CR-1999-203190

UAH Propulsion Research Center

/N-34 046 420

Final Report

Injector Mixing Efficiency Experiments

Contract Number NAS8-38609 D.O. 159

Prepared by

Dr. Marlow D. Moser Principal Investigator

August 31, 1998

Submitted to:

Mr. John Cramer EP13 Marshall Space Flight Center, AL 35812

Dr. Clark W. Hawk Program Director Propulsion Research Center The University of Alabama in Huntsville

Injector Mixing Efficiency Experiments Final Report Submitted by Marlow D. Moser

1. Summary

Various optical diagnostic techniques such as laser induce fluorescence, Raman spectroscopy, laser Doppler velocimetry, and laser light scattering have been employed to study the flowfield downstream of a single injector element in a optically accessible rocket chamber at Penn State for a number o years. These techniques have been used with both liquid and gaseous oxygen at pressures up to 1000 psia which is the limit of the facility. The purpose of the test programs at Penn State were to develop the techniques and to study the flow field from various injector designs. To extend these studies to higher pressure and ultimately to multiple injectors require the capabilities of the Marshall Space Flight Center. These studies will extend the data base available for the various injector designs to higher pressure as well as to determine the interaction between multiple injectors.

During this effort the Princeton Instruments ICCD camera was set up and checked out. The functionality of the system has been thoroughly checked and the shutter compensation time was found to be not working. The controller was returned to the manufacturer for warranty repair. The sensitivity has been measured and found to be approximately 60 counts per photon at maximum gain which agrees with the test data supplied by the manufacturer. The actual value depends on wavelength. The Princeton Instruments camera was been installed in a explosion proof tube for use with the rocket combustor. A 35mm camera was also made ready for taking still photos inside the combustor. A fiber optic was used to transmit the laser light from an argon-

ion laser to the rocket combustor for the light scattering images. These images were obtained for a LOX-hydrogen swirl coax injector. Several still photos were also obtained with the 35mm camera for these firings.

2.0 Objectives

The objective of this research was to determine the mixing efficiency of the various injector configurations by measuring the species concentrations, temperature and velocity across the combustor downstream of the injector face.

3.0 Scope

A Princeton Instruments Cooled Array Intensified CCD camera was checked out and characterized. The camera was used to image UV emission from a LOX/hydrogen single element rocket engine. The same camera was used to image light scattered from the liquid oxygen spray. Visual images were also obtained with a 35 mm camera.

4.0 Results

4.1 Intensified camera characterization

Advance diagnostics such as Raman spectroscopy and absorption measurements will be used to measure the major species concentration (H_2 , O_2 , and H_2O) and temperature at various axial locations downstream of the injector face. Raman spectroscopy yields a spatially resolved instantaneous or averaged profile of major species. The Raman signal is very weak and therefore the strength of the laser, the sensitivity of the detector and the background emission from the flame determine whether instantaneous or averaged measurements can be obtained.

A Princeton Instruments Intensified CCD array camera will be used for the Raman spectroscopy and other measurements in this and other efforts. The system was assembled and checked out for functionality and detectability limits. The results are reported here.

The various controls on the FG-100 pulse generator and the camera are all multi-turn potentiometers. The dial indicates number of turns only. The dial settings and the resulting effect were measured and are reported in the following tables. These copies of these tables were place on the camera controller and pulser controller so the operator can readily set the camera to the desired values.

The FG-100 has a frequency generator built in that produces pulses at a fixed rate. These pulses can be used to drive an experiment. The **Table 1** Frequency Generator Output, FG-100 Pulse Generator

The gate width and timing with respect to a trigger of the intensified camera are controlled by the gate width and gate delay dials respectively. The gate width has two ranges selected with a toggle switch while the delay has three ranges selected with a knob. The gate width and delay were measured by

period and frequency of the pulse as a function

of dial position are shown in Table 1.

	Dial Setting	Period (msec)	Frequency (Hz)
	0.0	34.0	29.4
	1.0	30.6	32.7
	2.0	37.2	26.9
1	3.0	23.9	41.8
	4.0	20.5	48.8
	5.0	17.1	58.5
	6.0	13.7	73.0
	7.0	10.3	96.9
	8.0	7.0	142.8
	9.0	3.6	227.8
	10.0	2.5	400.0

reported in Tables 2 and 3.
A series of tests were conducted to determine
the linearity of the camera and the absolute
response (counts/photelectron) over a wide
range of gate widths, light intensity, and
wavelengths. The light source was an
integrating sphere with a calibrated light
intensity meter. At the exit aperture of the
sphere, the light intensity was constant over an
area of one inch in diameter. The aperture was
imaged on to the intensified camera through a Ta
standard camera lens. An iris was placed in =
front of the lens to the $f^{\text{#}}$ could be accurately =
determined. The images were recorded on the
computer and then a region of approximately
100 pixels in the center of the light source
aperture image was averaged. The results of ten
frames were then average together. A
background image with no light was acquired
and processed in the same manner. this result

	Pulse Wic	lth (nsec)
Dial Setting	Range 1	Range 2
0.0	20	32
1.0	21	33
2.0	22	37
3.0	23	42
4.0	24	48
5.0	25	60
6.0	28	73
7.0	31	96
8.0	37	142
9.0	63	278
9.5	106	520
9.7	151	789
9.8	199	1060
9.9	288	1600
10.0	567	3300

observing the pulse monitor and trigger signals **Table 2** Gate Width, FG-100 Pulse Generator on a digital oscilloscope. The results are

Table 3 Gate Delay, FG-100 Pulse Generator

	Puls	e Delay (ns	ec)
Dial Setting	Range A	Range B	Range C
0.0	56.7	85	90
1.0	-	103	246
2.0	-	121	410
3.0	58	140	565
4.0	-	161	730
5.0	58	181	900
6.0	60	200	1006
7.0	60	220	1230
8.0	64	245	1390
9.0	69	263	1550
10.0	86	285	1700

was subtracted from each of the other images.

The data from these series of tests are in the appendix. some of the pertinent conclusions derived from these data will be discussed below and when appropriate compared with test data supplied by Princeton Instruments which is also included in the appendix.

The minimum gate width was found by reducing the gate width while observing the image for evidence of iris effects. Iris effects are a result of the outer edges of the intensifier tube turning on and off at different rates than the center of the tube resulting is different intensities recorded on the edges as compared to the center. The minimum FWHM gate was found to be 100 ns which compared well with the results for Princeton Instruments.

The linearity of the detector is very good for both short and long gates (5ms and 100 ns respectively). This will need to be checked again with a pulsed laser since it may not hold with the high fluxes resulting from very short pulsed light sources.

The maximum sensitivity was measured to be approximately 60 counts per photon at a gain setting of 10. This was lower than the 90 count per photon reported by Princeton Instruments but within the uncertainty of the measurement. In any case it is well within the limit for single photon counting as advertised by the manufacturer and desired for the Raman measurements.

Table 4 shows the relative gain four several dial settings on the camera. The relative gain has been normalized such that a dial setting of 10 is 1.24 so that it can be compared with the data supplied by Princeton Instruments. This table can be used to determine approximately how much change to dial setting to get the desired change in gain. These results

Table 4 Rel	ative Gain
-------------	------------

Dial Setting	Relative Gain
10	1.24
9.5	1.01
9	0.68
8	0.41
7	0.20
6	0.098

are the average of both long and short gate tests with white light and filter light.

4.1 Flow imaging

Several imaging techniques were used in the initial checkout tests of the window rocket combustor at MSFC. They were photography of visible light using a 35mm camera and video and imaging UV light and laser light scattered from the liquid oxygen spray.

4.2.1 Visible light imaging

An Olympus 35mm camera with a remote shutter control and automatic film advance was mounted such that it could photograph the flame in the region immediately downstream from the injector face. The shutter speed was 1/1000 of a second and the iris was set to f8. This provied adequate lighting for the 400 ASA color film used. The images were not very satisfactory because of the lens combinations available for this camera. The area of interest occupied a small portion of the frame. It was decided that a new camera system would be purchased for future tests. A Nikon

camera was selected since it had been used with success at Penn State plus the lens could be used with the Princeton Instruments ICCD camera as well. The photographs negatives reside at MSFC.

Video of each of the check out tests were recorded on standard VHS video tape. The video lack any interesting detail but help monitor the tests and provide a permanent record of the tests. These tape also reside at MSFC.

4.2.2 Princeton Instruments ICCD camera set up

The Princeton Instruments Intensified CCD (ICCD) camera consists of an ST-138 camera controller and a FG-100 Pulser. These pieces of equipment had to be near the camera. An environmental box equipped with a cooled purge was built on the test stand to house this equipment. The shutter monitor BNC connector on the back of the ST-138 was connected to the PULSE IN BNC connector on the front of the FG-100 as well as a cable in the instrumentation trailer so that the signal could be monitors on an oscilloscope. The NOTSCAN BNC connector on the back of the ST-138 was connected to the ENABLE BNC connector on the back of the FG-100. This signal was also monitored on the instrumentation trailer. The gate monitor on the front of the FG-100 was also monitored. The NOTSCAN signal was recorded by the data system in the block house. This signal indicated when the in firing sequence the images were obtained so they could be correlated to the sequence of the firing.

A UV bandpass filter was placed in front of the camera lens for UV emission imaging and a narrow

bandpass filter centered around the Argon-Ion laser wavelength was used when imaging the scattered light from the LOX drops.

4.2.3 UV Images

UV images were obtained for several of the initial checkout tests. The camera gate time was set to 3 μ sec and 30 frames were obtained at a rate of approximately 5 Hz. Figure 5 shows a series of the instantaneous images followed by an averaged image. The averaged image is an average of 30 frames. The flow is from left to right and the injector face can be seen at the left side of the images. The area viewed is approximately 1 inch square.

The UV light is an indication of the reaction location. From the instantaneous images it can be seen that the flame is very turbulent. The averaged image indicate that the bulk of the reactions take place just downstream of the injector. It was later determined that the nitrogen flowing around the injector had a strong recirculating flow at the injector face that cause the rapid mixing and reaction at this location. All UV raw images reside at MSFC.

4.2.4 Light scattering images

Laser light from an Argon-Ion laser at 514 nm was delivered to a window of the rocket chamber via a polarization preserving fiber optic. The beam emitting from the fiber was formed into a sheet with cylindrical optics and directed through the windows of the rocket chamber. The sheet centered on the injector and illuminated a cross-section of the chamber from the injector face toward the aft end of the chamber. About a 1 inch square area was observable.

a.

b.

c.

d.

Figure 1 UV images of LOX hydrogen firing. Instantaneous images are a. through c. Image d. is an averaged image.

It was discovered that the polarization of the beam was not very well maintained by the fiber and seemed to oscillate with time. The cause of this was not known but seemed to be effected by the changing temperature through out the day. It was postulated that the length of the fiber was changing and had some sort of an effect on the polarization.

The camera was setup to record the light scattered from the LOX drops normal to the plane of the laser sheet. The narrow bandpass filter effectively reduced the flame luminosity so that the light recorded was from the LOX drops only.

Figure 2 shows a sample of the instantaneous images and an averaged image from the light scattered from the LOX drops. The laser light passes from top to bottom on these images. The top half of the image is much brighter than the bottom half because of attenuation as the laser light passes through the spray. The quality of these images is poor due to the poor light transmission of the fiber optic. These images were not corrected for variation of laser intensity across the sheet.

It can be seen that the LOX seems to be broken up into relatively large clumps along the edge of the spray. The injector used in these tests is an swirl coaxial injector and the majority of the spray is expected to be in a cone along the outside of the spray. This is consistent with the images although a significant amount of spay appears inside the cone. This is most likely due to the strong recirculating flow induced by the nitrogen flow around the injector.

Figure 2 Light scattering images of LOX hydrogen firing. Instantaneous images are a. through c. Image d. is an averaged image.

Appendix

The data sheets on the following pages a the results of the check out tests performed on the Princeton Instruments intensified CCD camera. The information at the top of each sheet give information on the imaging lens used, aperture size, distance from light source to the lens, the area of the images averaged and the resulting solid angle and light source area image on each pixel. The columns are the file name, average counts, standard deviation, gain as indicated on the camera dial, light intensity as indicated by the integrating sphere light meter, the micrometer setting which operates an iris on the integrating sphere, shutter setting on integrating sphere which changes the light level and the gate time. The rest of the columns contain data derived from the first columns including light intensity in Joules/s-str-m^2, average raw - background, noise ((raw-background)/Sigma), and counts/photon.

The remaining information is the ICCD System Test Results supplied by Princeton Instruments. It contains their test results on this camera before it was shipped to MSFC.

gate	•
Long	•

35 mm lens 1	3.5. Limiting a	perature 0.9	45" 63.5"	from source		Averaged F	ROI (82,64)	(106,91) 600) Pixels		Solid Angle	0.000174	3.58E-19
11 F	Ave Counts	Sigma	Gain	Intensity	Micrometer	Shutter	Gate time	Comments			Pix area	5.64E-08 107 Pix/in	-
TMPORXX and		n	(tums)	Ft. Lamber	ts		(msec)	7	I/s-str-m^2(counts-bad	Noise	Counts/photon	-
	352.8	1 178		0			5	Backgroun	0.00E+00	0	#DIV/0		
	9247	408	0	832.2	0.8	5	5		1.31E+01	8894.2	0.045873	0.004944	
	1570	53.8	0	100.7	0.8	4	5		1.59E+00	1217.2	0.0442	0.005591	-
4	456.3	5.42	0	8.7	0.8	3	5		1.37E-01	103.5	0.052367	0.005503	
	8130	354		1 699.7	0.449	e	2		1.11E+01	7777.2	0.045518	0.005141	
9	7182	310.7	0	595.4	0.4	e	5		9.41E+00	6829.2	0.045496	0.005306	
<u>_</u>	6066	258.5		483.5	0.35	e	5		7.64E+00	5713.2	0.045246	0.005466	
8	4742	197	0	363.9	0.3	e	S		5.75E+00	4389.2	0.044883	0.005579	
0	3461	138.3	0	1 256	0.25	e	S		4.04E+00	3108.2	0.044495	0.005616	
10	2310	85.6	0	161.9	0.2	с Э	2		2.56E+00	1957.2	0.043736	0.005592	
4	53921	2267	1.8	832.2	0.8	e	5		1.31E+01	53568.2	0.04232	0.029775	
12	47442	1901	1.8	1 697.7	0.45	e	5		1.10E+01	47089.2	0.04037	0.031219	
13	42803	1683	1.8	596.4	0.4	e	5		9.42E+00	42450.2	0.039646	0.032924	
4	37809	1463	1.8	486	0.35	e B	5		7.68E+00	37456.2	0.039059	0.03565	
15	32008	1214	1.8	365.7	0.3	3 S	2		5.78E+00	31655.2	0.038351	0.04004	
16	26053	992	1.8	1 256.2	0.25	e B	5		4.05E+00	25700.2	0.038599	0.046401	
17	13198	527	1.8	100.7	0.8	4	2		1.59E+00	12845.2	0.041027	0.059004	
18	55088	1942	3.75	100.7	0.8	4	2		1.59E+00	54735.2	0.03548	0.251424	
19	39425	1487	3.75	51.42	0.325	4	5		8.12E-01	39072.2	0.038058	0.351484	
20	22679	901	3.75	5 25.21	0.225	4	2		3.98E-01	22326.2	0.040356	0.409649	1
21	7131	285	3.75	7.54	0.125	4	2		1.19E-01	6778.2	0.042047	0.415828	
22	2251	81.9	3.75	2.13	0.225	e	5		3.37E-02	1898.2	0.043146	0.412223	
23	54905	2239	8.	1 2.131	0.225	n	2		3.37E-02	54552.2	0.041043	11.84129	1
24	33426	1431	8.1	1.265	0.175	e	2		2.00E-02	33073.2	0.043268	12.09361	
25	17725	789	80	0.665	0.125	e B	S		1.05E-02	17372.2	0.045417	12.0838	
26	10462	453	80	0.385	0.1	e	2		6.08E-03	10109.2	0.044811	12.1458	
27	6301	307	8.	0.228	0.075	e	5		3.60E-03	5948.2	0.051612	12.0676	
28	2950	150.7	8.1	0.099	0.05	e	5		1.56E-03	2597.2	0.058024	12.13502	
29	941	59.5	8.1	0.022	0.025	e	2		3.48E-04	588.2	0.101156	12.36723	
				-							0.046667		
										average	0.040001		

PICAMERA.XLS 6/17/96 11:37 AM

-
B
σ
σ
t
0
2
S

3.58E-19							5000 A.																			-										an annual and a	
	92 Pix/in.			0.047504	0.057218	0.070233	0.090657	0.123287	0.148089	0.163347	0.164045	0.162665	0.164007	0.162064	0.164226	0.161753	0.164716	0.068983	0.070803	0.071069	0.074394	0.071894	0.071743	0.071541	0.071579	0.07063	0.041244	0.041968	0.042431	0.042569	0.042806	0.023707	0.01308	0.006818	0.003332	0.001345	0.000651
0.001124	7.62E-08	Counts/phe		28.6924	28.78045	28.44456	27.46916	25.15055	22.50953	16.49804	16.56855	16.42915	16.56468	16.36844	16.58686	16.33702	16.63636	28.14498	28.88765	28.99596	30.35265	29.33283	29.27101	29.18861	29.20404	28.81719	28.95347	29.54535	29.87125	29.96863	30.13548	16.68975	9.221164	4.806714	2.349084	0.948072	0.45898
Solid Angle	Pix area	Noise	0.028513	0.04106	0.038187	0.042503	0.057225	0.046385	0.049744	0.052404	0.059993	0.063931	0.072657	0.073237	0.078289	0.103611	0.131731	0.183143	0.092225	0.069981	0.058133	0.052744	0.044219	0.042929	0.042439	0.040677	0.039623	0.041425	0.046421	0.056826	0.141697	0.039102	0.041063	0.041282	0.042102	0.050875	0.043017
		counts-bad	62357.2	54578.2	45591.2	36280.2	26212.2	16158.2	10775.2	5247.7	4442.2	3782.2	3069.2	2291.2	1622.2	1019.2	570.1	384.4	1623.2	3858.2	7087.2	11258.2	16131.2	21428.2	26744.2	30877.2	53378.2	38189.2	20355.2	7206.2	714.2	36954.2	20456.2	10663.2	5211.2	2103.2	1018.2
I Pixels		J/s-str-m^2	1.32E+01	1.32E+01	1.32E+01	1.32E+01	1.32E+01	1.32E+01	1.32E+01	1.32E+01	1.11E+01	9.52E+00	7.66E+00	5.79E+00	4.04E+00	2.58E+00	1.42E+00	1.40E-01	5.75E-01	1.36E+00	2.39E+00	3.93E+00	5.64E+00	7.52E+00	9.38E+00	1.10E+01	1.10E+01	7.67E+00	4.04E+00	1.43E+00	1.41E-01	1.31E+01	1.31E+01	1.31E+01	1.31E+01	1.31E+01	1.31E+01
(87,84) 624	Comments											i							• i																		
ROI (64,59)	Gate time	(su)	707	8	503	405	303	204	152	101	101	101	101	101	101	101	101	408	408	408	408	408	408	408	408	408	702	704	704	704	704	704	705	202	705	705	705
Averaged F	Shutter		Q	5	2	2	5	2	S	2	5	5	ŝ	2	5	5	5	5	5	5	S	5	2	S	2	5	5	2 L	2	2	2	2	2	S	5	S	5
	Micrometer		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.45	0.4	0.35	0.3	0.25	0.2	0.15	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.45	0.35	0.25	0.15	0.05	0.8	0.8	0.8	0.8	0.8	0.8
om source	Intensity	Ft Lamberts	832.6	832.6	832.6	832.6	832.6	832.6	832.6	832.6	701.8	602.6	485	366.4	256	163.3	89.7	8.85	36.41	86.22	151.3	248.7	357.1	475.7	593.4	694.3	694.3	485.4	255.9	90.3	8.9	831.5	831.9	831.9	831.9	831.9	831.9
984" 26" fi	Gain	(turns)	10	9	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9	9	10	10	10	101	10	10	10	10	5	10	10	6	8	- 7	9	2	4
aperature 0	Sigma	1	1778	2241	1741	1542	1500	749.5	536	275	266.5	241.8	223	167.8	127	105.6	75.1	70.4	149.7	270	412	593.8	713.3	919.9	1135	1256	2115	1582	944.9	409.5	101.2	1445	840	440.2	219.4	107	43.8
8, Limiting a	Ave. Coun		62710	54931	45944	36633	26565	16511	11128	5600.5	4795	4135	3422	2644	1975	1372	922.9	737.2	1976	4211	7440	11611	16484	21781	27097	31230	53731	38542	20708	7559	1067	37307	20809	11016	5564	2456	1371
50 mm lens, 1:1.	FILE /	07MR96XX.spe	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	2	55	56	57	58	59	09	61	62	63	20

PICAMERA.XLS 6/17/96 11:40 AM

135 mm lens 1:3.5	L imiting aper	ature 0.94:	5" 63.5" fron	1 source Av	eraged R	OI (64,59)	(87,84) 624	Pixels		-	Solid angl	0.0001 /4			
FILF Ave. Cou	n Siama	Gain	Intensity	Micromete Sh	utter	Sate time	Comments				Pix area	5.43E-08			
29FB96XX spe	2	(tums)	Ft Lambert			microsecs)	7	l/s-str-m^	counts-ba	Noise	-	Counts/J	Counts/pho	ton	
0 358	7 1 29	0	0	0.8	2 S	5000		0.00E+00	0					J/photon	
1 1002	7 438	0	832	0.8	S	5000		1.31E+01	9668.3	0.045303	735.478	1.56E+16	0.005577	3.58E-19	1
2 173	9 73	0	100.8	0.8	4	5000		1.59E+00	1380.3	0.052887	866.6742	1.84E+16	0.006572		
3 47	4	0	8.7	0.8	e	5000		1.37E-01	115.3	0.060711	838.7895	1.78E+16	0.00636		i
4 365.	6 1.55	0	0.7	0.8	2	5000		1.11E-02	6.9	0.224638	623.8698	1.32E+16	0.004731		
5 363.	7 1.56	0	830.2	0.8	5	3.25		1.31E+01	ŝ	0.312	0.38118	1.24E+16	0.004447		i
6 443.	4 4.83	2	830.2	0.8	2	3.25		1.31E+01	84.7	0.057025	6.45719	2.1E+17	0.075327		
7 102	4 30.1	4	830.2	0.8	5	3.25		1.31E+01	665.3	0.045243	50.71982	1.65E+18	0.591676		
8 380	148	9	830.2	0.8	S	3.25		1.31E+01	3443.3	0.042982	262.5035	8.56E+18	3.062256		
9 1388	8 573	8	830.2	0.8	S	3.25		1.31E+01	13529.3	0.042353	1031.42	3.36E+19	12.03211		1
10 4315	3 1743	9	830.2	0.8	Ś	3.25		1.31E+01	42794.3	0.04073	3262.467	1.06E+20	38.05858		
11 569	3 33	2	100.6	0.8	4	3.25		1.59E+00	5334.3	0.006186	3356.003	1.09E+20	39.14973		
12 453.	3 612	Ō	8.7	0.8	3	5000		1.37E-01	94.6	6.469345	688.2002	1.46E+16	0.005218		
13 179	2 45.95	2	8.7	0.8	en I	5000		1.37E-01	1433.3	0.032059	10427.03	2.21E+17	0.079064		
14 1101	6 337.7		8.7	0.8	e	5000		1.37E-01	10657.3	0.031687	77530.19	1.64E+18	0.587883		İ
15 5310	3 1562	9	8.7	0.8	e	5000		1.37E-01	52744.3	0.029615	383706.5	8.13E+18	2.909504		1
16 533	1 162	9	0.772	0.8	7	5000		1.22E-02	4972.3	0.03258	407645.8	8.64E+18	3.091027		1
17 2056	9 653	80	0.772	0.8	7	5000		1.22E-02	20210.3	0.03231	1656908	3.51E+19	12.56372		
18 5024	9 1558	9.9	0.772	0.8	2	5000		1.22E-02	49890.3	0.031229	4090173	8.67E+19	31.01427		Τ
19 210	3 55.98	~	830.5	0.8	5	5000	1.23E-05	1.23E-01	1744.3	0.032093	14169.78	3E+17	0.122196	4.07E-19 488 nm Fitter	
20 1315	5 392.3	4	1 830.5	0.8	5	5000	W/str-cm^	1.23E-01	12796.3	0.030657	103950.4	2.2E+18	0.896436	488 nm Filter	;
21 6066	0 1802	9	830.5	0.8	2	5000	Filter Funti	1.23E-01	60301.3	0.029883	489856.2	1.04E+19	4.224367	488 nm Filter	1
22 864	8 272.5	9	100.5	0.8	4	5000	at 830 Ft-I	1.49E-02	8289.3	0.032874	556459.3	1.18E+19	4.79873	488 nm Filter	
23 3368	3 1097	8	100.5	0.8	4	5000		1.49E-02	33324.3	0.032919	2237054	4.74E+19	19.29166	488 nm Filter	1
24 6125	0 1798	o I	100.5	0.8	4	5000		1.49E-02	60891.3	0.029528	4087622	8.66E+19	35.25037	488 nm Filter	1
25 636.	1 46.77	5	830.2	0.8	S	3.25		1.23E-01	277.4	0.168601	2254.267	7.35E+19	29.90783	488 nm Filter	Τ
26 383.	1 13.78	ő	1 830.2	0.8	S	3.25	8.81E-06	8.81E-03	24.4	0.564754	2769.58	9.03E+19	34.88592	3.86E-19 514 nm	
27 403	7 24.38	10	930.2	0.8	2	3.25	W/str-cm^	8.81E-03	45	0.541778	5107.832	1.66E+20	64.3388	514 nm	
28 526.	2 6.56	2	830.2	8.0	S	5000	Filter Funti	8.81E-03	167.5	0.039164	19012.49	4.03E+17	0.155664	514 nm	
29 1609.	8 42.5	4	1 830.2	0.8	5	5000	at 830 Ft-I	8.81E-03	1251.1	0.03397	142009.1	3.01E+18	1.162695	514 nm	i
30 714	0 219	9	830.2	0.8	5	5000		8.81E-03	6781.3	0.032295	769727.6	1.63E+19	6.302121	514 nm	Ì
31 2771	4 947	8	830.2	0.8	ŝ	5000		8.81E-03	27355.3	0.034619	3105028	6.58E+19	25.42232	514 nm	i
32 5080	1616	6	830.2	0.8	5	5000		8.81E-03	50447.3	0.032033	5726141	1.21E+20	46.8826	514 nm	٦

ø
βq
Fe
29

PICAMERA.XLS 6/17/96 11:38 AM 19MR96

50 mm len	s 1:1.8. Lin	niting aperatu	ure 0.984"	26" from so	urce	Averaged	ROI (54,81)	(81,85) 756	s Pixels		Solid Angle	0.001124	
FII E	Ave. Count	Sigma	Gain	Intensity	Micromete	Shutter	Gate time	Comments			Pix area	7.62E-08	
19MR96X)	X.spe))	(turns)	Ft Lambert	S		(su)		J/s-str-m^2	counts-bac	Noise	Counts/pho	uo
•	354	1.2	10	832.6	0.8	4O	3.28		-	1.2	-		
2	822	78.9	10	832.6	0.8	w)	3.28	514 nm	8.81E-03	468	0.16859	73.03165	3.86E-19
n	5186	302.7	10	832.6	0.8	v 7	3.28	488 nm	1.23E-01	4832	0.062645	56.88611	4.07E-19
4	1385	120	10	832.6	0.8		0.698	488 nm	1.23E-01	1031	0.116392	57.03697	4.07E-19
2	436	27.3	10	832.6	0.8		0.1	488 nm	1.23E-01	82	0.332927	31.66409	4.07E-19
	919	83.7	10	832.6	0.8		0.403	488 nm	1.23E-01	565	0.148142	54.1373	4.07E-19
<u>,</u>	1741	56.9	0	832.6	0.8		5000	488 nm	1.23E-01	1387	0.041024	0.010712	4.07E-19
	17934	644.5	2	832.6	0.8		5000	488 nm	1.23E-01	17580	0.036661	0.135769	4.07E-19
5	63669	1606	4	832.6	0.8	(D)	5000	488 nm	1.23E-01	63315	0.025365	0.488979	4.07E-19
10	12816	481.6	4	832.6	0.8	u)	5000	514 nm	8.81E-03	12462	0.038645	1.275724	3.86E-19
11	59200	2076.8	9	832.6	0.8		5000	514 nm	8.81E-03	58846	0.035292	6.024015	3.86E-19

PICAMERA.XLS 6/17/96 11:38 AM

ICCD System Test Results

General System Information

5072	D	Customer NASA	PO No. NAS8-40442	Tested	Approved
Detector	7098-0002	ICCD-576-S/RB-EM	DETECTOR	0/12/33	0/1//95
Controller	7152-0008	ST-138S CONTROLL	ER. 12 BIT 1MHZ-16BIT 200 SERIAL		395262
				AOR	395519

Array #	Array Description	
4814-0022	CCD-02-06-1-656 MPP 576X384, W/3MM FIB OPTIC FEV	Array S/N
ntesilier #	Intestifier Description	A2959-24
5701-0004	PMCP, 18MM, I, S, SPECIFY WINDOW AT TIME OF ORDER	Intesifier S/N
		B1926209
Noise Te	st Results Noise Units CTS/SEC	
peed		•
200 KHz	1 MHz	
Dise		
0.97	171	
•		
CD Tes	t Results	
	c ivesuits	
Unif - Top	Unif - Center Unif - Bottom Ava Signal	
/.80	7.50 7.90 12.236	
0.25	Sec	
Dark Spots		
2	Dark Clusters Dark Columns Hot Spots	
White Clusters		
0	O O O O O O O O O O O O O O O O O O O	
L		
Bias Level (cts)	Speed(KHz) Hi Mid Low X Full Dark	
100	200 14 🛛 Target	
Vrd or Vod (Volts)) Vss or Vig (Volts) Burn in (Hre)	
18.0	7.89 48	
4		
itesitier	Test Results	
osphor Delta MC	P PCathode Pos. Bias Sensitivity Avg. Sig FBI Scietilation OF	
5610 670	6450 39 72 4750 0.1 0	270 QE520 QE810
Res. Other Re	9 Other Res Term Res ABC Gating Data in	0.3 57 1
2.2 400 M	400 M 50 SET 142 100 28	
ata taken at 14 bits	> Post-it" Fax Note 7671 Date	D.1./JV
	To Marlow Magaz From Q A	
	Co./Dept. Co.	
	Phone # 205 \$50 72 20 (Phone #	
	Fax # 200 50 7001 - 601587	
	00 070 7205 10 602 507/920	

THRSHUNI.TXT

DARK DEFECT REPORT

Customer Name	: NASA
Date	: 08/07/95 14:22:30
Detector Type	: EEV 576x384 [6 ph] / TE COOLED
Chip Size	: 576 x 384
Exposure	: 1
Number Head Cleans	: 0
Async/Sync Mode	: Asynchronous
Timing Mode	: Free run
ADC Bits	: 16
Readout Rate	: 200 kHz
Output Image File Name	: fulluni.SPE
Output Text File Name	: thrshuni.txt
Threshold Image Name	: thrshuni.SPE
Number Of Defects	: 2
Threshold Value	: 0.464053
Low Defect Value	: 0.270705
High Defect Value	: 0.451969
Average Defect	: 0.361337
X, Y	ty
Coordinates Intensi	
569 , 153 0.2	70705
89 , 247 0.4	51969
Bad Rows Row Inte	nsity

.

. . .

.

WHITE DEFECT REPORT

Customer Name	: NASA
Date	: 08/07/95 15:50:43
Detector Type	: EEV 576x384 [6 ph] / TE COOLED
Chip Size	: 576 x 384
Exposure	: 100
Number Head Cleans	: 0
Async/Sync Mode	: Asynchronous
Timing Mode	: Free run
ADC Bits	: 16
Readout Rate	: 200 kHz
Temperature	: -35C
Input File Name	: dcfull.SPE
Output Image File Name	: dcfull.SPE
Output Text File Name	: dcthresh.txt
Threshold Image Name	: dcthresh.SPE
Number Of Defects	: 33
Threshold Value	: 150
Average Dark Charge	: 0.00930415 ADU/pixel/sec
Low Defect Value	: 157
High Defect Value	: 2348
Average Defect	: 352.364

White Defect Data For NASA

•

Page 2

X, Y Coordinates	Intensity
283 , 20	262
439 , 29	162
559 , 35	244
398 , 45	218

501 , 45 115 , 50 53 , 66 387 , 66 176 , 93 561 , 98 568 , 103 92 , 107 337 , 108 80 , 112 440 , 113 144 , 140 297 , 162 69 , 166 191 , 173 347 , 178 406 , 183 572 , 204 76 , 211 40 , 239 266 , 248 61 , 254 545 , 275 142 , 282 85 , 314 476 , 314 240 , 324 53 , 337 67 , 375 Bad Rows	355 459 256 295 189 203 165 401 203 180 189 229 530 198 184 248 206 1378 218 206 1378 218 220 2348 206 1378 218 220 2348 299 337 204 218 171 236 466 157 Row Intensity
	corumn intensity

•

etector hip Size ontroller eadout Rate CD Serial Number umber Grouped In umber Grouped In ackground Mean	: EEV 576x384 : 576 x 384 : ST138 : 200 kHz : A2959-24 X : 1 Y : 1 : 874.447	[6 ph] / TE CC	DOLED	
xpos H	Net ADU	ADU/Exp Norm	<pre>% Non-Linear</pre>	e/CTS
1 1503.52 2 3007.96 3 4512.4 4 6018.53 5 * 7524.85 6 9029.44 7 10533.1 8 12043 9 13552.7 15029	1504.44 3008.89 4515.01 6021.33 7525.92 9029.53 10539.5 12049.2 13525.5	15044.4 15044.4 15050 15053.3 15051.8 15049.2 15056.4 15061.5 15028.3	 -0.0426613 -0.04271 -0.00540701 0.0163833 0.00657925 -0.0108573 0.0366132 0.0707643 -0.149854	10.4469 11.9639 14.3215 14.3316 13.7173 14.4996 15.37 15.9751 16.2052
age % Non-Linear	(Absolute Values	Used): 0.0230	302	20.9516
age e/CTS :	14.3113			

•

