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Abstract. This paper describes the 2007 meeting speech-to-text sys-
tem for lecture rooms developed at the Interactive Systems Laboratories
(ISL), for the multiple distant microphone condition, which has been
evaluated in the RT-07 Rich Transcription Meeting Evaluation sponsored
by the US National Institute of Standards and Technologies (NIST). We
describe the principal differences between our current system and those
submitted in previous years, namely the use of a signal adaptive front-
end (realized by warped-twice warped minimum variance distortionless
response spectral estimation), improved acoustic (including maximum
mutual information estimation) and language models, cross adaptation
between systems which differ in the front-end as well as the phoneme set,
the use of a discriminative criteria instead of the signal-to-noise ratio for
the selection of the channel to be used and the use of decoder based
speech segmentation.

1 Introduction

In this paper, we present the ISL’s most recent lecture meeting speech-to-text
system for lecture rooms, which has evolved significantly over previous ver-
sions [1–4] and which were evaluated in the NIST RT-07 Rich Transcription
Meeting Evaluation. The system described in this paper shares many common
elements, e.g. the two phoneme sets and the cluster tree, with last years evalu-
ation system as described in [1]. However, it differs from it in several important
ways which will be described in this paper.

Notable improvements in the system architecture are:

– besides our standard warped minimum variance distortionless response
(WMVDR) [5] front-end we have used a signal adaptive front-end pro-
vided by warped-twice warped minimum variance distortionless response
(W2MVDR) [6] spectral estimation

– to exploit benefits from cross system adaptation and system combination we
have varied both the front-end and phoneme set [7] which gives an additional
accuracy improvement of 0.5% over the usage of a single phoneme-set
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– replacement of the signal-to-noise ratio (SNR) by a class separability mea-
sure for channel selection [8]

– decoder based speech segmentation [9]
– improved acoustic models due to maximum mutual information estimation

(MMIE) training [10] where the speaker dependent adaptation matrices are
unchanged during the MMIE training

We also improved our language models by incorporating additional data col-
lected from the world wide web. We used only acoustic models which have been
trained with vocal tract length normalization (VTLN) [11], however incremental
speaker adaptation in the first pass, as in last year system, was not used. Last
but not least, we used different additional acoustic training material.

Most of the decoding experiments described in this paper were either con-
ducted on the lecture meeting portion of the RT-05S development and evaluation
set or the current RT-07 development set.

2 Automatic Segmentation

Automatic segmentation for the various conditions of the lecture subtasks is
provided by different systems.

For the individual head-mounted (IHM) condition, which is particularly dif-
ficult due to cross talk from background speakers, we have relied on the segmen-
tation and speaker clusters provided by ICSI [12].

For the single distant microphone (SDM) and multi distant microphone
(MDM) condition we used a different approach than in previous years: We have
used a multi-microphone extended version of the single-microphone system which
we used in this years English European Parliament Plenary Sessions transcrip-
tion system developed and evaluated under the TC-STAR project [9]. First, from
every session, the channel of the unsegmented recording with the highest SNR
is selected. In order to determine speech and non-speech regions a decoding pass
is performed on the unsegmented audio. Segmentation is then done by consec-
utively splitting segments at the longest non-speech region that is at least 0.3
seconds long. The resulting segments had to contain at least three speech words
and had to have a minimum duration of three seconds. The maximum duration
was set to sixty seconds.

In order to group the resulting segments into several clusters, with each
cluster, in the ideal case, corresponding to one individual speaker we used the
same hierarchical, agglomerative clustering technique as last year which is based
on TGMM-GLR distance measurement and the Bayesian information criterion
(BIC) stopping criteria [13]. The resulting speaker labels were used to perform
feature and acoustic model adaptation in the multi-pass decoding strategy as
described in Section 4.1.
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3 System Training and Development

All speech recognition experiments described in this paper were performed with
the help of the Janus Recognition Toolkit (JRTk) and the Ibis single pass de-
coder [14].

3.1 Front-End and Phoneme Set

To increase accuracy via cross system adaptation we used two front-ends and
phoneme sets. One front-end, identical to last years system, replaces the Fourier
transformation by a WMVDR spectral envelope of model order 30. In contrast to
our RT-06S system, we have replaced the mel frequency cepstral coefficient front-
end by a signal adaptive front-end provided by W2MVDR spectral estimation.
Due to the properties of the WMVDR, the mel filterbank has to be replaced by a
linear filterbank (in the case of model order 60) or dropped completely (done so
for model order 30). The advantages of the WMVDR approach are an increase
in resolution in low frequency regions relative to the traditionally used mel fil-
terbanks, and the dissimilar modeling of spectral peaks and valleys to improve
noise robustness as noise is present mainly in low energy regions. The advantage
of a signal adaptive front-end is that classification relevant characteristics are
emphasized while classification irrelevant characteristics are alleviated according
to the characteristics of the signal to be analyzed, e.g. vowels and fricatives have
different characteristics and therefore should be treated differently.

Both front-ends use a 42-dimensional feature space based on 20 cepstral coef-
ficients with linear discriminant analysis and a global semi-tied covariance (STC)
transform [15] with utterance-based cepstral mean and variance normalization.

Table 1 and Table 2 compare different front-ends for close and distant data
on RT-05S development and evaluation data (lecture meeting). A detailed de-
scription about the W2MVDR spectral estimation, the signal adaptive front-end
and the training setup can be found in [6]. For close talking the proposed signal
adaptive front-end is superior to all investigated front-ends. On distant speech
the proposed signal adaptive front-end is superior to most of the investigated
front-ends.

The first phoneme set (p1) used is an adapted version of the phoneme set
used by the Carnegie Mellon University (CMU) dictionary that consists of 45
phonemes and allophones. The second phoneme set (p2) used is an adapted ver-
sion of the Pronlex phoneme set which consists of 44 phonemes and allophones.
Pronunciations of unknown words were either generated automatically by Festi-
val [16] for the CMU dictionary or by Fisher’s grapheme-to-phoneme conversion
tool [17] for the Pronlex system.

3.2 Acoustic Model Training

The training setup was based on last years evaluation system. However, this
year we selected the training data that performs best on distant talking au-
dio. Therefore, we have used the following training material: CMU (11 hours),
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Spectrum Order Cepstra Class Separability Word Error Rate %

Test Set Train Develop Eval Develop Eval

Pass 1 2 3 1 2 3

Fourier – 13 11.007 16.470 16.088 36.1 30.3 28.0 35.3 29.7 27.7
Fourier – 20 11.620 17.929 16.299 36.0 29.7 27.7 37.2 31.3 28.4
WMVDR 60 13 10.768 16.813 16.261 35.0 30.0 28.2 35.5 29.9 27.6
WMVDR 60 20 11.337 18.022 16.614 34.5 29.1 27.3 35.3 29.6 27.3
WMVDR 30 13 10.900 17.675 16.702 34.6 29.8 27.8 34.7 29.6 27.2
WMVDR 30 20 11.386 18.630 17.318 33.9 29.1 27.4 34.9 29.2 26.9
W2MVDR 60 13 10.893 17.673 16.456 34.5 29.5 27.5 34.1 29.2 27.0
W2MVDR 60 20 11.473 18.510 16.818 34.1 28.8 26.8 35.4 29.0 26.3

Table 1. Class separability and word error rates for different front-end types and
settings on close recordings

(note that in the WMVDR front-end with model order 30 applies no smoothing and
dimension reduction by a filterbank)

Spectrum Order Cepstra Class Separability Word Error Rate %

Test Set Develop Eval Develop Eval

Pass 1 2 3 1 2 3

Fourier – 20 14.786 13.470 61.9 52.0 51.1 61.0 55.0 51.7
WMVDR 60 20 14.487 14.161 60.9 51.2 49.7 59.6 51.7 49.5
WMVDR 30 20 15.111 14.155 59.0 50.5 48.9 59.3 52.1 49.9
W2MVDR 60 20 15.380 14.116 60.3 51.1 49.8 59.9 50.4 47.9

Table 2. Class separability and word error rates for different front-end types on distant
recordings

ICSI (72 hours), NIST (13 hours) plus Phase 2 Part 1 which are recordings of
meetings, TED (13 hours), and CHIL (10 hours) plus last year’s lecture meeting
development and evaluation data (6 hours) which are recordings of lectures. All
the acoustic data is in 16 kHz, 16 bit quality and recorded with head-mounted
microphones. Far-field data is available for ICSI, NIST and CHIL. Due to chan-
nel mismatch between ICSI and NIST data to the lecture meeting data we have
used only the far-field data provided by CHIL for supervised adaptation of the
close talking acoustic models to derive distant speech acoustic models.

The model set used this year was unaltered to the one used in the RT-
06S evaluation. In comparison to previous systems, e.g. the RT-04S evaluation
system [4], it has slight modifications by additional noise models for laughter and
other human noises to augment the existing breath and general noise models,
and a split of the filler model into a monosyllabic and a disyllabic fillers model.

Acoustic model training was performed with fixed state alignments, which
were written by a small system (2000 codebooks) using a mel frequency cepstral
coefficient front-end trained on ICSI, NIST (without Phase 2 Part 1) and TED
only. We trained four different acoustic models (varying the two front-ends and
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the two phoneme sets) for the final evaluation system. All of them are left-right
hidden Markov models (HMM)s without state skipping with three HMM states
per phoneme.

All acoustic models were trained in the same way, resulting in semi-
continuous quint phone systems that use 16000 distributions over 4000 code-
books, with a maximum of 64 Gaussians per model.

The adapted gender independent acoustic model training (given the vocal
tract normalization values for each speaker by a previous system) can be outlined
as follows:

1. Training of the linear discriminant analysis matrix
2. Extraction of samples
3. Incremental growing of Gaussians
4. Training of one global STC matrix
5. Second extraction of samples
6. Second incremental growing of Gaussians
7. Two iterations of Viterbi training to train the distributions for the semi-

continuous system and to compensate for the occasionally erroneous fixed-
state alignments

8. Four iterations of FSA-SAT speaker adaptive training [18]
9. Decoding of the training data with the previous model and a unigram lan-

guage model
10. Five iterations of MMIE training [10], leaving the speaker dependent adap-

tation matrices from the last iteration of the maximum-likelihood speaker
adaptive training unchanged during the MMIE training [19]

To adapt to the distant data we adapted the models (after step 7) by

1. Four Viterbi training iterations using the available far-field CHIL data
2. To reduce the impact of distant data on the models we combine the distant

adapted models with the clean speech models of step 7 with a weight four
times higher than the clean speech models of step 7.

3.3 Language Model Training

We used a 4-gram language model trained on the following corpora: A sub-
set of CHIL transcriptions (ISL 20031028, ISL 20031216 A, ISL 20031125 B,
ISL 20040614, ISL 20040616, ISL 20040621, ISL 20040721, ISL 20040830),
rt04s-dev and rt04s-eval transcripts, meeting transcripts (ICSI, CMU, NIST,
AMI), TED transcripts, Hub4 broadcast news, recent proceedings data ranging
from 2002 - 2005, web data from University of Washington (150M words related
to CMU, ICSI, NIST meetings), two subsets of inhouse Web data collections and
a subset of the RT-06S evaluation data.

Subsets of the following pool from an inhouse web data collection were used.
Therefore general phrase 3- and 4-grams were combined with topic phrases.

The general phrases in the queries for the corpora webI-III are based on the
most frequent n-grams in CHIL transcriptions and for the corpora webIV-V on
most frequent n-grams in the meeting transcripts.
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The topic phrases were generated by computing bi-gram based tf-idfs for each
proceeding paper. After merging them together and skipping bi-grams including
stop-words the top 1,400 topic phrases were mixed randomly with the general
phrases until the necessary number of queries were generated. For collecting the
data we used the scripts provided by the University of Washington [20]. Table 3
gives an overview of the web data collections and the queries they were based
on.

Corpus General Phrases Topic Phrases Queries Words

webI CHIL transcripts 1k 146M
webII CHIL transcripts recent proceedings 4k 102M
webIII CHIL transcripts recent proceedings 10k 311M

webIV meeting transcripts recent proceedings 4k 398M
webV meeting transcripts recent proceedings 10k 674M

Table 3. Data that the web collection query generation was based on and sizes of
collected web data components.

We trained one language model component for a subset of webI-III (318M
words) and one component for webIV-webV (613M words). The subset selection
was performed by skipping data from irrelevant queries, based on their perplexity
with an in-domain LM build on the CHIL data used for query generation and
the proceedings data.

Initially all mentioned language model components except the RT-06S evalu-
ation data were interpolated (LM-A) according to an initial held-out set consist-
ing of the CHIL transcriptions ISL 20031111, ISL 20031118, ISL 20031125 A,
ISL 20031216 B, ISL 20041111 A, ISL 20041111 B, ISL 20041111 C and
ISL 20041112 A. We used the resulting language model to update the held-out
set with respect to the RT07 development data. When incrementally adding
the RT-06S development set and the RT-06S evaluation set to the held-out set,
perplexity on the RT07 development data decreased, while adding the NIST
phase 2 part 1 (NIST07) set hurt as shown in Table 4. The motivation for this
procedure is to get a tuning set biased to the RT07 development set, which is
not selected too narrow.

The extension of the LM-A with the sets NIST07, RT-06S development set
and RT-06S evaluation set revealed neither to use the new NIST set nor the
RT-06S development set for component modeling purpose, but to use the RT-
06S evaluation set. Since experiments for held-out set selection also showed an
improvement when adding the RT-06S evaluation set, we split it to use for both.
Consequently we used the initial held-out set plus the RT-06S development
set plus part of the RT-06S evaluation set as tuning set. The final language
model consists of all already mentioned language model components without
the NIST07 set and only the part of the RT-06S evaluation set not used for
tuning.
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LM Components Tuning Set PPL

LM-A initial set 132
LM-A + RT-06S-dev 130
LM-A + RT-06S-dev + RT-06S-eval 128
LM-A + RT-06S-dev + RT-06S-eval + NIST07 132

+ NIST07 initial set 132
+ RT-06S-dev initial set 132
+ RT-06S-eval initial set 130

+ subset(RT-06S-eval) + RT-06S-dev + subset(RT-06S-eval) 127
+ subset(RT-06S-eval) (i) + RT-06S-dev + subset(RT-06S-eval) 120
+ subset(RT-06S-eval) (ip) + RT-06S-dev + subset(RT-06S-eval) 123

Table 4. Tuning set selection and test of new corpora on the RT-07 development set.

During the system development we also considered to adapt the language
model using a web data collection based on an automated query generation
by extraction of topic and style from the hypotheses of previous recognition
passes. Unfortunately the methods used lead to no further gain in recognition
performance on top of the web data already included.

The final LM was build using the SRILM-toolkit [21]. For discounting we
applied the Chen and Goodman’s modified Kneser-Ney approach [22] and inter-
polation of discounted n-gram probability estimates with lower-order estimates
was used (marked as (i) in Table 4). Pruning was performed after combining the
LM-components (marked as (p) in Table 4) while the threshold was set also with
respect to a reasonable decoding time. The perplexities are 123 on the RT-07
development set and 101 on the RT-07 evaluation set.

3.4 Recognition Dictionary and Lexicon

The dictionary contained 58.7k pronunciation variants over a vocabulary of
51.7k. The vocabulary was automatically derived by analysis of BN, Switch-
board, meetings (ICSI, CMU, NIST, AMI), TED and CHIL corpora. After ap-
plying individual word-frequency thresholds to the corpora, we filtered the re-
sulting list with ispell to remove spelling errors and added a few manually
checked topic words from the set of topic bigrams used in web data collection.
The OOV-rate on lecture meeting development and evaluation was 0.7% and
0.6% respectively.

4 Experiments and Results

In this section we present experiments and results on the RT-07 development
and evaluation set.
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4.1 Decoding Strategy

In order to find the best decoding and cross system adaptation strategy, we
performed several different experiments on the lecture meeting development set.
We found that the best setup in terms of word error rate (WER) and complex-
ity for all conditions uses already vocal tract normalized acoustic models in the
first pass while following passes use vocal tract normalized and speaker-adapted
models (FSA-SAT). For distant speech data, similar to last year’s system, we
used close talking models which have been adapted to distant speech data. How-
ever, this year, we switched to the close talking model already in the second
pass (which gave significant improvements on the development set). Last year,
we switched to the close talking models in the third pass.

In another set of experiments, we followed results presented in [23, 24] and
our own experience obtained during the development of a system for transcrib-
ing English European Parliament Plenary Sessions [25]. There a significant gain
(approximately 1.5% absolute) from cross adaptation between systems with dif-
ferent front-ends (WMVDR, Fourier) is seen, and that, when cross adaptation
between WMVDR and Fourier leads to no further gains, cross adapting with
the Pronlex system improves the WER after confusion network combination
(CNC) [26] by 0.7% absolute [7].

On development and evaluation data of the lecture meeting RT-07 data we
saw improvements by system adaptation of approximately 2% absolut by the
combination of the two front-ends with different phoneme sets for all passes.

The processing steps for decoding can be summarized as follows:

1. Decoder based segmentation
2. Speaker clustering
3. estimation of VTLN
4. Calculate SNR for each channel, segment, and utterance
5. decode first pass on combined acoustic channels for WMVDR.p1 and

W2MVDR.p2
6. combine runs with confusion networks
7. select channel by class separability measures (uses VTLN) for each individual

front-end over each segment and utterance, more detail in Section 4.2
8. adapt VTLN, constrained MLLR and MLLR
9. decode second pass on best channel for WMVDR.p2 and W2MVDR.p1

10. combine runs with confusion networks
11. adapt VTLN, constrained MLLR and MLLR
12. decode third pass on best channel for WMVDR.p1 and W2MVDR.p2
13. combine runs with confusion networks

Using an 8 ms instead of a 10 ms frame-shift for the second and third passes,
improves the final WER by about 1% absolute [1].

4.2 Channel Combination and Selection for MDM

In RT-04S, channel combination was performed by decoding all channels and
the combination by CNC on the resulting lattices over all channels. No selection
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Channel Selection WER %

Pass 1 2 3

Signal to Noise Ratio 73.0 62.3 59.5
Class Separability Measure 67.4 57.8 55.1

Table 5. Influence of different channel selection techniques, signal to noise and class
separability measure, on the word error rates (WER)s on development 2007.

was used, leading to a relatively high computational load for each pass. In the
RT-06S system we were able to reduce the computational load by 70% without
an increase in WER by performing both channel combination and selection [2].

This years scenario is different as such as we can’t assume one dominant
speaker and that the best possible microphone is changing for each individual
speaker due to head orientation. Therefore, in this years task channel selection is
even more important than last year as the signal quality of one channel might be
significantly better than those of the other channels. In those cases microphone
array or blind source separation techniques might not lead to improvements over
the best single microphone.

We have presented a novel channel selection method [8], based on class sepa-
rability, to improve multi-source far distance speech-to-text transcriptions. Class
separability measures have the advantage, compared to other methods such as
the SNR, that they are able to evaluate the channel quality on the actual features
of the recognition system. Note that for different front-ends different channels
might be selected.

A direct comparison between delay-and-sum channel combination and the
proposed channel selection technique on the second pass of the RT-07 evaluation
system including both front-ends and phone sets combined by CNC shows a
relative improvement of 3.6%, from 52.4% to 50.5% WER.

4.3 Overall System Performance

Table 4.3 lists the overall system results for the development and evaluation
RT-07S lecure meeting task. The given WERs per pass are after CNC of the
lattices of the WMVDR and W2MVDR front-ends with different phoneme sets.
The final pass on the IHM and MDM evaluation set give the official numbers as
scored by NIST. All other numbers where scored in our laboratory.

On the MDM task, it can be seen that there is a huge gap between the
adapted development and evaluation results. On the development set we gain
7.1% by adaptation, while in the evaluation case we gain only 4.4%. The selection
of channels is able to improve the system performance by 2.3%.
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condition IHM SDM MDM

pass dev eval eval dev compare eval

1 36.5 43.1 57.9 56.7 60.2* 56.5
2 29.5 36.3 54.9 50.5 56.8 52.4
3 28.6 36.7 54.4 49.4 54.4 52.1

RT 91 113 114

Table 6. Overall results and real-time factors on RT-05S Eval and RT-06S Eval. In
contrast to previous sections, results for the conference meeting part of RT-05S Eval
include meeting NIST 20050412-1303. SDM and MDM results were scored with an
overlap of one.

(compare give the numbers of last years evaluation system on the current evaluation
set, note that the fist pass marked with * has been adapted incrementally)
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14. H. Soltau, F. Metze, C. Fügen, and A. Waibel, “A One Pass-Decoder Based on
Polymorphic Linguistic Context Assignment,” in Proc. of the IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), 2001.

15. M. J. F. Gales, “Semi-tied covariance matrices,” in Proc. of the Intl. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), 1998.

16. A. W. Black and P. A. Taylor, “The Festival Speech Synthesis System: System doc-
umentation,” Human Communciation Research Centre, University of Edinburgh,
Edinburgh, Scotland, United Kongdom, Tech. Rep. HCRC/TR-83, 1997.

17. W. M. Fisher, “A Statistical Text-to-Phone Function Using Ngrams and Rules,”
in Proc. of the Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
1999.

18. M. J. F. Gales, “Adaptive training schemes for robust asr.” in Proc. of ASRU.
19. J. McDonough, T. Schaaf, and A. Waibel, “On Maximum Mutual Information

Speaker-Adapted Training,” in Proc. of the Intl. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), 2002.

20. “Scripts for web data collection provided by University of Washington,”
http://ssli.ee.washington.edu/projects/ears/WebData/web data collection.html.

21. A. Stolcke, “SRILM – An Extensible Language Modeling Toolkit,” in Proc. of the
Intl. Conf. on Speech and Language Processing (ICSLP), 2002.

22. S. F. Chen and J. Goodman, “An Empirical Study of Smoothing Techniques for
Language Modeling,” Computer Science Group, Harvard University, Tech. Rep.
TR-10-98, 1998.
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