly
from ”3”). By comparison, we show the corresponding
loadings (absolute-value elements) of the Fisher discrimi-
nant (LDA eigenvector) in Figure 10(e) which bears a re-
semblance to the relevance maps in (c) and (d). Note that
ranking the elements of this eigenvector was how we ob-
tained the pixels-sets for Fisher thresholding in Figure 7.
Using the soft-ARD relevance maps in (c) and (d), we
can also rank pixels according to inverse-lengthscales to
form subsets of various size k. But this turns out not to
yield the best performance (same as with Fisher threshold-
ing, to be presented shortly). In fact, visual inspection of
the relevance maps in Figure 10(c)-(e) might lead us to con-
clude that the upper-right cusp (gap) of the digit “5” is in
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Figure 12. Hard-ARD for FERET faces M-vs-F: GRQ objective
values for greedy forward/backward search (GSLDA) and Fisher
thresholding vs. pixel-set size k.

fact the most salient object part. Indeed, all 3 maps seem
to confirm this. However, this location does not correspond
to the most discriminant part. In fact, the single most dis-
criminant pixel, found by GSLDA, is shown in Figure 10(f)
and corresponds to the upper-/eft cusp (gap) of the digit “3”
instead (note that this is the optimal single pixel in terms
of maximal GRQ). Indeed, it is through a combination of
these two parts (cusps) that the best discrimination is ob-
tained. Thus the soft-ARD relevance maps in (c) and (d)
could (in this case) mislead us into focusing on the wrong
pixels. This mis-specification is more problematic in the
sparsest of regimes only, as shown in Figure 11 where we
compare the test error and test information for a Laplace-
GPC for k < 50 (similar results were obtained for an EP-
GPC). Clearly, GSLDA subsets are doing better. However,
beyond k£ = 100 there are sufficiently many different pixels
to make both subsets perform satisfactorily (this is a com-
mon phenomenon with highly-correlated spatial data). In
Figure 11 we also see that in the extreme case of using a
single pixel, we do in fact do twice better than chance, but
only by choosing the optimal pixel shown in Figure 10(f).

6.1.2 FERET Gender Classification

We next apply the same pixel selection protocol to FERET
gender classification. We use 21-by-12 “thumbnails” in or-
der to compare to a previous study which benchmarked dif-
ferent classifiers [9]. 1755 such thumbnails (1044 M and
711 F) were split in half (878/877) for train/test partitions.

Figure 12 shows the GSLDA results. Once again back-
ward search performs better than forward and Fisher thresh-
olding is inferior for all k. Total cputime of GSLDA was
less than 2 seconds. The test error and test information in
Figure 13 indicate that far fewer than n = 252 pixels suf-
fice for making accurate predictions (even at this low reso-
lution). Once again, only in the sparsest regimes (k < 50)
does performance seriously degrade. This is confirmed by
the log marginal likelihoods in Figure 14, where the best
model fit actually favours the range 30 < k& < 100.

] 50 100 150 200 250
cardinality (k)

Figure 13. Laplace and EP GPC on FERET faces M-vs-F: profiles
of test information (blue) and test error (red) vs. cardinality of
hard-ARD pixel sets found by GSLDA. All pixels shared a com-
mon length-scale hyperparameter in the covariance kernel.
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Figure 14. Laplace & EP GPC on FERET faces M-vs-F: plot of log
marginal likelihood vs. size of hard-ARD pixel-sets of GSLDA.
Selected pixels had common length-scale hyperparameters.
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Figure 15. FERET M-vs-F: class means (a) & (b), soft-ARD rel-
evance maps (inverse-lengthscale hyperparameters) for Laplace-
GPC (c) and EP-GPC (d), Fisher loadings (e) and location of the
optimal single-pixel found by GSLDA (f).
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Figure 16. Laplace GPC on FERET faces M-vs-F: plots of the
test information (blue) and test error (red) of pixel-sets found by
Fisher thresholding (solid) and GSLDA (dashed) for £ < 50.

The M/F class means in Figure 15(a,b) indicate the far
greater subtlety of this discrimination task (compared to
USPS). Figure 15 shows soft-ARD relevance maps in (c,d)



and Fisher loadings in (e). These maps are even harder
to interpret. Their maxima do not correspond to the best
single-pixel, shown in (f). They also select the wrong pix-
els for £ < 50. Figure 16 shows a big deficit in test error
for Fisher thresholding (similar or worst results were found
for soft-ARD). For k < 4 Fisher subsets have only chance
level performance (here 40% due to the 60/40 gender mix
of the data). In the extreme single pixel case we once again
do much better than chance. Not surprisingly, this pixel is
in the upper lip where facial hair (mustache) readily dis-
tinguishes gender. Our best error rate (4.5% with EP) is
comparable to [9] using SVMs with all 252 pixels (3.4%),
since that study used an 80/20 split as opposed to our 50/50.

7. Discussion

By using GSLDA as a filter we decouple the sparsity
estimation from the subsequent inference stage. In con-
trast, others embed sparsity estimation within the inference,
which works best when sparsity already exists or can at least
be induced by the prior. Our approach enforces sparsity as
a hard constraint and leaves the inference stage (relatively)
intact and much simpler. This is partly justified by the fact
that a full Bayesian treatment of sparsity is still NP-hard (as
the partition function has 2™ terms). In fact, even “exact”
inference with sparsity-inducing priors like the Laplacian is
only approximating a cardinality constraint, since the con-
vex [; norm is being used as a surrogate for the [y norm.

The GSLDA algorithm of [7] is highly effective, captur-
ing more variance than all continuous algorithms currently
available. But the complexity of its backward search has up
to now limited its range of applications. Our partitioned ma-
trix improvements lead to ~ 10 speed-ups and a state-of-
the-art algorithm for 2-class SLDA, which readily extends
to sparse nonlinear discriminants using kernel methods.

Appendix

For forward greedy search, let s be the current subset of
k indices and t = s Ui for a candidate ¢ ¢ s. Given the
current inverse B!, the new augmented inverse is

-1 T
where v; = B! B,; with (si) indexing the s rows and i-th
column of B and the scalar r; = 1/(B;; — BLv;). The cor-
responding SLDA objective is Amax (A¢, By) = al By, La,.
If we expand the expression for the incremental change
A; = Amax(A¢, Bt) — Amax(4s, Bs) intermediate terms
cancel, leading to a (loop-free) array computation for A.

For backward greedy search (going from the index set ¢
down to s), by partitioning the current inverse as follows

— Pss qi
Bttl - [ q;‘r % ]

a simpler rank-1 update results: B.! = Pss — qiq] /2.

Once again, by solving for the increments A;, many redun-
dant calculations can be avoided. This backward computa-
tion is now even more efficient than the forward one, since
“growing” an inverse is harder than “shrinking” it.
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